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Abstract: Current nitrogen (N) models tend to neglect the contribution of 

the microbial population to the plant available N pool, resulting in an 

underestimation of yield and possible over or underestimation of N runoff 

from natural and agricultural landscapes. We used the measurement of 

microbial activity coupled with the measurement of their food source, water 

extractable nitrogen (N) and carbon (C), to add a flush of N after rainfall 

events in the Soil Water Assessment Tool (SWAT). Soil test data and spatial 

analysis of N mineralization values were used to: (1) Quantify spatial 

variation of water extractable organic and inorganic N, soil inorganic N and 

microbial activity; (2) develop a field scale model to determine N 

mineralization using updated soil testing methods for integration into the 

SWAT model; and (3) predict wheat yield. Simulation results indicate that 

yearly yield values and the variability of these yield values were consistently 

greater from the modified N model than from the SWAT model, as would be 

expected with the addition of N mineralization resulting from microbial 

activity. The spatial variability in yield results increased with the modified N 

model as compared to the SWAT model. The yield data resulting from the 

modified N model simulation were sensitive to soil nutrient values as well as 

variations in elevation. Temporal and climatic variability is accounted for by 

including a precipitation trigger for N mineralization. The equations used to 

model the complex biogeochemical N cycling relationships are elegant in 

their simplicity, yet capture the spatial complexity associated with their 

processes. The modified N model may be useful to regulators to help with 

the simulation of new conservation practices that include the effect of lower 

fertilizer inputs on nutrient runoff and pollution. 
 
Keywords: Soil and Water Assessment Tool, SWAT, Nitrogen Modeling, 

Spatial and Temporal Modeling of Nitrogen Cycling, Soil Nutrient Cycling 

Modeling 

 

Introduction 

All of the major components of environmental 

modeling have spatial distributions and these 
distributions affect biogeochemical processes. A 

Geographic Information System (GIS) is an important 
tool in describing the spatial characteristics of the 

environment, while environmental modeling simulates 

the environmental processes affected by the spatial 
distribution (Rao et al., 2000). Models can be used on a 

large scale to shape policy, like the Conservation Effects 

Assessment Program (CEAP) Hydrologic Unit Model 

for the United States/Soil Water Assessment Tool 

(HUMUS/SWAT) model. The HUMUS system 
improves on existing technologies for making national 

and regional water resource assessment considering both 
current and projected management conditions. The 

HUMUS system is conducted at the watershed scale 
using a Geographic Information System (GIS) to collect, 

manage, analyze and display the spatial and temporal 

inputs and outputs and relational databases for managing 
the non-spatial data (Arnold et al., 2010). Other models, 
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such as CENTURY, were developed to analyze long-
term changes in N and C in soil in various ecosystems on 

a farm or regional scale (Metherell et al., 1993). On a 

field, farm or small watershed scale, the Agricultural 
Policy/Environmental Extender Model (APEX) simulates 

N dynamics with varying land management strategies, 
such as different nutrient management practices, tillage 

operations and alternative cropping systems. 

Many nitrogen mineralization models, including the 
Environmental Policy Integrated Climate Model (EPIC), 
on which the N cycling in SWAT is based on, are based 
on the Production of arid Pastures limited by RAinfall 
and Nitrogen (PAPRAN) model (Lauenroth et al., 1983; 
Neitsch et al., 2001; Matthews and Stephens, 2002; 
Seligman and van Keulen, 1981; Williams, 1995). The 
PAPRAN model considers two sources of mineralization, 
fresh organic N associated with crop residue and microbial 
biomass and the stable organic N associated with the soil 
humic fraction. In general, these mineralization processes 
take into account the C:N ratio of the soil, temperature, soil 
water content and sometimes soil C:P ratios. 
Mineralization is estimated as a function of organic N 
weight, soil water and temperature. The incorporated 
PAPRAN model does not account for the contribution of 
the microbial population to the plant available N pool, 
resulting in an underestimation of yield and possible over 
or underestimation of N runoff from natural systems and 
agricultural landscapes that are not conventionally tilled. 
We must accurately assess the microbial biomass and their 
activity since they are the main drivers of N cycling and 
soil fertility in general (Fig. 1). 

Over the years our technological capabilities have 

increased and now we can observe microbiological 

processes in the soil on more localized physical and 

temporal scales. Microbes exist in soil in great abundance 

and their composition, adaptability and structure are a 

result of the environment they inhabit. Microbes have 

adapted to temperature and moisture levels, soil structure, 

crop and management inputs, as well as soil nutrient 

content. Since soil microbes are driven by their need to 

reproduce and by their need for acquiring C, N and P in a 

ratio of 100: 10: 1 (C: N: P), it is safe to assume that soil 

microbes are a dependable indicator of N cycling in the 

soil (Franzluebbers et al., 1996). It is well established 

that C is the driver of the soil nutrient-microbial 

recycling system (Paul and Juma, 1981; Tate, 1995; 

Bengtsson et al., 2003). The consistent need for C and N 

sets the stage for a standardized, universal measurement of 

soil microbial activity. Since soil microbes take in oxygen 

and release CO2, we can couple this mechanism to their 

activity. It follows that soil microbial activity is a response 

to the level of soil quality/fertility in which they find 

themselves and we can now also assess a real-time 

snapshot of the active microbial population using a 

measurement of microbial respiration. 

The measurement of microbial activity, coupled 

with the measurement of their food source, water 

extractable N and C, which are broken down by soil 

microbes and released to the soil in plant available 

inorganic N forms, provide the initial N values and 

the mineralization rate necessary to modify N cycling 

routines. Using soil test data and spatial analysis N 

mineralization values are determined based on the 

relationships between water extractable N and C as 

well as microbial activity. 

The objective of this study was to: (1) Quantify 

spatial variation of water extractable organic and 

inorganic N, soil inorganic N and microbial activity 

using updated soil-testing methods; (2) develop a field 

scale model to determine N mineralization for 

integration into the SWAT model; (3) use GIS to collect 

and analyze spatial and temporal inputs and outputs; and 

(4) predict wheat yield based on objectives 1, 2 and 3. 

 

 
 

Fig. 1. Soil microbes acting on soil organic matter to release N 
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Materials and Methods 

Research was conducted at a research field at the 

United States Department of Agriculture, Agricultural 

Research Service (USDA/ARS) Facility in Temple, Bell 

County, TX (31° 09' 09'', -97° 24' 28'', elevation: 205 m) 

in the Texas Blackland Prairies ecoregion. The climate is 

humid subtropical with a mean annual temperature of 

19°C and mean annual precipitation of 886 mm. Rainfall 

occurs year-round with hot summers and moderate 

seasonality. The field where the study was conducted 

consists of 33.6 ha that has been in consecutive cover/cash 

crop rotation for 5 years. Cash crop rotations consist of 

wheat and sorghum. Cover crops consist of a mixture of 

legumes and forbs. Soils consist of Austin Silty Clay 1 to 

5% slopes and Houston Black Clay 1 to 3% slopes (Fig. 

2). At the time of sampling, the entire field had been 

planted in cover crops consisting of a mixture of 

legumes and forbs. The cover crop had not fully 

emerged, leaving large portions of the field that were 

either bare or covered with residue. The last three crops 

grown on the field were wheat in winter of 2011 and 

sorghum in the summers of 2012 and 2013. 

 

 
 

Fig. 2. Soils within field of study 
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All GIS analyses were conducted using ArcGIS 10.0 

(ESRI, 2011). Information extraction and spatial 

analyses were performed using ArcGIS 10.0. 

Daily weather data were obtained from the weather 

station located at the USDA-ARS, Grassland, Soil and 

Water Research Laboratory in Temple, TX 

(www.ars.usda.gov/Research/docs.htm?docid=9697). 

Data include maximum and minimum air temperature 

and total precipitation. Daily weather data were 

utilized to perform model runs on a daily time step to 

determine yield from the field of study from 1980 to 

2004. The model was validated using weather data 

from 2011 and 2012. Weather data are used in the 

model to predict the daily fluxes of N as well as plant 

growth for yield simulation. 

The digital elevation model used for analyses is 

from the National Aeronautics and Space 

Administration (NASA) Shuttle Radar Topography 

Mission (SRTM) and was obtained from United States 

Geological Survey (USGS) Earth Explorer 

(earthexplorer.usgs.gov). Elevation models were 

arranged into tiles covering a degree latitude and 

longitude with an arcsecond or 30 m resolution. The 

data used are void filled using primarily Advanced 

Space borne Thermal Emission and Reflection 

Radiometer Global Digital Elevation Model version 2 

(ASTER GDEM2) and secondly the USGS National 

Elevation Dataset. The SRTM Digital Elevation 

Model (DEM) was used to develop 2 m elevation 

contours for determining soil samples locations. 

Contours were constructed using the Contour toolset 

in ArcGIS 10, ArcToolbox. 

Soil sample points at least 100 m apart were 

randomly chosen based on 2m elevation contours as the 

constraining feature class (create random points) 

resulting in 21 points for the entire field. Soil samples 

from the top 15 cm of the upper soil profile were 

obtained at each sample point. The top 15 cm of soil 

were chosen since the majority of N cycling occurs at 

this depth. Each soil sample was dried at 50°C, ground to 

pass a 2 mm sieve and weighed into two 50 ml 

centrifuge tubes (4 g each) and one 50 mL plastic 

beakers (40 g each) that was perforated to allow water to 

be lifted by the soil. Soil samples are naturally able to 

reach field capacity through capillary action (Haney and 

Haney, 2010). One 4 g sample was extracted with 40 

mL of DI water and the other with H3A extract ant 

(Haney et al., 2010). The samples were shaken for 10 

min, centrifuged for 5 min and filtered through Whatman 

2V filter paper. The water and H3A extracts were 

analyzed on a Seal Analytical rapid flow analyzer for 

NO3-N and NH4-N. The water extract was also analyzed 

on a Teledyne-Tekmar Apollo 9000 C: N analyzer for 

water-extractable organic C and total Water Extractable 

N (WEN). Water Extractable Organic N (WEON) was 

determined from the difference of total water extractable 

N and water extractable NO3-N and NH4-N. 

One-day CO2 evolution was determined using the 

Solvita Gel System (Haney et al., 2008). The Solvita Gel 

System quantifies the relative differences in CO2 

respiration after drying and rewetting using a pH-

sensitive gel paddle and digital color reader that 

incorporates diode array detection technology that 

selects the intensity of red, blue and green emission. 

Samples were weighed (40 g) and wetted to field 

capacity using capillary action. Wetted samples were 

placed into 8-oz jars with lids accompanied by a Solvita 

gel paddle. The samples were incubated at 25°C for 1 

day. After 1 day, the paddles were removed and placed 

in the Solvita digital reader for analysis of CO2 

concentration. The resulting data were used for the 

spatial analysis of N values throughout the field for 

ultimate use in the N cycling model. 

Satellite imagery was obtained from the National 

Agriculture Imagery Program (NAIP) through the 

Texas Natural Resource Information System (TNRIS, 

www.tnris.org). The 1 m digital ortho rectified image 

was taken on June 28, 2012, during the summer 

growing season. Imagery during the winter wheat 

growing season was unavailable at the resolution 

necessary to perform analysis on the field of study; 

however, mixed cover crops were growing on the 

entire field at the time the imagery was obtained. The 

NAIP imagery contains 4 bands (red, green, blue and 

infrared). The aerial photograph was utilized to 

delineate the field, which was ground truthed by 

walking the delineated line while running the ArcGIS 

mobile application on an iPhone 5S. In addition, the 

aerial photo taken in 2012 was used to calculate the 

Normalized Difference Vegetation Index (NDVI) in 

ArcGIS 10.0. The final NDVI image was used to 

assess the validity of the output of the model 

simulations. The aerial photo was used to calculate the 

Normalized Difference Vegetation Index (NDVI) 

(Rouse et al., 1973) in ArcGIS 10.0 as follows 

Equation 1: 

 

( ) ( )( )/ *100 100NDVI IR R IR R= − + +  (1) 

 

where, IR is the infrared band and R is the red band. The 

output values range from 0 to 200, with 200 indicating 

the greenest and most healthy vegetation and 0 

representing dead vegetation or bare soil. The NDVI is 

preferred for vegetation monitoring as it naturally 

compensates for changing illumination conditions, 

surface slope, aspect and other extraneous factors 

(Lillesand et al., 2004). The final NDVI image was used 

to validate the output of the model simulations. 

Descriptive statistical analyses, correlations and 

regressions were performed using Sigma Plot Version 
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12.5 for Windows (SSI, 2012) and Curve Expert 

Profession v2.0.4 (Hyams, 2013). Kriging was used in 

ArcGIS 10.0 (ESRI, 2011) for spatial interpolation of 

values at unsampled locations based on sample data and 

their spatial structure determined using Moran’s I 

analysis. Pearson product-moment correlation 

coefficients were determined between soil yield results 

using the modified N model, yield results from the 

SWAT mode land NDVI using PASSaGE 2 

(Rosenberg and Anderson, 2011). Because spatial 

autocorrelation in the model output variables affects does 

not meet the assumptions of classical tests of significance 

of correlation and regression coefficients, the statistical 

significance of these relationships was determined by 

Dutilleul’s modified t test (Legendre et al., 2002) which 

accounts for thee effects of spatial autocorrelation. 

Dutilleul’s modified t tests were conducted using 

PASSaGE 2 (Rosenberg and Anderson, 2011). 

Model Theory 

The basic model structure was developed using the 

measured Water-Extractable Organic C (WEOC) and N 

(WEON) and 1-d CO2 analysis, as well as scientific 

knowledge regarding the interactions between soil 

microbes and water extractable C and N in the soil. The 

interactions between the biology of the soil and the 

inorganic components of the soil are predictable and can 

be easily modeled using the soil test data we obtained. 

Haney et al. (2012) found that soil microbial activity 

measured as the flush of 1-d CO2 following rewetting of 

dried soil was significantly correlated to WEOC and 

WEON. Figure 3 depicts the relationships between 1-d 

CO2, WEOC and WEON values for various soils 

throughout the contiguous United States (data from USDA-

ARS). Short-term C respiration from soil after drying and 

rewetting is also highly correlated with soil microbial 

biomass C and 24-d N mineralization (Haney et al., 2012). 
 

 
 

Fig. 3. Relationships between 1-d CO2-C and water extractable N and C 
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The laboratory Drying and Rewetting (D/R) process 

mimics the natural processes in the field that occur with 

rainfall events, the extent of which depends upon 

climatic and soil conditions. The mineralization of C and 

N following drying/rewetting can be used to quantify the 

portion of the soil microbial biomass that is most 

responsive to rainfall events, which can have a strong 

impact on nutrient availability (Franzluebbers et al., 

2000). Specifically, every time it rains and the soil gets 

wet to a certain degree of field capacity, microbes 

activate, reproduce, eat long-chain organic molecules 

containing C, N and P and in the process, convert 

organic N to plant available N. The pulse of C, N and P 

can be 10 to 100 times the background level of turnover 

following rainfall after a dry period (Haney et al., 2010). 

Given that soil microbes drive N mineralization, 1-day 

CO2 evolution after D/R may be used to simulate the 

soil’s ability to supply N (Haney and Haney, 2010). 

In the model we used 1-d CO2 values and WEOC 

concentrations to determine the Microbially Active C 

(MAC) pool using the following Equation 2: 

 

21  /MAC d CO WEOC= −  (2) 

 

where, WEOC is the measurable pool of water 

extractable organic C that is the food source for 

microbial activity measured as 1-d CO2. The quantity of 

available substrate (C and N) available for mineralization 

is measured using the MAC ratio. 

Schimel and Bennett (2004) make a strong case for 

rethinking our approach to estimating N mineralization 

by also considering the contribution of N from the water-

soluble organic N pool. The model considers the basic C: 

N relationship that exists in organic matter and simulated 

the WEON pool as being accessed directly by the 

microbes and in proportion to MAC. For example, if 

microbes release 25% of the C through respiration, 25% 

of the WEON pool will be released as well. The portion 

of N that is released from the WEON is therefore 

calculated as follows Equation 3: 

 

_MAC WEON WEON MAC= ×  (3) 

 

Because the release of N is triggered by rainfall in 

nature, in the model, rainfall events trigger the release of 

MAC_WEON as follows: 

 

If (precipday> = 13 .and. sol_st(k,j) <= 0.25 * 

sol_sumfc(j) 

& .and. k <= 2) then 

sol_weon(k,j) = sol_wen(k,j) - sol_win(k,j) 

sol_macweon(k,j) = sol_weon(k,j) * (sol_oneday(k,j)/ 

&sol_weoc(k,j)) 

End If 

where, precipday is the amount of rainfall accumulated 

on each day (mm), sol_st(k,j) is the soil moisture for the 

layer based on the percent of field capacity in the field, 

where k is the layer identifier and j is the field or 

hydrologic resource unit identifier. sol_sumfc(j) is the 

field capacity of the soil in the field. sol_weon(k,j) is the 

WEON for the soil layer in the field, sol_wen(k,j) is the 

total water extractable N in the field, sol_win(k,j) is the 

water extractable inorganic N in the field. 

sol_macweon(k,j) is the combination of Equation 2 and 

3. The computed MAC_WEON is then added to the 

nitrate pool for the soil layer in the field (sol_no3(k,j)) 

using the following Equation 4: 

 

( ) ( ) ( )3 sol_no3  sol_no k, j k, j sol_macweon k, j= +  (4) 

 

The precipitation trigger is set equal to 13 mm, which 

is just enough to wet the soil and activate the microbes. 

In the field, significant pulses of NOx emissions from 

rewetted dried soils have been seen from soils receiving 

as little as 12 mm rainfall (Haney et al., 2010) indicating 

that 13 mm is an appropriate rainfall level to observe a N 

flush. The soil moisture trigger is associated with a 

percent of field capacity in order to limit the N 

mineralization events. For example, if an appreciable 

rainfall event occurs on day 125 of the year and again on 

day 126 the soil will not have had sufficient time to 

complete a D/R cycle between those days and we do not 

want to simulate an additional release of N on day 126. It 

is important to simulate a complete D/R cycle in order to 

mimic the natural D/R in the field. During a succession 

of drying and rewetting events in the lab, a uniform 

pattern of CO2 evolution was exhibited, which also 

occurred under field conditions (Birch, 1958).  Birch 

(1959) postulated that the common feature between the 

evolution of CO2 and N mineralization after 

drying/rewetting soil was microbial death and 

subsequent mineralization. These studies suggest that 

physical alteration of the soil was not a primary factor 

for the mineralization of C and N. The majority of the 

mineralization of C and N after rewetting dried soil is 

likely due to the death of heat susceptible microbes, 

death from water induced osmotic shock and further 

renewal of the microbial population and consumption 

of the organic C and N source. While we could attempt 

to simulate microbial activity on dry days and the 

resulting N mineralization, it is very likely that the 

baseline activity would be insignificant in the grand 

schema and have little to no effect on yield predictions. 

Nitrogen mineralization is not triggered unless the 

soil water is less than 25% of field capacity. By using the 

field capacity of the soil as a gauge we are accounting 

for the spatial variability in the physical attributes of the 

soil. The movement of water in soil is dependent on the 

combined effects of porosity, gravity, mass flow and 
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capillary action. Soil porosity is influenced by texture, 

structure (e.g., degree of aggregation) and organic-matter 

content. For example, coarse-textured soils have larger 

pores than fine-grained soils, which allow for more water 

flow. Organic matter greatly increases the water-holding 

capacity of a soil. Capillary action is the natural 

movement of water using adhesion (attraction to solids) 

and cohesion forces (attraction between water 

molecules) and is counterbalanced by the effects of 

gravity and air pockets. Haney et al. (2008) indicate that 

microbial activity studies that involve D/R soils use 

gravimetric water content, soil matric potential, or 

percentage of Water-Filled Pore Space (WFPS) to 

achieve sufficient moisture content for peak microbial 

activity. Furthermore, Haney et al. (2008) indicate that a 

range of 30 to 70% WFPS is sufficient for peak 

microbial activity, which represents roughly 50% of field 

capacity (Haney et al., 2004). We used a value of 25% 

after calibrating the simulations with known fertilizer to 

known yield values from our study area. 

The model was initialized using the initial inorganic 

N, WEN, WEOC and 1-d CO2 values obtained from the 

soil analysis of the 21 fields. Weather data for 1980 to 

2004 and slope and elevation values for each soil sample 

were used as input parameters. We treated each soil 

sample site as its own hydrologic resource unit for 

simulation purposes. For each soil sample and the 

corresponding soil values, we conducted simulations of 

wheat yield by varying fertilizer rates (67.2, 44.8, 33.6, 

22.4 and 0 kg N/ha). In addition, one sample dataset was 

chosen to simulate a fertilizer response curve for 9 

different fertilizer rates (335.6, 223.9, 167.9, 111.9, 67.2, 

44.8, 33.6, 22.4 and 0 kg N/ha). The model was partially 

validated using 2 simulations, one for wheat in 2011 and 

the other for sorghum in 2012. The actual field received 

no fertilizer, so fertilization was not conducted during 

the simulations. 

Modified model results were compared to the 

traditional SWAT model simulations using the same 

parameters described above. The SWAT model currently 

does not have parameters for WEOC, WEON, or 1-d 

CO2 results; however, initial soil-test N and P values 

were utilized. A complete description of the theory and 

equations used in the SWAT model can be found at 

swat.tamu.edu. 

Results 

Soil Data 

The mean initial inorganic N and P concentrations 

were 3.95 and 3.96 mg kg
−1

, respectively. Total WEN 

(organic plus inorganic N) ranged from 16.00 to 26.09 

mg kg
−1

, with a mean value of 20.99 mg kg
−1

. Water 

extractable inorganic N values were similar to H3A 

extractable N values with a mean N concentration of 

4.11 mg kg
−1

, with all values ranging between 1.11 and 

6.72 mg kg
−1

. One day CO2 values ranges from 12.27 to 

34.26 mg kg
−1

 with a mean value of 22.34 mg kg
−1

. 

Water extractable organic C values range from 208.91 

to 343.65 mg kg
−1

 with a mean concentration of 

246.01 mg kg
−1

. The mean, standard deviation, 

standard error, minimum, maximum and median 

values are reported in Table 1. Water extractable 

organic N was determined by subtracting water 

extractable inorganic N from WEN. 

To visualize the spatial variability of the soil test 

data, kriging was performed. The data were first 

assessed for normality using histograms, then Normal 

Quantile-Quantile Plots were used to determine their 

suitability for spatial interpolation. The results indicate 

that the data were mostly normal, excepting water 

extractable organic carbon, which appeared more 

normal after a log transformation. The data were also 

analyzed for normality using the Shapiro-Wilk test for 

normality (Fig. 4). Results from 1-day CO2 analysis 

were normal according to the Shapiro-Wilk test (W-

Statistic = 0.986, P = 0.987, Passed). Water extractable 

total N and inorganic N data were also normal 

according to the Shapiro-Wilk test (W-Statistic = 

0.954, P = 0.412, Passed and W-Statistic = 0.975, P = 

0.846, Passed, respectively). Water extractable organic 

C data were also normal according to the Shapiro-Wilk 

test, when one extreme outlier was taken out of 

consideration (W-Statistic = 0.971, P = 0.780, Passed). 

A test that passes indicates that the data matches the 

pattern expected if the data was drawn from a 

population with a normal distribution. Interpolation 

results are best when the data are normally distributed 

for kriging and co-kriging. Wang et al. (2013) found 

that N values interpolated by ordinary kriging perform 

well. The drawback to ordinary kriging is that it causes 

smoothing effects and has some difficulty dealing with 

co-variables. The authors further indicated that 

ordinary kriging has advantages over other 

interpolation methods when the study region is 

relatively flat and uniform, like our field in this study. 

Kriging is a form of linear least squares estimation and 

assumes a constant but unknown mean. Kriging 

weights the surrounding measured values as a measure 

of distance for prediction of an unmeasured location. 

The general formula is as follows Equation 5: 
 

1
( ) ( )

N

o i ii
Z s Z sλ

=
=∑  (5) 

 
Where: 

Z(si) = The measure value at the i
th

 location 

λi = An unknown weight for the measured value at 

the i
th

 location 

so = The prediction location 
N = The number of measured values 
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Fig. 4. Histograms and normal QQ plots of soil test attributes 

 
Table 1. Soil test analyses results 

Soil attribute Mean mg/kg Std Dev Std. Error Max mg/kg Min mg/kg Median mg/kg 

Initial inorganic N 3.95 1.31 0.29 7.03 1.06 3.79 

Phosphate 3.96 1.04 0.23 5.65 1.80 4.07 

Water extractable N 20.99 2.76 0.60 26.09 16.00 21.12 

Water extractable inorganic N 4.11 1.37 0.30 6.72 1.11 3.92 

One day CO2-C 22.34 5.72 1.25 34.26 12.27 21.66 

Water extractable organic C 246.01 27.65 6.03 343.65 208.91 242.86 

 

The weights are dependent upon the distance between 

measured points and the prediction location, as well as 

the overall spatial arrangement of the measured points. 

In order for kriging to be valid, spatial autocorrelation 

must exist. In ordinary kriging, the weight depends on a 

fitted model to the measured points, the distance to the 

prediction location and the spatial relationships among 

the measured values (ESRI, 2011). 

Kriging was used in ArcGIS for spatial interpolation 

of values at unsampled locations based on sample data 

and their spatial structure analyzed using semivariogram 

analysis. Semivariogram analysis was performed for 

WEN, 1-d CO2 and WEOC using ArcGIS 10.0. Nugget 

variance, range, structure variance and sill were used to 

evaluate spatial structure. The nugget is the variance at 

lag distance zero and is caused by measurement error or 

variation at scales smaller than the sampling unit. The 

sill is the lag distance that defines the range of spatial 

continuity. Beyond the range, the values are considered 

spatially unrelated. The difference between the sill and 
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the nugget contains the spatial variance. The range of the 

model varied from 213.4 to 504 m, beyond which no 

spatial autocorrelation exists. The strength of the spatial 

structure at the sampling scale is determined using the 

following Equation 6: 
 

( )%    /strength of spatial structure Sill nugget sill= −  (6) 

 
Using this relationship, we determined that the 

strength of the spatial structure for WEN is 100%, 

because the nugget value is 0. The strength of the spatial 

structures for 1-d CO2 and WEOC are less than zero and 

21% indicating that the spatial autocorrelation was not 

strong. It is possible that a different model would be 

more suited for analyzing the spatial structure of 1-dCO2 

and WEOC or additional samples are needed. 

Ordinary kriging based on the variogram analysis 

provided estimates of WEN, 1-d CO2 and WEOC 

(Fig. 5-7) values for the 6 in depth increment at 

location which had not been sampled. 

 

 
 

Fig. 5. Kriging results for water extractable organic C (WEOC, mg/kg) throughout the study area 
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Fig. 6. Kriging results for 1-d CO2 (mg/kg) analysis throughout the study area 

 

This enables us to develop a map of these values across 

the study area. When the kriged maps are compared 

visually with the DEM and aerial photograph of the 

area, it is apparent the soil values vary with the 

elevation of the field. WEOC values appear to decrease 

in a northerly direction, corresponding to a decrease in 

elevation. WEN and 1-d CO2 values appear to increase 

at the lower elevation in the northern section of the 

field and decrease in an outwardly direction from the 

lowest elevation. An anomalous high WEOC value was 

present at the lower elevation, which was removed for 

kriging purposed because it skewed the normality of 

the data. It is possible that the WEOC values are 

actually higher in this location, but that this area was 

not adequately sampled. It makes sense that WEN and 

1-d CO2 values would increase with a dip in the 

elevation as the soil health would be greater in this 

location due to increased available moisture. 
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Fig. 7. Kriging results for water extractable N (WEN, mg/kg) throughout the study area 

 

Model Simulation Results 

Initial validation results using actual yield and 

weather data for 2011 and 2012 indicate that the yield 

results from the modified N model were 2.4 and 3.8 Mg 

ha
−1

, respectively, while actual yield results were 3.0 and 

3.5 Mg ha
−1

. These results are closer to the actual values 

than the yield predicted with the SWAT model, which 

were 1.5 and 0.8 Mg ha
−1

 for 2011 and 2012, 

respectively. More actual yield data are needed to 

determine the validity of these results. 

End users of the SWAT model report they receive little 

to no yield results when no fertilizer is applied during 

simulation. We found that over 27 years of simulation 

wheat yield ranged from 0.05 to 3.4 Mg ha
−1

, with one 

sample site consistently having higher yields than the 

others. It is unclear why this site had increased yield over 

the other sites. The median yield value is near 1.3 Mg 
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ha
−1

, which is low considering the natural fertility of the 

soil. Fertilizer has not been applied to the field in many 

years and wheat yields average around 2.0 Mg ha
−1

. Yield 

results from wheat rotations with no fertilizer using the 

modified model ranged from about 1.0 to almost 6.0 Mg 

ha
−1

 with an average value around 2.0 Mg ha
−1

. The 

modified N routine increased the range of predicted yield 

and the median yield. In fact, the range in yield values for 

all fertilizer treatments increased when using the 

modified model as compared to the SWAT model. Yield 

results for each of the 27 years simulated are strongly 

correlated to N fertilizer input when using the SWAT 

model (r
2
 = 0.80) and show only a weak correlation 

when using the modified N model (r
2
 = 0.38). Multiple 

linear regression indicates that a linear combination of 

precipitation, fertilizer application and N mineralization 

from the water soluble organic C and N pool contributes 

to predicting yield (p<0.05). The relationship can be 

explained by the following Equation 7: 
 

( ) ( )

 30.604  (0.139´ )

0.175* 0.290 *  

Yield Precipitation

fertilizer N mineralized

= +

+ +
 (7) 

Use of the multiple linear regression greatly improves 

the strength of the correlation between yield and 

determining process values (r
2
 = 0.77, Table 2). 

We used the Curve Expert software to fit yield 

results for varying fertilizer rates from 0 to 335.6 kg 

N/ha, which resulted in a best fit model using a 

Rational Model (Fig. 8 and 9). Rational functions are 

used for interpolation in science and engineering 

when attempting to approximate or model complex 

systems with diverse behavior. The Rational Model 

follows the Equation 8: 

 

21

a bx
y

cx dx

+

+ +
 (8) 

 

where, y = yield and x = fertilizer application. The 

SWAT model yield results had a stronger correlation 

with fertilizer application (y = (13.7+0.8x)/(1+4.2×10
−3 

x+9.9×10
−6

x
2
), r

2
 = 0.93) than the modified N model (y = 

(31.9+1.0x)/(1+9.0×10
−3 

x+6.7×10
−6

x
2
), r

2
 = 0.79) when 

using the Rational Model. 

 

 

 
Fig. 8. Rational Model describing the relationship of yield simulation values using the SWAT model with increasing fertilizer 

application (r2 = 0.93) 



Elizabeth Brooke Haney et al. / American Journal of Environmental Sciences 2016, 12 (2): 102.121 

DOI: 10.3844/ajessp.2016.102.121 

 

114 

 
 

Fig. 9. Relationship between increasing fertilizer application and yield simulated using the modified N model (r2 = 0.79) 
 

 
 
Fig. 10. Wheat yield results by year averaged over all fertilizer treatment simulations using SWAT with the added flush of N 

and unmodified SWAT 
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Fig. 11. Average wheat yield results from 27 years of simulations by soil sample using SWAT with the added flush of N and 

unmodified SWAT 

 

The yield values obtained varied temporally when 

using either the SWAT or the modified N model (Fig. 

10). Yearly yield values and variability were 

consistantly higher from the modified N model than 

from the SWAT model. The yield values obtained 

from the modified N model were also consistantly 

higher for each soil sample as would be expected with 

the addition of N mineralization resulting from 

microbial activity (Fig. 11). The spatial relationships 

between yield values from the SWAT model and the 

modified N model are depicted in the xyz contour plot 

in Fig. 12. SWAT simulated yield values indicate that 

the yield is greater in the southern portion of the field, 

while simulated yield values using the modified N 

model are greater in the northern portion of the field. 

Analysis using Moran’s I for spatial autocorrelation 

detected significant spatial variability in yield from 

both models. For the yield data resulting from both 

the modified and the SWAT model simulations, given 

the z-score of 85.34 and 85.23, there is less than 1% 

likelihood that the resulting clustered patterns could 

be the result of random chance. 

Because we do not have actual yearly yield data for 

all 27 years of simulation available for validation, NDVI 

is being used as a proxy for average yield data for the 

years 1980 through 2004 in order to determine if the 

modified model is predicting yield accurately. NDVI 

greenness factors were compared to kriged yield results 

from both models. If the model is predicting yield 

properly, the yield should correspond to greenness in the 

field. The greenness is an indicator of soil health and 

viability of plant growth. It follows that if the models are 

properly simulating N cycling in the soil, the yield 

should correspond to the greenness index from the 

NDVI. The NDVI data for the field indicate that plant 

growth is greatest in the northern portion of the field at 

the lower elevations. The simulation model yield results 

using the modified N model appear to correspond with 

the NDVI greenness factor, while the results from the 

SWAT model do not (Fig. 13). The modified t-test for 

correlation (Table 3) indicate that both the modified N 

and SWAT model yield results are correlated with NDVI 

values (p<0.005), however, the modified model has a 

significantly stronger correlation (p<0.001). 
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Fig. 12. Wheat yield values (kg/ha) using the modified N model (a) and the SWAT model (b) 
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Fig. 13. Kriged yield results from the modified N model (A) and the SWAT model (C) as compared to normalized difference 

vegetation Index analysis (B) derived from an aerial photograph of the area 

 
Table 2. Multiple linear regression results for yield, precipitation, N mineralization and fertilizer application values from the new N 

model simulation 

Coefficient Std. Error t   P  VIF 

Constant 30.604 0.517 59.165 <0.001 

precip_in 0.139 0.0127 10.923 <0.001 1.007 

conv_Fert 0.175 0.00699 25.089 <0.001 1.317 

conv_nmin 0.290 0.00451 64.386 <0.001 1.324 

Analysis of Variance: 

  DF   SS   MS    F    P  

Regression 3 336369.460 112123.153 2880.380 <0.001 

Residual 2621 102026.404 38.927 

Total 2624 438395.864 167.072 

Column SSIncr SSMarg 

precip_in 10186.575 4644.464 

conv_Fert 164808.621 24502.269 

conv_nmin 161374.265 161374.265 

P   

precip_in <0.001 

conv_Fert <0.001 

conv_nmin <0.001 

 
Table 3. Modified t-test for correlation between yield results and normalized difference vegetation index values 

     Dutilleul 

     -------------------------------------------------- 

Variable 1 Variable 2 Covariance P(Cov)  Correlation Corrected P (Cor)  Effective sample size 

Modified N routine SWAT -4.04 0.00005 -0.51 0.00002 62.7 

Modified N routine NDVI value 3.81 0.00014 0.38 0.00009 100.3 

SWAT NDVI value -3.21 0.00135 -0.32 0.00115 103.1 

 

Discussion 

Statistical results showing a strong correlation between 

yield and fertilizer inputs resulting from simulation with 

the SWAT model is problematic and indicates that the 

SWAT model is not properly accounting for the natural N 

cycling processes in the soil. The relationship between 

yield, rainfall, N mineralization and fertilizer when using 

the modified N model is a definite improvement over the 

current N routines in SWAT as yield is more closely 
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reflecting the complexity of the processes involved in 

plant growth, when all other aspects are held equal. When 

the Rational Model is used to describe the relationship 

between fertilization rate and yield, yield values increased 

accordingly with fertilizer application, eventually leveling 

off as fertilizer use exceeded needs of the plant. This 

relationship is expected as the benefits of fertilizer 

application will cease as plant nutrient stress is 

completely eliminated by excess available nutrients. 
Results from the simulations indicate that yearly 

yield values and the variability of these yield values 
were consistantly greater from the modified N model 
than from the SWAT model. The yield values obtained 
from the modified N model were also consistantly 
higher for each soil sample as would be expected with 
the addition of N mineralization resulting from 
microbial activity. The spatial variability in yield 
results by sample increased with the modified N model 
as compared to the SWAT model. 

In SWAT, soil properties are determined using the 

soil characteristics obtained from soil survey data. 

SWAT model output was not sensitive to the changes in 

the default soil properties associated with the soil series 

descriptions or elevation changes. In addition, because 

the N model in SWAT is based on the very large pools 

of soil organic C and N, which are 40 times larger than 

the active pool of N and C that the microbes utilize to 

cycle N, it is less sensitive to spatial variation of N 

mineralization. For example, spatial analyses of soil 

properties indicate that healthier soil is located at the 

north end of the field, which corresponds to the lower 

elevations within the study area. The SWAT model 

predicts that this area has the lowest yield, when in 

reality, it has the highest yield. This is due to the fact that 

yield predicted by the SWAT model are almost solely 

based on fertilizer input and exclude the natural N pools 

that were accounting for in the modified model. 

Soil properties are heterogeneous in nature and 

consist of continuous variables that change over spatial 

and temporal ranges. Early models describing the 

processes of N cycling use simple chemically and 

spatially lumped models (Manzoni and Porporato, 2009). 

Some biogeochemical models use a discrete 

representation of soil layers with different chemical and 

physical features or a continuous description of nutrient 

dynamics along the soil profile. What these models fail 

to do; however, is explicitly describe the spatial 

dynamics of water, organic matter or nutrients at a 

horizontally continuous spatial scale over a daily 

variable time step. The purpose of this study was to 

develop a N model that is able to capture the spatially 

explicit scale of N cycling over a large temporal range. 

The continuous nature of the soil properties being 

used in the N cycling model (WEOC, WEON and 1-day 

CO2) allow for spatial interpolation over the field of 

interest. Because 1-day CO2 analysis is a measure of 

microbial activity and microbial biomass is the driver of 

soil C and N cycling (Manzoni and Porporato, 2009) we 

would expect to see a strong correlation between the soil 

properties of interest throughout the field. Because the 

variables are spatially autocorrelated a normal linear 

regression analysis is inappropriate to examine the 

relationships between them. Semivariogram analysis of 

the spatially interpolated soil test results was used 

examine the spatial structure of the driving factors for N 

mineralization. The analysis results indicate that the 

spatial structures of 1-d CO2 and WEOC values were 

weak as compared to the spatial structure for WEN. It’s 

possible that a stronger spatial structure may have been 

obtained by modifying the kriging and semivariogram 

models used to evaluate the spatial structures of 1-d CO2 

and WEOC. Additional soil samples may also have been 

necessary to accurately capture the spatial variability of 

these parameters. In addition, the ordinary kriging 

method used did not account for the possible anisotropic 

nature of the soil values. Visual assessment of the 

kriging results indicate that at least some of the spatial 

variability was related to elevation changes from the 

north to south; however, this variation was not accounted 

for in the semivariogram analysis. Topography could 

potentially impact water extractable soil C values and 

microbial activity as assessed using 1-d CO2 analysis, 

which can regulate N cycling. Further spatial statistical 

analyses should include co-kriging analysis with elevation 

and possibly with vegetation parameters derived from 

NDVI analysis. Correlation analysis may be useful in 

further understanding the relationships between soil 

properties, elevation and vegetation parameters. 

Statistical evaluation indicates that the modified N 

model is useful in detecting the natural N mineralization 

power of the soil. Initial validation results using actual 

yield and weather data for 2011 and 2012 indicate that 

the yields were a little high for the zero fertilizer 

application simulations so some adjustment to the model 

is needed. The modified N model does appear to account 

for spatial variation in soil properties and temporal 

variation in climate factors. More data are needed over a 

wider spatial range (regional or larger) to determine how 

well the modified N model behaves under various 

climatic and soil conditions. 

Conclusion 

The objective of this study was to quantify the spatial 
variation of soil biogeochemical factors that affect N 

cycling in the soil and use these data to develop a field 
scale model to determine N mineralization for integration 
into the SWAT model. Due to the spatial nature of soil 
factors, it was essential to use a GIS to collect and analyze 
spatial and temporal inputs and outputs. 

The yield data resulting from the modified model 

simulation were sensitive to soil changes as well as 
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elevation changes. The modified N model naturally takes 

into account the spatial variability of soils over 

geographic areas because as the C:N ratio of a soil 

varies, the MAC_WEON calculation will vary 

accordingly. In addition, the MAC_WEON calculation 

used in the modified N model reflects the variation in 

soil health spatially by into account the viability of the 

microbial population. Temporal and climatic variability 

is accounted for by including the precipitation trigger in 

the SWAT simulated N mineralization cycle. In addition, 

soil and climatic variability is accounted for by 

accounting for microbial activity as measured using the 

flush of CO2. There is a clear link between “soil health,” 

microbial activity and soil respiration (Franzluebbers, 

2016). The equations used to model the complex 

biogeochemical N cycling relationships are elegant in 

their simplicity, yet capture the spatial complexity 

associated with their processes. 

Future studies will need to include long-term yield 

data for varying soils, crops and management practices 

in varying climates. Research may also include 

variations in the approach to data attainment and 

management for larger projects at the watershed scale. 

Data acquisition may be challenging for large scale 

projects as it will not be practical to soil test large areas. 

Satellite imagery may play a critical role in further 

development for large-scale simulations. In addition to 

the impracticality of large-scale soil sampling, only a 

few laboratories throughout the United States offer the 

soil tests that the modified N model is based upon. It will 

be important to test the use of default values for soil test 

results and may be necessary to find a proxy for soil test 

data, possibly using NDVI analysis. 

The modified N model incorporated into SWAT 

may be useful to regulators to help with the simulation 

of new conservation practices that include the effect of 

lower fertilizer inputs on nutrient runoff and pollution. 

Not only did this study result in an improved N model, 

it also succeeded in demonstrating the use of spatial 

analyses to determine the validity of model input data 

and output results. 
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DEM, digital elevation model; GDEM2, Global Digital 
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Normalized Difference Vegetation Index; NH
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, 
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Production of Arid Pastures limited by RAinfall and 

Nitrogen; SRTM, Shuttle Radar Topography Mission; 

TNRIS, Texas Natural Resource Information System; 

USDA, United States Department of Agriculture; USGS, 
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