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ABSTRACT 

The unpleasant effect of serpentine soil on plant life has been a topic of many studies for several decades. 

Infertility and flora selectivity nature of serpentine soils are the features, which made them of interest 

throughout the world. This research includes a geochemical study on two Malaysian serpentine massifs to 

introduce their harmful factors concerning vegetation. X-ray fluorescence results on 11 soil samples showed 

that serpentine soils comprise large values of iron and magnesium (up to 55 wt and 65 wt% respectively) and 

high amounts of some heavy metals like chromium (1248-18990 µg g
−1

), nickel (189-1692 µg g
−1

) and cobalt 

(95-478 µg g
−1

). However, soil extraction by ammonium acetate solution revealed that only magnesium is plant 

available. Besides, serpentine soils are poor in some major plant nutrients such as nitrogen, potassium and 

phosphorus. This substantial paucity is the main cause of bareness in these lands. Soils in the studied areas are 

moderately acidic and have the adequate cation holding capacity. Their Ca/Mg quotient is very low (less than 

1). The latter with the low availability of the calcium (0.34 m-equiv 100 g
−1

 in average) is another challenging 

parameter in serpentine soils, which exerts negative influence on plant growing. 
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1. INTRODUCTION 

Ultramafic rocks cover about 1% of the world 

continental surfaces (Garnier et al., 2009). They are 

located along convergent plate boundaries often associated 

with obducted oceanic crust (ophiolites). Ultramafic rocks 

are the source of the well-known “Serpentine soils”. 

Serpentinized ultramafic soils have been of interest to soil 

scientists and plant biologists since the last century because 

they create an unpleasant environment for plant life.  

The ‘serpentine syndrome” term was coined first time 

by Jenny (1981) to illustrate restricted growth, 

physiognomic alterations and element accumulations of 

plant species grown on serpentine soils. Flora 

depauperation is an important feature of serpentine soils 

throughout the world, which comes from the interplay of 

their distinctive physical, chemical and biotic factors. 

Typical serpentine areas are more barren than their 

surroundings and in agricultural areas they are 

recognized as infertile (Kim and Shim, 2008). Moreover, 

the selective nature of serpentine-drive soils controls the 

species of flora communities in these lands. Ultramafic 

soils support a number of plants that are endemic and 

restricted to these substrata. Soils derived from 

serpentines are commonly hosts of unusual and highly 

specialized flora. In the other word, serpentine soils are 

of interest because of their biodiversity factor. Since the 

fertility is limited, the plants are usually endemic.  
Mostly, serpentine-tolerant species are unable to 

survive in non-serpentine environments and the growth 

of plants on non-serpentine origin is usually inhibited on 

serpentine soils. The morphology of serpentine adapted 

plants distinct slightly from closely related species not 

adapted to serpentine sites. Furthermore, the climate is a 
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factor which controls the number of endemic plant 

species on serpentine lands; in tropical and subtropical 

regions like New Caledonia and Cuba, they are high 

(Dissanayake and Chandrajith, 2009), while in other 

regions such as some parts of Europe and New 

Zealand, they are lower. 

Extensive worldwide studies have been conducted on 

different aspects of plant life growing on ultramafic 

lands, but in this research the focus is on those edaphic 

characters which inherited from parent rocks and can 

create an abnormal environment.  

Serpentines are metal-loaded soils. Weathering of 

serpentine bodies under tropical climate produces thick 

profiles of reddish to black-brown lateritic soils rich of 

iron and manganese oxides. Serpentine soils have 

excessive amounts of siderophile elements such as 

chromium, cobalt and nickel which are partly responsible 

for infertility and the paucity of vegetation. 

Although certain metals like Cu, Fe, Mn and Ni are 
essential macronutrients for plant growth, in some 
concentrations they become entirely toxic for plants and 
microorganism (Siebecker and Sparks, 2010). Nagy and 
Proctor (2008) has described that the high soil porosity 
of an ultrabasic soils and its propensity for high 
concentrations of elements such as nickel, cobalt, copper 
might cause toxicity problems for agricultural products. 
However, there are certain plants which are geobotanical-
biochemical indicators and they can tolerate heavy metals 
or even accumulate them. According to Morrison et al. 
(2009) the poor vegetation on serpentine soil is mostly 
related to Ni toxicity rather than high contents of Cr and 
Co. The plant uptake of Cr is usually very low while Ni 
can be taken up by some native herb and crops to elevated 
amounts. Alyssum is an example of these plants that is able 
to exceptionally enrich Ni. Plants are intermediate 
containers of heavy metals which through them metallic 
contaminants move from soil to human and animals. Thus, 
studying the effect of heavy metal hyperaccumulation on 
plant health and growth is of great importance. 

 In contrast with elevated heavy metal contents, 
serpentine soils are characterized by deficiency of 
essential plant nutrients such as nitrogen, phosphorus and 
potassium. Calcium and Magnesium imbalance is 
another challenge that serpentine poses. It can affect the 
vegetation providing three circumstances; (a) toxicity of 
magnesium, (b) Lacking of calcium and (c) Diminishing 
Ca/Mg quotient (Cheng et al., 2011). Many 
researchers have described that how a low Ca/Mg 
ratio, lack of mineral nutrients and a high content of 
metals like Ni and Cr creates a strong infertility in soils.  

Serpentine bodies are scattered in many places in the 

world include New Caledonia, Zimbabwe, Western 

North America, Central Brazil, Middle east and South 

East Asia. Regions of Asia are generally the least 

explored and poorly described of such regions in the 

world. The tropical Southeast Asian lands have a large 

number of serpentine bodies including outcrops of 

Peninsular and Sabah Malaysia. This study investigates 

the above mentioned properties of serpentine soils in two 

Malaysian massifs. Serpentine outcrops in Malaysia 

occur as several isolated lenses along Bentong-Raub 

suture zone in the Peninsular (Hutchison, 2005). This 

research has been accomplished on Bukit Rokan and 

Petasih outcrops in Peninsular Malaysia and attempts to 

show the undesirability of these serpentine lands for 

plant life from soil geochemistry point of view.  

2. MATERIALS AND METHODS 

2.1. Study Area 

Soil sampling was conducted at Bukit Rokan and 
Petasih locations representing serpentine sites along the 
Bentong-Raub suture zone of Peninsular Malaysia. The 
most accessible outcrop is located at Bukit Rokan Barat 
housing estate. This body occurs within the chert-
argillite and is in fault contact with the Kepis 
Formation. The serpentinites of this area are commonly 
sheared and show yellow and green colors. They are 
strongly weathered and thus the village is surrounded by 
dark brownish-red Laterites arise from them.  

At Petasih in Negri Sembilan, the serpentines have 

a fault contact with the schists. They are highly 

foliated, sheared and faulted. Only a small part of this 

massif was accessible and sampling was performed on 

the road cut outcrop.  
The choice of the most suitable sampling sites is 

subject to accessibility. A total of 11 samples collected 
from top soil (less than 10cm thick) after cleaning 
superficial debris and vegetations. Sampling locations 
are depicted in Fig. 1. 

2.2. Sample Preparation and Analysis 

The chemical composition of soil samples, 
comprising 10 major elements and 20 trace elements 
were determined by employing the X-Ray Fluorescence 
spectrometer (XRF, Bruker S8 Tiger), house at Faculty 
of Science and Technology UKM. The soil samples were 
air-dried, crushed and disaggregated in an agate mortar. 
The homogenized and pulverized soil samples increase the 
precision of the analysis. Soils were powdered to 30 µm 
grain size and were made into 32 mm diameter fused-
beads for measuring major elements and 32 mm diameter 
press-powder pallets for measuring trace elements.



Mahsa Tashakor et al. / American Journal of Environmental Science, 9 (1): 82-87, 2013 

 

84 Science Publications

 
AJES 

 
 

Fig. 1. The locations of the studied serpentine massifs in Peninsular Malaysia 

 
The fused beads have been prepared by igniting 0.5 g of 
sample with 5.0 g of Johnson-Matthey 110 spectroflux, 
giving a dilution ratio of 1:10. As for the pressed-powder 
palettes, the preparation involves applying a pressure of 
20 tonnes for one minute to 1 g of sample against 6 g 
of pure boric acid powder. The Loss on Ignition test 
was performed to estimate the amount of moisture, 
organic matter and impurities of soil samples. 1 g of 
oven dried soil weighed accurately in a platinum 
crucible and transferred into an electric furnace for 
one hour. After ignition at 1100°C samples were 
cooled in desiccators and weighted again accurately.  

In order to find the plant-available concentrations of 
elements in soils, extraction of soil was conducted using 
saturation test with 0.5 M ammonium acetate exchange 
as described by ASTM D4319 (ASTM, 1993) 4 g of air-
dried and pulverized soil was accurately weighed into a 
plastic centrifuge tube. 33 mL of ammonium acetate 
solution was added and was shaken in a mechanical 
shaker for 1 h. Then, the tube was centrifuged and clear 
supernatant was decanted into 100 mL volumetric flask. 
The procedures above were repeated twice on the same 
soil and all supernatants were placed into the same 
flask and top-up to the mark with distilled water. 
Specimens were then analyzed using Inductively Coupled 
Plasma (ICP) machine, housed in the faculty of Engineering 

University Kebangsaan Malaysia (UKM). Exchangeable 
cations and CEC amounts were calculated thereafter.  

3. RESULTS 

The elemental composition of 11 serpentine soils 
from Bukit Rokan and Petasih massifs are outlined in 
Table 1. The results of X-ray fluorescence analysis 
approved the strongly enhancement of some heavy 
metals in serpentine soils relative to other soil types. As 
it was expected, among 20 analyzed trace elements, 
Chromium (Cr), Cobalt (Co) and Nickel (Ni) showed 
anomalously elevated concentrations by the following 
observed range; Cr 1248-18990 µg g

−1
, Co 95-478 µg g and 

Ni 189-1692 µg g
−1

. The comparison between heavy metal 
concentration in studied serpentine soils with average soil 
compositions of the earth and phytotoxic level of 
elements in soils are presented in Table 1.  

Major and macronutrient oxides have also been the 
subject of XRF analysis. As it is quite apparent from 
Table 1, Fe2O3 in 64% of samples changes in the 
range of 27.34-55.65 (in weights percentage), while 
these samples have only less than 1wt% MgO. In 
contrast, 36% of soil samples are rich of MgO varying 
from 49.16 to 65.88 weights percentage, whereas they 
are depilated from Fe2O3. 
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Table 1. The average concentration of Cr, Co and Ni (in µg g
−1

), the means of some major and macronutrient oxides (in weight %) and the 

percentage losses-on-ignition in 11 soil samples from Bukit Rokan and Petasih serpentine outcrops in Malaysia 

 Cr(t)   Fe2O3 MgO CaO Na2O K2O P2O5 L.O.I 

 (µg g
−1

) Co(t) Ni(t) (%) (%) (wt%) (%) (%) (%) (%) 

BR1 9487 464 1687 0.02 65.88 0.18 0.72 0.12 0.45 10.89 

BR2 2133 154 435 53.64 0.37 0.23 0.05 0.22 0.08 16.48 

BR3 1248 98 189 23.08 0.30 0.18 0.03 0.18 0.05 17.53 

BR4 11276 236 483 0.09 53.35 0.19 0.29 0.21 0.31 13.49 

BR5 18990 478 1692 0.02 65.88 0.18 0.72 0.12 0.45 15.84 

PS1 4164 104 371 0.06 49.16 0.18 0.56 0.21 0.74 20.75 

PS2 9297 149 587 44.03 0.50 0.18 0.03 0.14 0.07 17.30 

PS3 8128 126 526 37.65 0.33 0.19 0.03 0.14 0.06 9.39 

PS4 4523 95 342 27.34 0.21 0.18 0.06 0.13 0.06 16.21 

PS5 2512 298 1105 45.58 0.54 0.19 0.05 0.16 0.07 12.91 

PS6 4089 98 376 55.65 0.60 0.18 0.03 0.21 0.07 14.96 

Range 1248-18990 95-478 189-1692 

Average 6895±5236 209±144 708±537 

Average soil composition
 

100 10 40 

Phytotoxic level
 

75-100  100 

 

Table 2. The pH values, cation exchange capacity, exchangeable Na+1, K+1, Ca+2, Mg+2 and Ca/Mg ratio of 11 soil samples from 

Bukit Rokan and Petasih serpentine outcrops  in Peninsular Malaysia.   

   Exchangeable cations   Exchangeable trace metals  

  CEC (m-equiv 100 g–1)   (m-equiv100 g–1) 

 pH (m-equiv ---------------------------------------------------- --------------------------------------- Ca/Mg 

 H2O 100 g–1)  Na+1 K+1 Ca+2 Mg+2 Co Cr Ni 

BR1 5.84 22.96 0.18 0.04 0.27 22.46 0.001 0.199 0.169 0.01 

BR2 5.15 3.23 0.42 0.02 0.35 2.44 0.000 0.019 0.006 0.14 

BR3 5.33 3.05 0.83 0.03 0.32 1.87 0.006 0.018 0.035 0.18 

BR4 5.56 8.31 0.27 0.09 0.84 7.10 0.001 0.050 0.106 0.12 

BR5 5.89 5.47 0.21 0.04 0.35 4.86 0.003 0.022 0.033 0.08 

PS1 5.91 4.67 0.44 0.03 0.33 3.87 0.002 0.089 0.032 0.09 

PS2 6.38 1.19 0.15 0.03 0.13 0.90 0.006 0.009 0.017 0.15 

PS3 5.02 3.67 0.14 0.05 0.44 2.95 0.001 0.013 0.010 0.15 

PS4 5.27 2.77 0.19 0.13 0.23 2.29 0.006 0.013 0.021 0.11 

PS5 5.64 8.14 0.14 0.01 0.17 7.81 0.000 0.093 0.021 0.02 

PS6 6.17 23.72 1.70 0.17 0.43 21.41 0.003 0.013 0.079 0.02 

 

The average amounts of CaO and plant nutrients 

such as Na2O, K2O and P2O5 in 11studied soil samples 

were detected in the range of 0.18-0.23, 0.03-0.72, 

0.12-0.22 and 0.05-0.74 (in weights percentage) 

respectively (Table 1).  

Table 2 provides the revealing data on soil pH of 

Bukit Rokan and Petasih areas which was moderately to 

slightly acidic with the range of 5-6 unit.  

The maximum amount of Cation Exchange Capacity 

(CEC) in analyzed soils was observed in sample PS6 of 

Petasih (22.96 m-equiv 100 g
−1

) follow by sample BR1of 

Bukit Rokan (23.72 m-equiv 100 g
−1

). Sample PS2 of 

Petasih showed the lowest CEC value of 1.19 m-equiv 

100 g
−1

. As it is seen in Table 2, the values of CEC were 

dominated by exchangeable Mg
+2

. Soils are very poor in 

exchangeable cations of Na
+1

, K
+1

, Ca
+2

.
 

The rate of 

Ca/Mg as it is summarized in Table 2 is less than 1 m-

equiv 100 g
−1

 for all studied soils. Moreover, the obtained 

values of exchangeable Cr, Co and Ni are negligible.  

4. DISCUSSION 

 Comparing the chemical composition of serpentine 
soils with the average soil composition of the earth 
showed the overwhelmingly excess of serpentine soils 
for Chrome, Cobalt and Nickel by the following factors: 
Cr 68, Co 20 and Ni 17. The main reason of high 
cobalt and nickel content in serpentine is Ionic substitution 
of these elements into a magnesium-rich mineral such as 
olivine and pyroxene. Chromium is enriched because its 
substitution in iron rich minerals readily occurs.  

Base on the nature of the parent rocks the produced 

soils would be rich in Fe or Mg. Weathering process also 
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has a key role in the elemental abundance model. 

Caillaud et al. (2009) believes that the main weathering 

process in well drained serpentine soil profile is 

associated the removal of Si and Mg and concentration 

of Fe. This phase occurs in wet condition and produce 

ferralitic soil (oxisols). After measuring major elements 

of 11 soil samples, two types of lateritic soils are 

distinguished in Bukit Rokan and Petasih serpentine 

soils. The type soils rich in Fe and soils rich in Mg 

(Table 1) which in both cases the unusual richness 

makes hardships to plant life.  

Toxic effect of Mg is exacerbated along with low 

levels of calcium. Since Mg and Ca ions have same 

uptake sites in plant roots, high Mg saturates 

antagonistically obtaining sites and depresses Ca 

availability for plants. This condition is happening in 

Bukit Rokan with about 66 wt% of Mg (as MgO). The 

average amount of CaO in both areas is less than 1 wt%. 

Beside Ca, other nutrient deficiencies are observed 

(Table 1). The mean levels of potassium and 

phosphorous in all measured serpentine soils are less 

than 1 wt% which reveals the nature of their ultramafic 

parent rocks. Lack of nutrient elements shows also their 

rapid lost through weathering and leaching process. The 

scarcity of calcium, potassium and phosphorous makes a 

hard stress for vegetated plants on serpentine lands.  

The solubility of siderophile elements is a function of 
pH and the order of increasing solubility is Fe, Cr, Ni and 
Co. As can be seen from Table 2, the pH of soils in the 
studied areas changes in slightly acidic ranges (5-6 
unit). This measured pH value is less than the typical 
mean pH of serpentine soils which is 6.8 according to 
Lessovaia et al. (2010). At the mean pH of serpentine 
soils, the solubility of the metals is 10

−7
, 10

−4
 and 10

5
 µg 

mL
−1

 for Cr, Ni and Co respectively. The optimum 
availability of phosphorous obtains at a pH of 6.5-7. 
Potassium easily leached from soil at all pH. 

The rate of exchangeable magnesium is markedly 

more than other determinant cations and this clarifies 

incomplete hydrolysis of weatherable minerals and high 

magnesium mobility in serpentine soil profile. This 

observation intensifies the possibility of magnesium 

toxicity in the studied serpentine soils. Poor 

exchangeable calcium, potassium and sodium which are 

less than 1 m-equiv 100 g
−1

 at all studied station is a 

result of the ultramafic parent rock composition. This 

plant nutrient deficiency is another suggested reason for 

infertility of serpentine soils. The average 

exchangeability of Cr and Ni is almost the same (0.048 m-

equiv 100 g
−1

) which is 24 times more than Co 

exchangeability (0.002 m-equiv 100 g
−1

). However Cr and 

Ni exchangeability is almost negligible. Thus, it is 

concluded that even though serpentine soils contain very 

elevated amounts of these harmful metals, the proportion 

of plant available Cr, Co and Ni is largely low.  

5. CONCLUSION 

Serpentine soils are unfavorable environment for 

plants. Multiple ranges of factors are responsible in 

serpentine soil infertility. The deficiency of 

macronutrient elements such as calcium, potassium and 

phosphorus and very low quotient of Ca versus Mg can 

be considered as the main harmful factors. However, Mg 

toxicity due to the excessively high exchangeable 

magnesium level remains a probable dangerous cause. 

Despite the first thought, chromium and cobalt are not 

controlling factor on serpentine vegetation because of 

their low exchangeability in soil. Even with the 

extremely high total concentration of Cr, Co and Ni in 

serpentine soils, their negative effect on plant life is tiny. 

Author suggests some elemental analyses on roots and 

leaves of plants growing on studied serpentine soils.  
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