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Abstract Steady state solute and heat transfer for laminar flow in a flat duct has been widely
studied!*¥. The same problem in a circular tube is called the Graetz Problen{®>®!. The transfer rate of
solute and heat from fluids is of importance in a number of processes, such as diffusion of drugs in the
blood stream and the uptake of environmental contaminants by animals in aquatic medial”. In this
study the rate of solute or heat transfer from fluids was determined by solving the associated
differential equation. Solution by the series approach in the complex plane was used with a series that
had a gaussian factor. The eigenfunctions and eigenvalues involved were examined for two different

sets of boundary conditions.
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INTRODUCTION

There are four types of boundary value problems
that are of interest here. All of these boundary value
problems have zero flux in the plane that is equidistant
from and parallel to two boundary planes. The
eigenfunctions and eigenvalues involved are examined
here for two different sets of boundary conditions on
this plane. One set of boundary conditions has been
applied to the problem before™. The other has
apparently not been. The eigenfunctions and
eigenvalues are significantly different in each case. The
condition at the other boundary is one of four types: (a)
zero concentration, (b) zero flux, (c) constant flux, or
(d) flux linearly proportional to the concentration at the
boundary.

Treatments of these boundary value problems ae
givenin theliterature!™™. The treatments in much of the
literature are based on only one of two possible choices
for conditions that fulfill the zero flux condition on the
central plane of the system. The condition used in the
literature can fulfill the zero flux boundary condition
only on the central plane. The second choice can fulfill
the zero flux boundary condition anywhere in the
system. Both conditions are examined here. For some
choices of the two linearly independent solutions of the
second order differential equation involved, only the
second choice for the boundary condition is
appropriate. The choice for the two linearly
independent solutions determines the eigenvalues and
eigenfunctions to be found.

The literature presents a discrete and apparently
unbounded eigenvalue spectrunt™?. When the first

choice for the boundary condition is applied to the two
linearly independent solutions of the differential
equation, the eigenvalue spectrum obtained is
continuous and unbounded, because the first condition
does not place restrictions on the coefficients of the
linear combination of the two linearly independent
solutions.

As the choice for the two linearly independent
solutions of the differential equation changes, the
eigenvalue spectrum changes. The most convenient
solutions to choose are determined by the associated
initial conditions. Convenience is often defined in terms
of the rapidity of convergence of the representation of
the solution to the associated initial value problem as a
linear combination of eigenfunctions.

The system under examination here is a fluid
mechanics system in which afluid flowing with laminar
motion between two parallel plates exchanges heat or
mass with the plates. The rate of exchange can be
determined by solving a partial differential equation.
The system has been described!*™. The problem is to
determine the concentration distribution and the transfer
rate of mass or heat to the parallel plates. The system
considered is similar to what is known as the Graetz
Problent®.

This study proposes an alternative method of
solving the partial differential equation involved. This
method uses gaussian or trigonometric functions as
factors in the series solution of the problem.
Additionally, eigenvalues and eigenfunctions were
determined. The study is important because it
introduces a new pair of linearly independent solutions
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to the differential equation and it uses a different zero
flux condition in the central plane.

MATERIALS AND METHODS

The method used here factors out gaussian
functions from the series solution of the problem. The
removal of the gaussian factors from the series
solutions leads to sine and cosine coefficients. The
basic equation to be solved** is:

2
u, T1C.(x.y) - Dlﬂ Cl(ley) (1)
Ty Tx
Where:
u, =- L Py )
2mdy
Here:
m = The coefficient of viscosity of the fluid
between the plates, Pisthe fluid pressure
H = Half the distance between the parallel plates,
D; is the diffusion coefficient of the solute
inthefluid
xandy = Denote Cartesian coordinates

The eigenfunction expansion solution of the
problemis:

Couy)=A AGH. JF ) (3)

m=1

where, the values of the expansion coefficients A, can
be determined from a boundary condition on y. For
example:

C(x,0) =§l¥ A,GO, ,)F(xI ) (4)

m=1

The function C(x, 0) is assumed to be known. The
equations for G(y, | ) and F(x, | 1,) follow:

ﬂ61(y1|)+|2Gl(y,|):0 (5)
Ty

and

p IEXD) 22 L PG oyeie,l )= 0 (6)

ix? ¢ 2mdy 4

The solution to Eq. 5is:

722

Gy.l) =a,exp(- 1 ?y) (7)
where, a; is a constant of integration or boundary
condition.

Remember that in some cases the conditions
relevant to the associated physical problemis:

££0

dy

®)

The solution to Eqg. 6 under the condition given by
Eqg. 8 will be given next. Let:

Fi(x,1)=exp

€)

The differential equation obtained from Eq. 6 and 9
for | (x) is:

ﬂ2f|(x) -2 bllzx ﬂf|(x)
X

x? (10)
+8 “h”- 1 b"?gf(x)=0
Where:
=_-14dpP (12)
2nD, dy
Let:
g )
f(x)=Q ExX’ (12)
j=0
Then:
: 1/2 2 2
i+2:(l+2j)| b"* - 1%bh* o (13)

(+1(+2) '

To examine several ways to express Fi(x) in terms
of a linear combination of two linearly independent
functions, the solution isfound for Eq. 6 for the case

112

& - u
Fiixl) =ep 3P0 e ug (g (14)
g2&2nD, dy g g
The differential equation for g; () is:
ﬂ2g| (X) 1/2 ﬂg| (X)
—ﬂx2 +2l b X—ﬂx (15)

+§ %bh? +1 b2 (x) =0
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Let:
g (x) = a H X (16)
j=0
Then:
-1+ 2 b2 - 1%ph?
Hy, = ALY H, (17)
’ (+1)(+2)
From Eq. 12, 13, 16 and 17, it follows that:
g, () =f(x) (18)
when, :E =H;.
So, from Eq. 8, 14 and 18:
Fix;-1) =F(x,1) (19

This indicates that F'1(x,I) and F’5(x,-1 ) are not
linearly independent. A complete solution of the
differential equation has not been found until two
linearly independent solutions have been chosen.

Because | occurs in Eq. 6 as |2, it is necessary
that:

Fi0) = Fi(x,-1) (20)

Thisand Eg. 19 imply that:

Fi(x, 1) =Fyx,1) (21
Let:
& 420
E(x,| )=a1exp<}7|ee 1 dp xzifl(x) 22)
& P
where, a; is a constant. The boundary conditions are:
E(h,l )=0 (23)
and
TR(x.1H)
0= 24
e 1o=0 (24)

Thefirst boundary condition is met when:
f, (h,E;) =0 (25)

The second boundary condition is met when:

-ax b”zexp8 | iz 29f L ()] 4o
26
+axex p el bl/Z 201df (X)| — (@)
gx dx °

At x = 0, this boundary is automatically satisfied
when f (x) is an even function of x, so the stronger
boundary condition implied by Eq. 26 has been ignored.
To this point only the condition that §(x) is an even
function of x has been used.

Equation 6 may be solved under the following
condition":

dy

This condition is equivalency to that given by
Eqg. 18 when the coordinate system is rotated by p about
the xaxis. The solution to Eg. 6 under the condition
given by Eq. 27 will be found next.
Let:

€ le-1 dPd” 2@
RO )=e08 Sy X U 29

The differential equation for f,(x) of Eg. 28 is:

ﬂ2f| 1/2 ﬂf 2 2 1/2

ﬂ)EZX)- 2b (X)+g bh? - | B2ff, (x) =0 (29)
Let:
fx)=4 ExX (30)

=0
Therelationship for the expansion coefficientsis:

_ (1+2)I b - 1°bh? e

GG+ ey
Since Eq. 2) holds, it follows that:
ae 1 dPo & |dP| 8" 32)
S, dyp, G2 |dy5
Where:
i=(-)¥2 (33)
So:
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e g2l 5 v
' =€ U
Fi(x,l) gismgiae . ff_’m Zggﬂ (x) (34)
¢ s2lm|wf; T
Let:
F(x,| ):%[F'l(x,l )+EF(x,1)] (35)

Here F; It

follows that:

is the conplex conjugate of F';.

.1/2

f5) (o]

> (D

ecosgiae 1
1e 82 2D,
F(x,l)==¢
Ze

dp

DM (D

(36)

+
NP

CD:'D)S_D)('D) D> D P> D

aﬁ’ @1
%2%2@

o
:

Notethat  in Eq. 30 is given by:

1/2

il | (1+2j) +1 2[o|h?

3
(+1(+2) 37

J+2 j
where, |b| denotes the absolute value of the redl
number b. It followsfrom Eq. 35 that:

a

FE(x,I')= 00385

Si n a buzxz
&2

bv2x? ORe(f, (x))
- e (38)
Am(t, (x))

a9

The boundary conditions are given by Eq. 23 and
24. Thefirst boundary condition is met when:

6
2r=

(112
O

f*"fzael
82%

dp
dy|5

Re(f, (h)
Im(f, (h))

tan (39)

If the right-hand side of Eg. 39 is a constant, then
the eigenvalues have a periodicity of (4p). In the case

724

being treated here the right-hand side is afunction of |,
soitisunlikely that the eigenvalues are periodic.
The second boundary condition is met when:

& 1 b"2Re(f(x)) U

xsin®- bl’znggl ?dﬂ(x) 93|x=0
RV
i (40)
" é b Im(f(x)) U
+xcosgzb”2 22& adf, (X)(jj o=0
T
Equation 40 is equivalent to:
| b¥2R,sin(g,) + 2R, cos(q, ) =0 (42)
or
@ s?o
q, =arctang- - (42)
€ ¢g
Where:
e 1 dP
20_ T h2 Ibl/2h2 43
28,y |, “3)

The quantities Ry and R, are the real parts of
and E,, respectively. The quantities E; and E, are
coefficients in the series expansion given by Eq. 30.

The function f(xX) may be found using the
following prescription:

f00=8 Ex=8 [Re(E)

i=o0 =0 (44)
HIm(E)]x' = Re(f(x)) + ilmf(x))
Where:
Reff, () =8 Re(E))x (45)
and
Im(f, ()= & Im(E)x' (46)

j=0
The complex coefficients E may be expressed as:

1/2

il 6™ (

(1+2])+1 ?|p|n? £
(+1)(+2)
=T, &p(if .,)R; expliq;)

w2 = i

(47)
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Where:

R., =R, (48)
Q2 =fi2t0 (49)
Re(E},,) = R;cos(q; ) (50)
and

Im(E;.,) =R;sin(q;, ) (51)
Here:

Ro=E (52)
and

Ri=E (53)

The value of go must be specified. The values of
li+2 and fj., are given by:

=& 7Jo|(1+ 2)) +1 [P R (54)
o+ +2) € u
and
® 2 o]
-f,,, =arcos 4 h b + (55)

(+DG+ 2., 5

The standard procedure for finding eigenvalues is
to use one of the boundary conditions to place
limitations on the values of the undetermined
parameters. The undetermined parameters here are R
and go. The next step is to place limitations on the
eigenvalues using the remaining boundary condition.
This procedure was used to find the condition on |
given by Eq. 42. The value of R can be found by
imposing a normalization condition. The allowed
values of g are determined from the second boundary
condition. The second boundary condition imposes the
condition on qo given by Eq. 42. Valuesfor | arethen
found for a given value of gg. The dependence of | on
Ro and qp are given by Eq. 37, 39 and 42.

RESULTS

The results in the Table 1 were obtained using the
following condition:

E =0 (56)

Table1: Eigenvalues for three different choices for the two linearly
independent solutions to Eq. 6. Column |: Gaussian factor,
Eq. 9. Column II: Trigonometric functions factors, Eq. 33,
with go = 0. Column I11: Trigonometric function factors, Eq.
38, with tan(cp) = -5 22

Combination of linearly independent functions

Eigenvalue

No. I I 1

1 1.682 1571 1.059
2 5.670 4712 6.333
3 9.668 7.854 12579
4 13.668 10.996 18.855
5 17.667 14.137 25.136
6 21.667 17.279 31418
7 25.667 20.420 37.700
8 29.667 23.562 43.982
9 33.667 26.704 50.266
10 37.667 29.845 56.549

This choice for E; means that f(x) is an even
function of x. The eigenvalues and the eigenfunctions
were found numerically. The results for eigenvalues are
given in the table. The eigenvalues for three cases are
given. The results in Column | of the table are for the
case that has been discussed in the literaturel™. The
resultsin Column | are for a“weak” zero flux condition
in the central plane with the solution of Eg. 6 given by
Eqg. 9, 12, 13, 23 and 24. The valuesin Column | are the
same as those in the literature!™. The results in
Column Il are also for a “weak” zero flux condition in
the central plane with the solution of Eq. 6 given by Eg.
38, 39 and 45-55 with go = 0. The results in Column 111
are also for a “strong” zero flux condition in the central
plane with the solution of Eq. 6 given by Eq. 38, 39, 42
and 45-55.

CONCLUSION

The solution to one of four boundary vaue
problems of interest is presented here. The method used
to solve the boundary value problem treated here is
applicable to the other three boundary value problems.

The approach to solving the problem differs in
several ways from the way that the problem has been
treated in the literature. First, a new form for the
solution is introduced. Second, a different zero flux on
the central plane boundary condition is used. Before
this study only one set of eigenfunctions had been
presented. The most convenient set of eigenvalues and
eigenfunction to use depends on the specific initia
value problem being treated.
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