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Abstract: An overview is presented of changes in ground level ozone and atmospheric fine particles 
determined using ambient monitoring data collected at selected locations in Sydney, Australia. After 
removing seasonally, auto-regressive and moving average dependence from the selected time series, the 
trend of a selected series was modelled using the fractional long-term dependent component. The 
selected technique was able to detect the trend at a very small resolution. The method results were 
compared to the trends obtained using the Rao-Zurbenco method. For selected monitoring stations, 
between 1980 and 1993, there was a decrease in ozone concentrations followed by a slight increase 
between 1994 and 2002, and thereafter a stable concentration. Fine particle concentrations as measured 
by nephelometry, showed a significant decrease from 1980 to 1990, which stabilised beyond 1994. 
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INTRODUCTION 

 
 Associated with the increasing use of fossil fuels 
has been an increase in ozone precursors in the 
atmosphere.  Ozone is produced photochemically from 
these precursor compound,s including reactive organic 
compounds (ROC), carbon monoxide (CO), in the 
presence of nitrogen oxides (NOx) and sunlight. For 
over two decades, ozone concentrations have been 
monitored at different locations in Sydney, Australia. 
The recorded monitoring data showed that the National 
Environment Protection Measure (NEPM) goal for 1 hr 
ozone of 100 pphm has been violated at different 
monitoring sites in the Sydney region. Different control 
strategies to mitigate ozone have been implemented and 
reductions in the ozone severity have been achieved at a 
number of locations. At some sites, however, there is 
still breaching of the NEPM goal. 
 There are a number of published methods for 
analysing the trend in ozone concentrations by 
removing the meteorological effects. These methods[1-3] 
mainly use different models containing various 
meteorological variables, which are then removed to 
isolate the long-term trend component from the other 
components in the models of the time series. Other 
recently proposed methods that filter out the different 
frequency scales to determine the long-term trend, such 
as the Kolmogorov-Zurbenco filtering approach[4] and 
the wavelet transform[5,6] have been used on air quality, 
water and climate data with some success.  

 One particularly useful method that can be applied 
to many different air pollutant time series is the Long 
Range Dependence (LRD) method. This method 
identifies the LRD component in the fractional ARMA 
model as the anthropogenic trend[7]. 
 The aim of this study was to present and apply a 
statistical long-range dependence method to study the 
trend of ozone and fine particles time series in the 
Sydney region. This analysis may reveal whether the 
introduced regulatory programs have been effective in 
controlling the key air contaminants.   
Meteorological effects on air quality: It is well known 
that meteorology plays a key role in ozone formation 
and transport. Variations of meteorological conditions 
at different time scales may impact on ozone levels and 
may mask any long-term trends that could be attributed 
to the implementation of control options for selected 
pollutants.  Air masses with different histories can have 
different ozone concentrations, e.g. ozone levels tend to 
be higher under hot, sunny conditions. At the same 
time, elevated temperatures, driven by high solar 
radiation, cause convection to develop, which in turn 
can enhance vertical ozone transport. Different 
statistical models have been used to establish the 
relationship between some meteorological parameters 
and surface ozone at urban and remote sites. Among the 
widely used statistical models, regression modelling 
which is well defined in physical terms, permits 
impacting processes to be investigated.  
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Ozone exceedance in Sydney
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Fig. 1: Number of days above ozone goal (10 pphm) 
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Fig. 2: Monthly average of Southern Oscillation Index (SOI) from 1970 to 2003 

 
These models that incorporate varying degrees of 
complexity such as temporal cycles, seasonal and 
meteorological factors and other factors, have been 
successfully used to detect ozone trends disguised by 
meteorological conditions[1].  
 Using ozone concentrations measured between 
1980 and 2003, a  number of days were selected when 
ozone concentrations in the Sydney region were above 
the NEPM goal standard of 10 pphm, as illustrated in 
Fig. 1. The data show that the number of exceedence 
days in the 1980s is greater than those in the 1990s. 

 Given the strong effect of temperature on ambient 
ozone levels, it is informative to look at the various 
mechanisms that can influence the regional temperature. 
Besides the diurnal, synoptic and seasonal time scales, 
there is another longer time global scale driven by the 
El-Nino Southern Oscillation (ENSO). This 
phenomenon is strongest in the southern part of the 
Pacific Ocean. Its effect has caused a drought with high 
temperatures in Eastern Australia and a high rainfall, 
cooler climate on the West Coast of North America.  
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Fig. 3: Sydney air quality monitoring network 
 
Figure 3 shows the monthly average of the Southern 
Oscillation Index (SOI) from 1970 to 2000. High 
negative SOI values indicate the El-Nino effect while 
positive ones, the La-Nina phenomenon. The 3 recent 
El-Nino phenomena are the 1982-1983, 1987-1988 and 
1997-1998 periods. The 1982-1983 period has shown 
the strongest El-Nino effect. For Sydney, for the periods 
1982-1983, 1987-1988 the negative SOI values were 
associated with high number of days with ozone greater 
than 10 pphm. However, in 2001 and 2002, the SOI 
values were positive with a high number of days above 
10 pphm. This may be associated with other phenomena 
such as bushfires or long-range transport of pollutants 
from other sources.  
 It is evident that removing the temperature effect 
from the ozone concentration time series will 
significantly reduce the meteorological influence due to 
natural processes. The remaining effect should be 
mainly due to anthropogenic sources.   
 
Modelling anthropogenic trends: Two approaches 
were used to investigate long- term changes in to gain 
insight into the effectiveness of emissions control 
strategies implemented in the Sydney airshed. 
 Rao-Zurbenco method. Rao and Zurbenco[1] used the 
ozone and temperature time series to find the 
meteorologically adjusted ozone trends by using 
filtering and regression techniques. A time series X(t) is 
assumed to be represented as: 
 

( ) ( ) ( ) ( )X t e t S t W t= + + , (1) 

Where e(t) is the trend component, S(t) the seasonal 
component and W(t) white noise. The random variations 
W(t) can be removed from the series by a simple 
iterative application of a moving average filter:  

( ) ( )Y i
m

X i j m k
j k

k

= + = +
=−
�

1
2 1, ,

 (2) 
Where Y(i), the output of the first iteration, then 
becomes the input for the next iteration of (2). The 
number of iterations (p) and the filter width value m are 
to be determined from the data to achieve noise-free 
series. This p-iterative application of a moving average 
filter of width m, is called the Kolmogorov-Zurbenko 
filter, KZ(m,p). 
 The effect of meteorological variability on the air 
pollutant time series has to be removed prior to any 
trend analysis. In the Rao-Zurbenko method for a daily 
ozone series, the meteorological effects are represented 
by the maximum daily temperature. Both the ozone and 
the temperature time series are first filtered to remove 
the noise using the Kolmogorov-Zurbenco filter, 
KZ(m,p). The meteorological effects can then be 
removed by using the regression technique. 
 To be specific, denote the filtered log of ozone 
concentrations by Ok-z (t) and the filtered temperature by 
Tkz(t), then the meteorological effects, represented by 
the seasonal component, are removed from the filtered 
log of ozone by the linear regression: 

( ) ( ) ( )O t a b T t tk z k z= + + ε
. (3) 

The noise term ( )tε  then represents changes in ozone 
attributable to changes in emissions. 
 The Rao-Zurbenco method can be applied to any 
pollutant that exhibits a temperature or seasonal 
dependence. However, another method,the Long Range 
Dependence (LRD) model, can be applied to any long-
term time series. 
 
Modelling the Long-range Dependence (LRD) 
component: The recent literature on air pollution 
modelling has paid attention to the long-range 
dependence in air quality data. It has now been 
established that the LRD phenomenon is present in air 
quality, meteorological, hydrological and geophysical 
data[8-10]. 
 A stochastic process ( )X t  is said to exhibit LRD if 
its spectral density has the form 

( ) ( )f fω ω ω β ωβ= > ∈ℜ∗
−2 0, , , (4) 

where ( )f∗ ω  is slowly varying as ω → 0 . The 
spectral density has an integrable singularity at the 
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origin if 0 1
2< <β  with the characteristic effect that 

the autocovariance function of  ( )X t  decays to zero at 
a very slow rate so that the autocorrelation function is 
not absolutely summable.  
 The significant component at a very low frequency 
shows that the time series contains a slow- varying 
trend, which is not easily detected and removed using 
standard time series analysis such as autoregressive and 
moving average (ARMA) or autoregressive inegrated 
moving average (ARIMA). In fact, the presence of LRD 
invalidates many of the traditional methods of data 
description using autoregressive and moving ARMA 
models[8].  
 A discrete stationary approximation of the LRD 

factor ω β−2 of  (4) is 
 

( ) ( ]f
e

d
i dω σ

π
σ ω π π

ω
=

−
> < < ∈ −

2

2
2 1

2
2

1

1
0 0, , , ,

[7] 

 The LRD and short-memory components of a 
discrete time series ( )X t  can therefore be modelled by 
a fractional ARMA (p,d,q): 

( ) ( ) ( )
( ) ( )tBB

tXBBB
q

q

p
p

d

εφφ
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+++
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...1

...11

1

1
, (5) 

where B is the backshift operator ( ) ( )BX t X t= −1 , d 

is the LRD parameter, ( )ε t  is white noise with 

variance σ 2 . 
The spectral density of the time series generated by 
model (5) is 
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The Sydney pollutant series appear to be additive 
seasonally, suggesting a model of the form 

( ) ( ) ( )X t S t R t= +  

where ( )S t  is the seasonal component and ( )R t  is the 
random component. Also, due to large variations in the 
seasonal component, particularly in the summer period, 
it is necessary to use a Box-Cox transform 

( ) ( )
Y t

X t
=

−
>

α

α
α1

0,  (6) 

to stabilise the variance. A special form of the Box-Cox 
transform is the logarithmic transform as 0→α . 
 The average of the Box-Cox transform of the daily 
maxima over all years for each day of the year is then 
regressed on a set of annual harmonics. Substraction of  

the estimated seasonal effect from the Box-Cox 
transform of the daily maxima then yields the seasonally 
adjusted series ready for trend analysis. The series is 
seasonally adjusted using the yearly profile of the 
transformed series. For the ozone and nitrogen oxides 
data series in Sydney, the choice of α = 0 2.  based on 
(6) has been proved as appropriate[7].  
 The Haslett-Raftery algorithm[10] can be invoked to 
estimate d and the ARMA coefficients of (5) 
simultaneously on the seasonally adjusted series. 
Removing the short-memory ARMA component from 
the estimated model (5) will then give the LRD 
component for trend analysis.  
 
Application of LRD modelling to ozone and particles 
time series: Time series of monitoring data for ozone 
and particles (Nephelometer, PM10 and total suspended 
particulates (TSP)) collected at a selected monitoring 
stations, were used to study their trends using the LRD 
method. Prior to 1993, monitoring stations were mostly 
located to the east of Sydney, with very in the north-
west and south-west regions. In 1998, the Sydney 
monitoring station network was extended to 
accommodate 19 monitoring stations located throughout 
the Sydney region as illustrated in Fig. 4. Air pollutants 
and meteorological parameters are measured 
continuously and then consolidated and stored as hourly 
values. 
 The daily maximum values for ozone and particles 
are used in the trend analysis. Monitoring data has been 
assessed for missing data and quality assured for 
accuracy and calibration. Missing data are either 
interpolated (less than 3 missing points) or replaced 
with average seasonally values in the series. The ozone 
and nephelometer data are measured each hour across 
many sites in the Sydney basin while the PM10 and TSP 
data are collected once every six-day at only some sites 
in the east of Sydney near the centre of the city.  
 Time series data were transformed using Box-Cox 
Transform to stabilise the variance before being 
analysed to find the trends. The modelling of the LRD 
component on the ozone and nephelometer data, after 
removing the seasonally variation, indicates that each of 
the series can be represented by an autoregressive (AR) 
model of order 3, a moving average (MA) of order 1 
and a long range dependence (as represented by a 
fractional coefficient) component.  
 The PM10 and TSP data, recorded once every six 
days, did not exhibit high variation. There is no need to 
transform the data and the seasonality component was 
not modelled. For 6-day cycled PM10 and TSP data sets,  
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Ozone trend at Lidcombe
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ozone trend at Campbelltown
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Fig. 4: Ozone trends at Lidcombe and Campbelltown sites 

 
the series exhibit an autoregressive component of order 
1 and a MA component of the same order.  
 The trend part of the time series is considered to be 
the LRD component. To see the best trend pattern, a 
smoothing process using Kolmogorov-Zurbenco (KZ) 
filter Rao, Zurbenco[1] and Rao, Zurbenco et al.[4] with 
450 data points, KZ(450,1), were applied to ozone trend 
components and KZ filter, KZ(50,1), with 50 data 
points applied to PM10 and TSP trend components.  

 The smoothed trends of ozone, PM10 and TSP for 
selected sites are shown in Fig. 4. For all trend graphs 
except those of PM10 and TSP, the trend values were 
obtained after an inverse transform of the transformed 
series. The trend values are relative to the long-term 
average value indicated by the unit value of 1. 
 As noted by Thompson et al.[11], summarising non-
linear trends beyond a graphical display is difficult and 
complicated, as it cannot be captured by measures such 
as percent change per year or per decade.  
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Ozone trend in Sydney (all sites)
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Fig. 5: Ozone trend in Sydney 

TSP trend at Earlwood
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PM10 trend at Earlwood
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Fig. 6: TSP and PM10 trends at Earlwood. Series 1 refers to the trend component and series 2 refers to trend (KZ) 
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Nephelometer trend at Rozelle
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Fig. 7: Fine particles (as measured by Nephelometer) trend at Rozelle 

Nephelometer trend in Sydney
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Fig. 8: Fine particles (as measured by nephelometer) trend in Sydney 

 
Yet, some form of summary measure is necessary to 
better describe the trend. Qualitative summary 
description is described below over some periods in 
which nonlinear trends are monotone. 
 Between 1975 and 1994, the calculated trend of the 
ozone time series at the Lidcombe site Fig. 3 shows a 
general decrease in the ozone levels at this location. 
However, beyond 1994, an increase in the ozone trend 
was exhibited at the selected site. Using data from the 
Campbelltown monitoring site Fig. 3, the trend is 
similar to that at Lidcombe, except that after 2000, a 
decrease of ozone is observed. 

 For the Sydney region, a combined daily maximum 
series of ozone and nephelometer data representing the 
whole region was obtained by using the maximum daily 
value from daily maximum measurements from all the 
available sites. The trend from this pollutant series can 
be considered as the overall trend for the region. 
However, as the spatial scale variability has been 
implicitly filtered or averaged out in the combined 
process, the change in trend curve will be much smaller 
than at individual sites. The overall trend from the 
ozone data representing all the sites in the Sydney 
region (1993-2003) is illustrated in Fig. 5.  A relatively 
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stable pattern of the ozone trend was calculated for the 
Sydney region. Beyond 1997, the calculated ozone 
trend exhibited a slight increase in the ozone levels over 
the Sydney region.  
 The analysis of fine particle data to determine the 
trend over the selected period was carried out using 
monitoring data from available sites in the Sydney 
region. Between 1981 and 2004, the analysis of the 
Earlwood site TSP data showed a general downward 
trend. However, between 1990 and 1992, an increase in 
the TSP trend was detected. Between 2001 and 2004, 
the detected TSP trend was shifting towards the 
increase. At Earlwood, the detected PM10 trend 
exhibited a reduction pattern for the PM10 levels. 
However, between 2001 and 2003 a slight increase in 
the PM10 trend levels was detected Fig. 6.  
 At Rozelle, fine particles as measured by 
nephelometry, showed a significant decrease from mid-
1980 to mid-1990 as illustrated in Fig. 7. Beyond 1999, 
the data analysis showed a stabilised trend.  
 The calculated trend of fine particles measured by 
nephelometry for the Sydney region is illustrated in Fig. 
8. Between 1993 and 2001, a general downward trend 
was detected for the Sydney region. After 2001, the data 
exhibited a slight increase in the calculated trend for the 
Sydney region. 
 

DISCUSSION AND CONCLUSION 
 
 The LRD model for air pollution time series has 
been applied to detect the trend of ozone and fine 
particles time series at selected monitoring sites in the 
Sydney basin.  For fine particles (under 2.5 µm 
diameter), the calculated trend showed a clear decrease 
in concentration that reached a minimum in 2000. 
Beyond 2000, the calculated trend have shown a slight 
increase in the fine particle concentrations.   
 The ozone time series analysis showed that 
between 1993 and 2002, the calculated ozone trend 
exhibited a general increase in ozone, and beyond 2002 
a general stable trend. Any attempt to assess the 
changing behaviour of ozone requires further 
knowledge about the type and timing of implemented 
control strategies for ozone mitigation. From a 
photochemical point of view, this could be explained by 
an increasing emission of volatile organic compounds 
(VOC) across the Sydney basin or a decreasing level of 
nitrogen oxides where the extent of reaction is less than 
an optimum value. 
 There is a limitation with the ability of the LRD 
method to find an air quality trend due to anthropogenic 
sources free from meteorological effects. In most 
situations where the data period for analysis is usually 
about 10 (or > 10) years, it is effective in isolating and 
removing short-term climate variability on the seasonal 

and inter-annual scales. But for long-term climate 
changes (such as the global warming on inter-decade 
scale), it may not be possible to separate these sources 
of climatic variability as they are at about or below the 
lowest frequency range that can be resolved with the 
time window of the available data. In other words, they 
are at about the same lowest frequency that can be 
attributed to the anthropogenic sources. However, some 
of the anthropogenic activities can affect and change the 
local climate on the shorter long-term scale (such as the 
urban-heat island effects in large cities). In this case, 
this anthropogenic source is then accounted for and is 
included in the LRD component of the time series.  
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