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Abstract: The Rasch measurement model improves on traditional test 
construction by creating tests in which the person’s ability is independent of 
the sample of items used and the norm group used to calibrate the test. This 
article is an introductory review of the Rasch Model and describes 
properties of the Item Characteristic Curve (ICC) and discusses the utility 
of having person ability and item difficulty on a common scale. 
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Introduction 

Consider the following scenario: An employment test 

is created and is then standardized using the brightest, 

most intelligent workers in the company. In subsequent 

hiring situations, job applicants are tested and almost 

none pass the test, thus they are not hired. As a 

consequence, position’s go unfilled, production falls 

behind, existing employees work overtime regularly, 

morale and productivity suffer and the company loses 

money. This scenario highlights one of the criticisms of 

traditional test construction-tests must be standardized, 

or “norm’ed”, correctly for the population being tested. 

If not and the test is used outside the norm group 

parameters, the test results may be invalid and thus any 

decisions made using those test results become 

questionable. In specific hiring and selection processes, this 

scenario could also create, however unintended, adverse 

impact to one or more protected populations. Another 

criticism of traditional test construction dependent on norm 

groups is that even if the test were standardized correctly, 

many populations change over time and thus old norms can 

become invalid for current applications. 
Beyond the requirements of a norm group to 

standardize tests using traditional test construction 
methods, tests often require a large number of items to 
measure a person’s ability. If a method could be devised 
to provide a better assessment of test items such that items 
measuring the same ability level could be eliminated, then 
the tests themselves could be shortened and test takers 
would be less likely to suffer from “test fatigue” as a 
result. A recent study by Shu’aibu et al. (2013) uses Rasch 
to identify the likelihood of redundant items is their 
questionnaire which could lead to fewer item responses 
required by respondents. 

Rasch Measurement 

One modern model of measurement used in the social 
sciences is the 1-parameter Item Response Theory (IRT) 

model. Georg Rasch, a Danish mathematician, had an 
interest in teaching statistics and in measurement 
models, in particular the IRT models. During the 
1960’s, Rasch developed his now-famous 1-parameter 
logistic model (the Rasch Model) to estimate a person’s 
trait level from their responses to test items (Embretson 
and Reise, 2013). Although the Rasch Model and the 1-
parameter IRT model use different algorithms for 
calculations, the results are virtually identical. 

The Rasch Model, as with IRT models in general, 

promised to overcome weaknesses in Classical Test 

Theory (CTT). Specifically, IRT promises to overcome 

circular dependency of CTT which is the situation, as 

described by Fan (1998), where the person statistic is 

item dependent and the item statistic is examinee 

(person) dependent. The Rasch Model improves on 

traditional test construction in the sense that Rasch 

creates item-free and person-free tests. That is, the 

Rasch Model allows tests to be constructed where the 

measure of a person’s ability is independent of the 

sample of items used and is independent of the norm 

group used to “calibrate” the test (Hashway, 1978). In 

the simplest form, a person’s response to an item is the 

dependent variable in the Rasch Model and the 

independent variables are the person’s trait score (theta 

or θ) and the item difficulty (b). 

The Rasch Model can be used for measurement (i.e., 

locating a person on the latent continuum) or exploratory 

data analysis (i.e., understanding the structure of items or 

selecting a useful subset of items). The Rasch Model 

permits identification of items or behaviors that are 

ordered (e.g., what are the sequence of skills one needs 

to become a computer programmer) and thus the variable 

unit measure has the same meaning across the scale 

(Andrich, 1988). IRT modeling also allows statistical 

adjustments in scores and thus the development of more 

meaningful comparisons (Hambleton, 2000). 
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Using item response theory allows two distinct 

advantages over simple classical test theory. First, it 

allows researchers to more accurately rank respondents 

in terms of their patterns of responses (Crocker and 

Algina, 1986; Hambleton, 1983). Although some 

researchers have argued that IRT does not produce 

scores necessarily different from classical test theory, 

IRT is maximized at the tails of the distribution (Fan, 

1998). This is an important consideration when working 

with individuals who tend to score at either extreme of a 

distribution. Second, using IRT estimates allows for the 

generalization of scores to both the population of interest 

and to future users, whereas classical test theory results 

will not generalize to future users. 

One of the practical applications of IRT modeling is 

to diagnose test instruments (i.e., item or test analysis). 

Table 1 lists the partial output of a Rasch analysis of a 

graduate level mid-term exam (n = 39) using the 

RASCAL
 
for Windows (1995) software by Assessment 

Systems Corporation.  It should be noted that IRT 

methods require much larger data sets, however this data 

set is introduced for heuristic purposes. 

Item difficulty (b) is the main parameter of interest in 

the Rasch Model and is defined as the position on the 

latent trait variable where it is expected the person has a 

50% probability of answering the item correctly. Note 

that item numbers 16, 7 and 13 all have the same item 

difficulty. Also note that there is a substantial difference 

between item difficulty for questions 16, 7 and 13 (-

2.740) and items of the next higher item difficulty, items 

15 and 19 (-2.028). Having this knowledge allows the 

researcher to modify one or more of items 16, 7 and 13 to 

fill in the item difficulty gap between –2.740 and –2.028 if 

so desired. If the researcher is confident that the range of 

person abilities is being adequately measured by the test, 

there is evidence through this analysis to remove 2 of 

these 3 items (16, 7 and 3) with the same item difficulty. 

This allows the instructor or researcher to measure the 

same range of person abilities using a single item at the 

difficulty level of -2.740. Item analysis can be continued 

in this example as items 15 and 19 also have the same item 

difficulty (-2.028), as do items 2, 10 and 24 (-1.269). As this 

example shows, IRT modeling software can provide a 

convenient method for researchers to optimize both the 

number and difficulty of items on a test or assessment. 

Assumptions of the Rasch Measurement 

The first assumption of the Rasch Model is that there 
is only one latent dimension underlying the items. This 
assumption is called unidimensionality; the item pool 
should be unidimensional and measure a single latent 
trait. This factor is not a severe limitation of the method 
since one can easily eliminate items that appear to 
violate the assumption. Harvey and Hammer (1999) also 
report that unidimensionality can be overcome by 
dividing the instruments into subscales or factors for 
those instruments with available subscales such as the 
Myers-Briggs Type Indicator. 

A second assumption of the Rasch Model is the local 
independence of items. That is, items should not give 
information that could be used to answer any subsequent 
item. Statistically, local independence means that the 
items do not correlate with each other (i.e., the items are 
uncorrelated or have a Pearson r at or near zero). 
Embretson and Reise (2013) describe this concept 
statistically as being the probability of solving any item i 
where the outcome of that item is independent of any 
other item. 

 

 
 

Fig. 1. Item characteristic curves for 3 items of varying difficulty 
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Fig. 2. Item by Person distribution map, Note. Data for this 
table was compiled from graduate level mid-term exams 

and is provided for illustrative purposes only 

 
Table 1. Item parameter estimates sorted by item difficulty 

Item no. Item difficulty 

16 -2.740 

7 -2.740 

13 -2.740 

15 -2.028 

19 -2.028 

2 -1.269 

10 -1.269 

24 -1.269 

14 -1.006 

The Item Characteristic Curve 

The Rasch Model can be used to measure magnitudes 

of variables using a single continuum (Andrich, 1988). 

IRT measurements are often used with, but not limited 

to, inventories or tests that utilize dichotomous responses 

(e.g., binary data, 0 and1). It is important to note that, in 

the Rasch Model, items do not have to be dichotomous, 

merely the scoring of the items is required to be 

dichotomous in nature. Items may be any type that 

allows a yes/no or right/wrong scoring regardless of the 

number of possible choices (distracters) given. Several 

polytomous IRT models are available to handle multiple-

ordered Likert-type responses such as the graded-response 

model, the partial credit model and the rating scale model 

(Harvey and Hammer, 1999; Embretson and Reise, 2013). 

To simplify the discussion, the remainder of this paper 

will assume dichotomous responses are used. 

The Item Characteristic Curve (ICC) is a plot of the 

latent trait (θ) on the x-axis by the probability of a 

correct response on the y-axis. The item characteristic 

function can be described as a mathematical 

representation of the relationship between a person’s 

position on the latent trait dimension and the probability 

the person will correctly answer an item of a given 

difficulty (Hashway, 1978). The scale for the latent trait 

is typically described as a logarithmic measure 

(natural log or base e) thus forming a trait scale that is 

interval or near-interval in nature. According to David 

and Chih-Hung (2000), by creating an interval scale, 

parametric statistics are less subject to violation of 

assumptions and logit measures may temper bias at 

extremes in the scale. The Rasch Model makes an 

assumption analogous to equal measurement error for 

each item and thus are said to be equally discriminating. 

The visual representation of this item characteristic 

function is the Item Characteristic Curve (ICC) as seen in 

Fig. 1. Other similar examples of Rasch ICC’s may be 

found in Azeem and Gondal (2011) and Kersten et al. 

(2014). Figure 1 represents a plot of three separate ICC’s 

on the same scale. 

Again, item difficulty is defined as the point at which 

a person has a 50% probability of answering the item 

correctly. In Fig. 1 for example, using three 

dichotomously scored items, the location where the item 

characteristic curves cross the 0.5 probability line is the 

item difficulty. Thus, item difficulty for the 3 items 

illustrated in Fig. 1 is –1.0, 0.0 and 1.0 respectively. A 

function of the IRT is that it allows item difficulty and 

person ability to be plotted on the same scale. If a person's 

ability level exceeds an item's difficulty level, the person 

will generally pass the item (i.e., the probability of a correct 

answer increases) (Safrit et al., 1989). 
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Item Response Theory Coefficients 

The full IRT model produces 3 parameters for a 

given data set: Parameters a, b and c. Parameter a refers 

to the slope of the ICC. The slope tells the researcher 

something about the discriminating power of the item. 

As the slope, a, becomes larger (i.e., more of a vertical 

orientation), the greater the ability of the item to 

discriminate between small changes in theta (person 

ability). As the slope, a, becomes smaller or lesser (i.e., 

more of a horizontal orientation), the less the ability of 

the item to discriminate between small changes in theta. 

In the 1-parameter model, parameter a is most often 

assumed to be 1.0 but may be fixed at some other 

predefined constant (Henson, 1999). 

Parameter c is the “guessing parameter” and can help 

researchers take into account the respondent’s ability to 

guess the answer to the item. For example, the probability 

of guessing a correct answer to a multiple-choice item 

with 4 options is 25%. In this case, at lower theta values, 

the ICC would become asymptotic to 0.25 rather than 0. 

In the Rasch Model, parameter c is most often assumed to 

be 0 but may also be fixed at some other predefined 

constant (Henson, 1999). 

The Rasch Model 

Common to the full IRT model and the Rasch Model, 
parameter b is the item difficulty and is defined as the 
position on the latent trait variable where it is expected 
the person has a 50% probability of answering the item 
correctly. The further to the right on the plot the ICC 
stands, the greater the item difficulty as only those 
individuals with a higher theta would have a 0.5 or 
greater probability of having a correct answer. Figure 1 
represents an ICC for 3 items of varying difficulty. An 
important concept to note is that theta (θ), the latent trait 
or characteristic of the individual being measured, uses 
the same scale as the b parameter (item difficulty). 
According to Harvey and Hammer (1999), the location 
of the person and item parameters on a common scale 
represents an important, if not the critical, characteristic 
of IRT models. Hashway (1978) reinforces this concept 
as he discusses how the Rasch procedure assumes that 
both items and subjects occupy positions on the same 
latent trait dimension (i.e., the same scale). 

Again, referring to Fig. 1 for the Rasch Model, the 
only characteristic distinguishing one item’s difficulty 
from another is the location of the ICC on the horizontal 
axis (theta). The further left the ICC is on the graph, the 
lower the item difficulty and the further right the ICC is 
on the graph, the larger the item difficulty (i.e., the 
more difficult the item). The Rasch Model also assumes 
that all Item Characteristic Curves are the same shape, 
which in the practical world is probably not completely 
true. As noted previously, the Rasch Model holds 
constant both the item discrimination parameter, a and 
the guessing parameter, c. 

If the person’s theta (latent trait) exceeds the item 
difficulty, the person is more likely to answer the item 
correctly. Conversely, if the person’s theta is less than 
the item difficulty, the person will likely not answer the 
item correctly. This is an important point to the test 
developer. If the test item difficulty far exceeds the 
student’s ability (theta), students will do poorly and the 
test will not yield significant information regarding the 
true ability of the students. Conversely, if the test item 
difficulty is significantly below that of the student’s 
ability (theta), similar results occur: No significant 
information regarding student ability will be generated. 
IRT methods will often help discriminate between 
students with abilities at extremes of the distribution of 
scores by assisting the test developer in the development 
of items with many different item difficulties to assess 
different person (ability) levels. 

For example, using three dichotomously scored items 
(Fig. 1), the location of subjects on the trait level 

continuum (x-axis) corresponds to their ability or trait 
level. The location of the items corresponds then to each 
item’s difficulty levels. If a person's ability level exceeds 
an item's difficulty level, the person will generally pass 
the item (i.e., the probability of a correct answer 
increases) (Safrit et al., 1989). In a slight variation, 

Petersen et al. (2012) discuss using the Rasch 
methodology to evaluate raters making medical 
diagnosis (i.e., rater bias) based on the level of difficulty 
in rating patients. 

Per the previous discussion, Hashway (1978) 
describes how the Rasch procedure places or calibrates 

both items and subjects (persons) to occupy positions on 
the same latent trait dimension (i.e., the same scale). 
Figure 2, an item by person distribution map generated 
from the same data set as that used for Table 1, is 
provided as a visual example to help relate the concept 
of trait level and item difficulty being on the same scale. 

Figure 2 shows the logit scale occupying the central 
potion of the map. Item difficulty (b) is displayed 
graphically to the left of the logit scale. Each marker (#) 
represents the percent of items at a particular item 
difficulty. Notice that several items, as a percentage, 
have an item difficulty of –2.8. From the previous 

discussion of item difficulty, using the values listed in 
Table 1, these markers correspond to items 16, 7 and 13. 
The map obviously rounds the item difficulty values. In 
this example, the item difficulty of –2.8 on the map 
corresponds to the calculated value of –2.740 for items 
16, 7 and 13. 

Person ability (theta) is displayed graphically on 

the right side of the logit scale on item by person 

distribution map (Fig. 2). Again, each marker (#) 

represents the percent of examinees at a particular 

person ability or theta level. In this example, theta 

levels of the examinees reside at the upper level of the 

item difficulties. In some cases, theta levels exceed 

item difficulties. 
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In simple terms, Fig. 2 shows the results of a Rasch 
assessment which creates a common scale for both item 
difficulty and person ability. In this example, it is easy to 
see that the item difficulties span a wide range (-2.8 to 

2.0) and are generally below the person abilities. The 
person abilities are generally higher than the item 
difficulties and also in a narrower range (-0.2 to 3.4). 
What does this mean to the instructor or test developer? 
In general terms this assessment will allow the 
instructor to see the abilities of the students in relation 

to the difficulty of the items on a test. The logical 
outcome in this example is that the instructor or test 
developer could refine the test by removing items that 
have a low item difficulty, reducing the number of 
items that have the same item difficulty and adding 
items at a higher difficulty level. 

Conclusion 

The Rasch Model is gaining in use due to the 
widespread growth of computer applications and the 
increasing sophistication of computer programs to run 
demanding mathematical operations (Harvey and 
Hammer, 1999). This model is also being used in an 
array of different subject areas from Human Resources 
(Wang and Stahl, 2012) to the field of medicine 
(Petersen et al., 2012) as more researchers are seeing the 
benefits of the Rasch approach to item analysis. The 
Rasch Model assists test developers by providing a 
platform to calibrate instruments to be independent of 
the norm reference group. The Rasch Model is also 
helpful in diagnosing instruments by calibrating item 
difficulty and person ability to a common scale. This 
function of the Rasch Model allows test developers and 
instructors to create better instruments in terms of 
optimizing the number of items, eliminating items of the 
same difficulty and more closely matching the level of 
difficulty of the items to the abilities of the examinees. 
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