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Abstract: This study builds upon the groundbreaking research of 

Asymptotic stability of unicycle-like robots with the Bessel’s controller 

continuing the exploration of asymptotic stability for non-holonomic robots 

through kinematic modeling that allows for obstacle avoidance. utilizing the 

previously derived Bessel's controller, the study defines an avoidance region 

containing obstacles, presenting an algorithm that relies solely on the 

distance to the obstacle. This novel algorithm introduces a new set of 

Ordinary Differential Equations (ODEs) to recalibrate the controller. A 

MATLAB/Simulink example demonstrates the exact algorithm using 

Bessel's functions and an approximate solution, emphasizing a more tractable 

hardware implementation. The paper contributes a significant advancement 

in the field, combining asymptotic stability, obstacle avoidance, and efficient 

hardware implementation. In conclusion, this study introduces and validates 

a pioneering navigation algorithm tailored for unicycle-like robots, ensuring 

asymptotic stability even in the presence of obstacles. Building upon the 

earlier research framework utilizing Bessel's controllers, the paper highlights 

instances of asymptotic stability and convergence near the origin, addressing 

a notable gap in the existing literature regarding path planning and navigation 

algorithms for obstacle avoidance with asymptotic stability. The research 

trajectory initiated by previous paper proves instrumental in advancing the 

understanding and practical implementation of stable navigation algorithms 

for robotic systems, particularly in scenarios involving obstacles. This study 

not only extends the achievements of the previous work but also provides 

valuable insights and recommendations for future research directions in the 

pursuit of robust and efficient robotic navigation. 
 

Keywords: Kinematic Model, Nonholonomic Dynamics, Obstacle 

Avoidance, Hybrid Systems 

 

Introduction 

Modeling mechanical systems that roll without 

slipping presents various challenges, depending on 

whether a dynamic or kinematic approach is employed 

(Siciliano and Khatib, 2008; Angeles and Kecskemethy, 

1995). This study primarily focuses on dynamic models, 

which account for all possible physical interactions, 

resulting in a set of Ordinary Differential Equations 

(ODEs) corresponding to the degrees of freedom of the 

mechanical system (Angeles and Kecskemethy, 1995). 

Dealing with a large number of ODEs and establishing 

a control law for asymptotic stability remain significant 

challenges (Kostić et al., 2009; Udwadia and Kalaba, 1992; 

Skowronski, 2012; García, 2020). Drawing on the 

advancements of (García, 2020) in achieving asymptotic 

stability for unicycle-like robots using Bessel's controller, 

our work extends this achievement to address the 
inclusion of obstacles for obstacle avoidance, ensuring 

asymptotic stability. 

In this context, there is a growing interest in 

controlling more tractable kinematic models for mobile 
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robots, particularly within the subset of wheel planar 

kinematic models (Siegwart et al., 2011; Ostrowski, 1999; 

Lecanda and Fernandez, 2008). Unicycle-like robots, as 

universal models for a wide range of wheeled robots 

(Garcia and Agamennoni, 2012), offer a practical 

framework for navigation and control. According to 

Murray and Sastry (1993), any nonholonomic system can 

be written in a universal chain form, allowing the use of 

unicycle models as general non-holonomic dynamics. 

Safe mobile robot navigation necessitates effective 

obstacle-avoidance strategies, as highlighted by Dang and 

Bui (2023). While various methods like fuzzy logic, neural 

networks, and potential fields generate clear paths, none 

guarantee asymptotic stability (Shitsukane et al., 2018a-b). 

Building upon García (2020), this study introduces an 

extension that incorporates obstacle avoidance with an 

exclusion region, ensuring asymptotic stability. 

The structure of this study unfolds as follows: We 

begin with the introduction of necessary definitions and 

notations, followed by the presentation of the unicycle 

robot with Bessel’s controller and closed-form trajectory 
solutions in section 'unicycle robot with Bessel’s 

controller.' The subsequent sections delve into obstacle 

avoidance constraints, main theorems, and corollaries 

regarding asymptotic stability and obstacle avoidance, 

with practical simulation examples using MATLAB in 

section 'examples.' The conclusion offers insights and 

outlines avenues for future research. 

Notation and Definitions: Preliminaries 

In this section, some definitions are provided for the 

sake of completeness. 

Derivatives with Respect to Time and Differential 

Time derivatives are indicated as: 

 

�̇�(𝑡) =
𝑑𝑥(𝑡)

𝑑𝑡
 

 

where, dt means a time’s differential. 

Closed-form Controller 

According to García (2020), an asymptotic stabilizing 

controller for unicycle robots is out of Bessel’s functions. 

This controller leads the following notation: 
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 
   

   

cos sin

sin cos
R

 


 

 
  

  

 

 
𝐺(𝜃) is considered the Bessel control and the dynamics 

of the unicycle robot is one system. Where 𝑋(𝑡) is the 

robot posicion in instant t. 

Unicycle Robot with Bessel’s Controller 

In this study, unicycle robots are considered (Fig. 1) 

and (Eq. 2): 
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 (2) 

 
where, the control inputs (𝑢1, 𝑢2) ∈ ℜ1 ×ℜ1. 

According to García (2020), asymptotic stability can 

be achieved for this kind of robot globally using the 

following controller: 
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𝐻(𝜃) is considered the Bessel control without the 

dynamics of the unicycle robot. Where 𝑢1 and 𝑢1 are the 

control inputs to said robot. 
 

 
 
Fig. 1: Unicycle-like robot with coordinates 
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Fig. 2: Unicycle-like robot with obstacle avoidance region 
 
Obstacle Avoidance Constraint 

Considering the difference between the location of the 
robot and the obstacle Xobstacle, that is, its distance, and 

assuming that this must be greater than the radius (δ) of 

the obstacle (Fig. 2). 

In this way, the following general obstacle avoidance 

constraint is defined: 
 

( , ) 0obstacleX X 
 (4) 
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The next section provides an asymptotic stability 

result as an extension of the theorem presented in García 

(2020) for a unicycle with obstacle avoidance. 

Results 

Considering the constraint (4), it is possible to 

conclude two possible scenarios: 
 
 (X, Xobstacle) < 0, then the obstacle is far away and the 

constraint inactive 

 (X, Xobstacle) = 0, then the border is reached and an 

equality constraint is added to the control system 
 

As can be seen from previous notations, the constant 

matrix 𝐶 can be chosen with an arbitrary number of rows, 

so this flexibility will be exploited in what follows to 

avoid obstacles with an asymptotic stability guarantee. 

Theorem 1 (Obstacle Avoidance Controller)  

Given a unicycle robot (2) with an obstacle avoidance 

region (4) and the controller (3) with the following 

change’s direction law: 
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where,  1 1 1 1( ) ( ), ( 1) ( )u k u T dt u k u T dt     with T the 

instant of time the avoidance region is reached: (X, Xobstacle) 

= 0 and (T) is the attitude when reaching that boundary. 

This control law provides asymptotic for any given 

initial condition:  
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Proof 

Observing that reaching the boundary avoidance 

region: (X, Xobstacle) = 0 means that the robot must 

necessarily change its forward speed direction u1: 
 

1
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where,  1 1 1 1( ) ( ), ( 1) ( )u k u T dt u k u T dt     with T the 

instant of time the avoidance region is reached: 

 

( , ) 0obstacleX X 
 

 

In this way and taking into account the trajectories’ 

continuity, the following set of equations can be written: 
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On the other hand, every time the control input u1 is 

changed, a new trajectory starts, and the given impact 

point on the boundary region can be considered as a new 

initial point, considering as a constant vector in each 

trajectory's piece, two cases must be considered. 

Finite Switching’s Number 

In this case, each trajectory piece can be regarded as a 

new initial point with asymptotic stability to the origin 

guarantee (provided by the Bessel’s controller), so after a 

finite number of switches, the origin is reached, as long as 

the origin is outside the obstacle avoidance region. 

Infinite Switching’s Number 

This case could be the case for the origin inside the 
obstacle's avoidance region or far away from the 

trajectory where the obstacle avoids a finite amount of 

switching numbers. 

In this case, the switching law at (6) can be analyzed 

when the asymptotic behavior of (t) is, in fact, near to zero: 
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Then, the asymptotic formulas for small arguments 

(see for instance “special functions for engineers and 

applied mathematicians”, provides: 
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The inverse can be also asymptotically computed: 
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Finally, it is possible to get an asymptotic expansion 

for the equilibrium reached: 
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With 𝑏 ≠ 0. This completes the proof. 

Corollary 1 

The controller (5) has a solution for any impact point, 

that is, the ODE that governs the system will always have 

a solution. 

Proof 

Taking into account the definitions at (1-3): 

𝐺(𝜃), 𝐻(𝜃), it is clear that the rank of the matrix: 
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This matrix possesses a rank equal to 3 for any number 
N. Then a solution to (6) arises: 
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where, (. )+ means the pseudo inverse or Moore-Penrose 

inverse (Ben-Israel, 1980). This completes the proof. 

Sometimes, it is very practical to use polynomial 

approximations instead of Bessel’s functions. 

Corollary 2 (Asymptotic Approximation) 

The controller (3) can be approximated with the 

following polynomial simplification for small angle 

attitudes : 
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Proof 

Utilizing the asymptotic formulas for small arguments 

for instance “special functions for engineers and applied 

mathematicians”: 
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where, i! stands for the classical factorial function. This 

completes the proof. 

Simulation Example 

Figure 3, using the robotics toolbox in Simulink with 

the following parameters: 
 

Wheel Diameter = 0.105 m, Robot’s Width = 0.015 m 
 

Setting an initial condition  (0) 1.5 5 , (0) 2X   

and with 0.0001, 5,a     the results in Fig. 4 were 

obtained, using the asymptotic approximation given by 

corollary 2 and Fig. 5 for a comparison with the exact 

controller form in (2). 
It is clear that the robot reverts the forward velocity as 

soon as the avoidance region is reached and then a new 

trajectory is scheduled to reach the origin. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3: Simulink’s block diagram 
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Fig. 4: Robot’s trajectory avoiding the obstacles’ region using 

asymptotic Bessel’s approximations 
 
 
 

 
 
 
 
 
 
 
 

 
 

 
Fig. 5: Robot’s trajectory avoiding the obstacles’ region using 

Bessel’s exact form 

 

Discussion 

Avoiding obstacles while keeping asymptotic 

stability can be difficult without pre-planned trajectories 

or ad-hoc algorithms without a convergence guarantee 

(Kostić et al., 2009; Udwadia and Kalaba, 1992; 

Skowronski, 2012; García, 2020). 

 In this study, utilizing the fact that our previous 

Bessel’s controller is asymptotically stable for any 

number of terms in matrix C (García, 2020), a set of 

algebraic equations was derived to change the lineal 

velocity direction when the robot hits defined regions 

surrounding an obstacle to avoid. 
 There is no doubt that, in addition to providing 

asymptotic stability for avoiding obstacles without pre-

planned routes or prior knowledge of the location of 

obstacles (on-line algorithm), a simple sensor to measure 

the distance to obstacles along a running trajectory is 

required (for example, low cost ultrasonic or optical 

distance sensor). As a result, the algorithm is efficient and 

computationally tractable for any robot with even low 

computational resources. 

Conclusion 

In this study, we have introduced and demonstrated a 

novel navigation algorithm with asymptotic stability 

tailored for unicycle-like robots navigating through 

environments with obstacles. Building upon the 

framework of Bessel's controllers, our previous work 

showcased instances of asymptotic stability and, in many 

cases, convergence to a region proximal to the origin at 
the periphery of obstacles. 

Despite the extensive body of literature available, the 

scarcity or absence of path planning and navigation 

algorithms ensuring asymptotic stability while 

navigating around obstacles using distance-based 

strategies is noteworthy. 

Potential avenues for future research include: 

 

 Expanding the algorithm's capabilities to steer 

vehicles and more general robots, enabling effective 

evasion of moving obstacles 

 Integration of non-linear noisy observers to reconstruct 

and filter noisy posture angle measurements, 

enhancing the robustness of the system 

 Enhancement of asymptotic stability conditions, 

providing both necessary and sufficient criteria for 

scenarios both inside and outside the obstacle's region 

when approaching the goal 

 Incorporation of dynamic models into optimal 

control strategies, offering a more comprehensive 

understanding of the system's behavior 
 

This revised conclusion aims to enhance clarity, 

coherence, and emphasis on the significance of the 

presented algorithm and the potential directions for 

future research. 

Acknowledgment 

The authors would like to acknowledge universidad 

tecnológica nacional: Departamento de ingeniería 

eléctrica and Comisión de Investigaciones Científicas de 

la provincia de buenos aires (CIC), Argentina. 

Funding Information 

This study is supported by universidad tecnológica 

nacional-facultad regional bahía blanca, departamento de 

ingeniería eléctrica and comisión de investigaciones 

científicas of the provincia de buenos aires. 

Author’s Contributions 

Juan Andrés Roteta Lannes: Performed numerical 

analysis and modeling with MATLAB. Participated in 

writing and revising the manuscript. 

Andrés Gabriel García: Developed the research 

design and coordinated the study. Also participated in 

writing and revising the manuscript. 



Juan Andrés Roteta Lannes and Andres Gabriel Garcia / American Journal of Engineering and Applied Sciences 2024, 17 (1): 40.45 

DOI: 10.3844/ajeassp.2024.40.45 

 

45 

Ethics 

This article is original and contains unpublished 

material. The corresponding author confirms that all of the 

other authors have read and approved the manuscript and 

that no ethical issues are involved.  

References 

Angeles, J. & Kecskemethy, A. (1995). Kinematics and 
dynamics of multi-body systems. 1st Ed, Springer, 

New York, 327-342. 

 https://doi.org/10.1007/978-3-7091-4362-9 

Ben-Israel, A. (1980). Generalized inverses of matrices 

and their applications. In Extremal Methods and 

Systems Analysis: An International Symposium on 

the Occasion of Professor Abraham Charnes’ 6th 

Birthday Austin, Texas, September, 1977, 154-186. 

Berlin, Heidelberg: Springer Berlin Heidelberg. 

 https://doi.org/10.1007/978-3-642-46414-0_8 

Dang, T. V., & Bui, N. T. (2023). Obstacle avoidance 
strategy for mobile robot based on monocular 

camera. Electronics, 12(8), 1932. 

 https://doi.org/10.3390/electronics12081932 

García, A. G. (2020). Asymptotic stability of unicycle-like 

robots: The Bessel’s controller. Journal of 

Mechatronics and Robotics, 4(1), 1-a7. 

 https://doi.org/10.3844/jmrsp.2020.1.7 

Garcia, A. and O. Agamennoni, (2012). Minimum-Time 

Control of Mobile Robots: Universal Modeling and 

Algorithms. 1st Edn., LAP LAMBERT Academic 

Publishing, pp: 68. ISBN-10: 3848412462. 
Kostić, D., Adinandra, S., Caarls, J., van de Wouw, N., & 

Nijmeijer, H. (2009). Collision-free tracking control 

of unicycle mobile robots. In Proceedings of the 48 h 

IEEE Conference on Decision and Control (CDC) 

Held Jointly with 2009 28th Chinese Control 

Conference, 5667-5672. IEEE. 

 https://doi.org/10.1109/CDC.2009.5400088 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Lecanda, M. C. M., & Fernandez, F. J. Y. (2008). 

Mechanical control systems and kinematic systems. 

IEEE Transactions on Automatic Control, 53(5), 

1297-1302. https://doi.org/10.1109/TAC.2008.921004 

Murray, R. M., & Sastry, S. S. (1993). Nonholonomic 

motion planning: Steering using sinusoids. IEEE 

Transactions on Automatic Control, 38(5), 700-716. 

 https://doi.org/10.1109/9.277235 

Ostrowski, J. P. (1999). Computing reduced equations for 

robotic systems with constraints and symmetries. IEEE 

Transactions on Robotics and Automation, 15(1), 

111-123. https://doi.org/10.1109/70.744607 

Shitsukane, A., Cheriuyot, W., Otieno, C., & Mgala, M. 

(2018a). A survey on obstacles avoidance mobile 

robot in static unknown environment. International 

Journal of Computer (IJC), 28(1), 160-173. 

 https://ijcjournal.org/index.php/InternationalJournal

OfComputer/article/view/1161 

Shitsukane, A., Cheruiyot, W., Otieno, C., & Mvurya, M. 

(2018b). Fuzzy logic sensor fusion for obstacle 

avoidance mobile robot. In 2018 IST-Africa Week 

Conference (IST-Africa), 1. 

Siciliano, B. & Khatib, O. (2008). Springer handbook of 

robotics. Berlin, Heidelberg: Springer. 

 https://doi.org/10.1007/978-3-540-30301-5 

Siegwart, R., Nourbakhsh, I. R., & Scaramuzza, D. 

(2011). Introduction to autonomous mobile robots. 

MIT press. ISBN-10: 0262015358. 

Skowronski, J. M. (2012). Control of Nonlinear 

Mechanical Systems. Springer science and business 

media. ISBN-10: 1461537223. 

Udwadia, F. E., & Kalaba, R. E. (1992). A new 

perspective on constrained motion. Proceedings of 

the Royal Society of London. Series A: Mathematical 

and Physical Sciences, 439(1906), 407-410. 

 https://doi.org/10.1007/978-1-4615-2425-0_8 

https://doi.org/10.1007/978-3-7091-4362-9
https://doi.org/10.1007/978-3-642-46414-0_8
https://doi.org/10.3390/electronics12081932
https://doi.org/10.1109/CDC.2009.5400088
https://doi.org/10.1109/TAC.2008.921004
https://doi.org/10.1109/9.277235
https://doi.org/10.1109/70.744607
https://doi.org/10.1007/978-3-540-30301-5
https://doi.org/10.1007/978-1-4615-2425-0_8

