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Abstract: In this study, the problem of finding an optimal controller for 

nonlinear systems with one input and a reference tracking signal is 

approached. With the problem's formulation, any desired signal can be 

tracked instantly with a closed-loop controller without the need for integral 

terms. Presentation lies at the heart of optimal control. This study, however, 

does not consider the integral term, allowing tracking and stability to occur 

naturally. It has a broad scope with a wide range of applications, namely 

when dealing with affine nonlinear systems, which provide geometric control 

unification with asymptotic stability in some cases. A common scenario that 

comes from optimal control involves the minimization of integral cost 

functionals. Issues like asymptotic stability or even tracking to the desired 

reference signal have always been the main limitations. In this study, the 

main theorem allows the solution of optimal control problems with no-

integral terms, in other words tracking problems with input/state constraints, 

providing closed-loop controllers. A DC motor with a pendulum in upright 

position is an example of an application for which singular optimal control 

is tested in this study. The results confirm both asymptotic stability and 

optimal tracking with an accuracy of 95%. The main contributions of this 

study include an optimal closed-loop controller with no mixed initial/final 

conditions, input/state constraints, asymptotic stability guarantee, a strong 

connection with geometric tools and finally the possibility to generalize to 

systems with multiple inputs. As a conclusion, general nonlinear control systems 

can be included in the optimal control methodology presented in this study 

including input/state constraints. Due to the lack of integral terms, the problem 

can be solved in closed form by using an optimal closed-loop controller. 
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Introduction  

Control systems are a very significant engineering 
branch. Nowadays, it is not possible to design any new 
system development without taking into consideration the 
control side (Ivanov et al., 2018). 

Different strategies to model and control real systems 
have been proposed throughout the control history (Kozak, 
2014), however, a very common and useful approach is the 
well-known model-based control (Hamid and Ahmad, 2022). 

Once a model is obtained, a very wide range of 

applications can be written as a set of non-linear Ordinary 

Differential Equations (ODEs) with a set of free parameters 

to be determined to steer the system's states to the desired 

location (Slotine and Li, 1991; Li et al., 2022). 

In the field of control, the historical development of 

control strategies has been divided into two main 

branches (Iqbal et al., 2017): 

• Linear systems 

• Non-linear general systems 
 

While for linear systems many methodologies and 

algorithms can be found with well-studied and verified 

results, non-linear control systems are an active research area 

nowadays (Iqbal et al., 2017; Xiao et al., 2022). 

For non-linear control systems, several criteria and 

methods can be applied (Kozak, 2014), all of them with their 

advantages and disadvantages. Moreover, two prominent 

general and promising strategies since their introduction are 

geometric control and optimal control (Isidori, 1995; 

Pontryagin et al., 1962; György and Galaczi, 2020). 

From an optimal control point of view, very general cost 

functionals can be written with initial and final conditions or 

even with time optimization (Bertsekas, 1995; Geering, 

2007; Peitz and Dellnitz, 2018). 
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However, the necessary condition given by Pontryagin´s 

principle requires, in the majority of optimal formulations, 

solving a set of ODEs with mixed-initial and final conditions, 

providing an open-loop control law. In contrast, Hamilton-

Jacobi-Bellman (HJB), which provides a closed-loop control 

law, aims to solve a Partial Differential Equation (PDE) with 

viscous solutions (Bertsekas, 1995). 

Considering the most general scenario for a 

control/optimal control formulation, general non-linear 

ODEs must be written (Chicone, 2006): 

 

( ), , ,n mx f x u x u=
 

 

However, taking into account that many real systems and 

in particular, those coming from mechanical modeling, can be 

written in affine forms (Sarkar et al., 1994; García et al., 2009): 

 

( ) ( ) , ,n mx f x g x u x u= + 
 

 

These kinds of systems are the ones considered in the 

well-known geometric control scenario (Isidori, 1995; 

Nijmeijer and Van der Schaft, 1990). 

Besides the complications of nonlinearities, the addition 

of input and/or state constraints adds an extra obstacle 

to tackle when solving nonlinear control problems 

(Geering, 2007). 

Constraints on states/inputs are a very significant issue 

when dealing with real-world problems. A recent example is 

the recent research on energy harvesting, especially those 

techniques based on wave ocean energy extraction (Liu et al., 

2020; Zhu et al., 2022). 

On the other hand, many optimal control problems 

cannot ensure stability, at least in the sense of Lyapunov 

(Eberhardt, 1997). 

The aforementioned drawbacks to solving optimal 

control problems can be summarized as follows: 

 

• Pontryagin leads an open-loop policy 

• HJB leads a closed-loop policy at the price of solving 

a PDE 

• Pontryagin needs to solve mixed initial/final 

conditions  

• Asymptotic stability is not guaranteed in the majority 

of the cases 

• Input/state constraints can be added without 

complications using Pontryagin’s principle 

 

On this list, one of the most difficult obstacles is 

balancing mixed initial and final conditions. Moreover, 

taking a close look at how the mixed condition behaves, it 

is clear that the problem surrounds the complementary 

ODEs (Geering, 2007). 

However, some classical optimal control formulations 

can be solved by avoiding mixed initial/final conditions and, 

instead, solving a closed-loop ODE with initial conditions. 

These formulations can be found in the cost 

function that does not include time minimization, 

which means the final time is not subject to 

minimization (free parameter). However, if optimal 

tracking is desired, let us assume that a time-varying 

reference signal or even, a nonlinear function of the 

states needs to be minimized instant to instant. Integral 

terms in the cost function cannot cover this possibility. 

These reasons led to the introduction of a novel 

optimal control scenario utilizing singular formulations 

without integral terms (García and Pons, 2017; Monte et al., 

2018; Garcia et al., 2020). 

In this study a singular optimal control problem is solved 

for cost functionals that do not include integral terms 

(singular), allowing the time variable to be explicit. In 

this case, an input-state constraint can be added and for 

certain affine systems, asymptotic stability is also 

proved with a closed-loop control law, avoiding mixed 

initial-final conditions. 

This study is organized as follows: Section Preliminary 

machinery and notation prepare the machinery to be used in 

the main theorem and corollary's proofs, Section Main 

theorem: Optimal control in closed-form formalize the 

definition and proof of the main theorem and its corollary, 

Section Application example analyzes a complex non-linear 

example: The inverted pendulum’s with the adding of the DC 

motor's dynamic, Section Materials and Methods presents 

the simulation machinery, Section Results and Discussion 

discuss the results obtained along with the contributions on 

this study, whereas Section Conclusion presents some 

conclusions, contributions, and future work. 

Preliminary Machinery and Notation 

In this section, the notations and optimal control 

results are recalled. 

Lie Derivatives 

To provide a neat and compact notation, successive 

derivatives are going to be denoted using Lie derivatives 

(Sastry, 2013): 
 

( )
( )   ( ), , n

g

f x
g x L f f g

x


 =

  
 

Moreover: 
 

( ) 2g

g

L f
g x L f

x


 =

  
 

Singular Optimal Control 

An optimal control problem can be formulated as 

(Geering, 2007): 
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( ) ( )( ) ( )
0

min , , ,
T

u x T T L x u t dt +   
 

Such that: 

 

( ), , ,n mx f x u x u=
 

 

where, 
dx

x
dt

=  Possibly with state constraints: 

 

( ) 0, : n rG x G →
 

 

However, when the integral term is null and the 

remaining term is not constant but time-dependent, the 

problem becomes more involved and known as a singular 

control problem: 

 

( ) ( )( )min ,u x t t  
 

Affine Control System 

A general control system can be written to be: 

 

( ), , ,n mx f x u x u=
 

 

However, certain common structures appeared in 

mechanical systems are modeled as affine structures 

(Bloch and Brogliato, 2004; Sarkar et al., 1994): 
 

( ) ( ) , ,n mx f x g x u x u= +   (1) 

 
The next section formalizes a theorem to obtain the 

controller in closed form without the hard inconvenience of 

partial derivatives (Hamilton-Jacobi-Bellman equation) or 

mixed initial-final conditions (Pontryagin's principle).  

Main Theorem: Optimal Control in Closed-form 

Taking into consideration a general singular optimal 

formulation with one of the most complicated scenarios, 

let's say only one control input: 
 

( ) 1, , ,nx f x u x u=
 

 
Using Pontryagin’s principle, the following main 

result can be proved. 

Theorem 1 (Closed-form Control) 

Given a singular optimal control problem: 
 

( )( ),
min ,

u U U
x t t

    
 

Such that (1): 
 

( ) ( ) , ,nx f x g x u x u= + 
 

And with a constraint in states and input: 

 

( ), 0, : nG x u G →
 

 

Then, the optimal controller yields. 

G(x, u) < 0: 

 

( ) ( )

( )

( )

1

1 1
0,

2 2

,
0,

,

g g

g

n

f g

g n

g

sign L sign L
L u U U

L L x t
L u

L x t

 







−

    + −
     =  + 





= = −
  

 

where, sign(.) is the well-known sign function.  

G(x, u) =0: 

 

( )u G x=
 

 

Providing: 

 

0,n

gL n     

 

Proof 

García and Agamennoni, 2008; García et al., 2009 

pioneer the idea of changing the time variable, so the 

given optimal control problem can be reformulated to be: 

 

( )( )

( ) ( )( ) ( )( ) ( )

( ) ( )( )

,
min ,

such that:

, 0

u U U
x t t

x f x g x u

G x u



   

 

  

 = + 




 

 

where,   [0, t]. In this way, the problem can be 
converted to a nonlinear programming problem via 
Pontryagin’s principle (Geering, 2007, pp. 49-51): 

 

( )( )
( )

( ) ( )( )

( )
( )( )

, ,

,
min min

, 0

,

gu U U u U U

x t t
g x u L u

x

G x u

x t t
t

x




 




      


  = 






=



 

 
Notice that, unlike the classical Pontryagin’s 

necessary condition, where the complementary variable 

λ(T) is only known at time T (final time), in this study, the 

value of λ(t) is known at every instant of time t. 

The classical formulation in optimal control does not 

consider the possibility for constraints in both: States and 

inputs, however, the proof in Geering, 2007, pp. 51 makes 

use of the well-known Karush-Kahn-Tucker conditions, 
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then adding the derivatives of the constraints until the 

input appears, it is rather straightforward to include the 

case in this study. 

On the other hand, as in Geering, 2007, two main cases 

must be considered, active and inactive constraints. 

G(x, u) < 0. 

In this case, the minimization runs without taking into 

account the constraints, so: 
 

min , gu U U L u     
 

The problem becomes a linear programming problem 

if Lg  0, so when this is not the case: 
 

20 0 0
g

g f g g

dL
L L L L u

dt


  =  =   +  =

 
 

In this case, if 2 0gL   , then a closed-form controller u 

can be recovered again. If the null persists: 2 0gL    taking 

time derivative again, the process can continue: 
 

1 0n n

f g gL L L u − +  =
 

 
G(x, u) = 0. 

This case is rather simple, providing: 
 

( ) ( ), 0G x u u G x=  =
 

 

This Completes the Proof 

Note: Having formulated the optimal control 
problem with a cost function not containing integral 
terms and being time-varying, the time change of 
variables allows one to obtain the value of the 
complementary variables (t) (Pontryagin) at every 
instant of time. This avoids the classical drawback of 
mixed initial/final conditions. 

As mentioned in the Introduction, stability is also 
important in control systems, however, in this optimal 
control scenario, some cases can also provide 
asymptotic stability by choosing an appropriate 
Lyapunov function: 

Corollary (Stability) 

Given a control system to the form: 
 

( ) , , , 0, 0x g x u u U U U U =      

 
With a controller given by Theorem 1, providing: 

 

( ) ( )0 0x x   =  

 
where, x* an equilibrium point, then the equilibrium could be: 
 

− Asymptotically stable if: *( ) 0,gL x x x     

− Stable and converging to the region (regularly 

embedded submanifold) given by: Lg(x) = 0 

 

Proof 

Choosing a Lyapunov function ( ) ( )V x x= : 

 

( ) ( ) ( ) ( )0, 0V x x V x x  =  = =  

 

This is a Lyapunov function, which is radially 

unbounded and zero at the equilibrium point. On the other 

hand, to ensure asymptotic stability (according to 

Lyapunov's theorems, Khalil, 2002), one needs: 
 

( )
( ) ( )

( )0 0
V x x

V x x g x u
V x

 
   =   

 
 (2) 

 

Then, with the controller in Theorem 1: 

 

( ) ( )1 1

2 2

g gsign L sign L
u U U

    + −
   =  +   

 

With, ,u U U    and with 0, 0U U  , it is clear that 

the definite negative condition in (2) is satisfied. 

Finally, if Lg(x) = 0, this conforms an embedded 

submanifold containing the trajectories. This 

completes the proof. 

It is clear that this corollary is useful in systems 

without drift terms, for instance, unicycle like-robots 

(Deepak et al., 2011). 

Application Example 

A simple nonlinear control problem that could exhibit 

complexity and control challenges is the well-known 

inverted pendulum (Boubaker, 2013). However, even when 

this benchmark is very well-known, a few times the control 

action, let's say a DC motor is included into the dynamics. 

It is worth noticing that, not including the dynamics of 

the DC motor, would become the problem very simply: 
 

( )

2
1

12

0

1sin

x
x

x ug
xx

L

 
    = = +     −          

 
To add more complexity and, on the other hand, to 

take into consideration a more realistic modeling, the 

DC motor dynamics will add an extra state variable and 

a richer non-linear model to solve. 

Figure 1 shows a schematic picture of the inverted 

control pendulum, exhibiting the angle to control and the 

voltage-torque as the control input (DC motor). 
Figure 2 presents the DC motor's electrical model to be 

included in the dynamics. 
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Fig. 1: Inverted pendulum with a DC motor actuator 
 

 
 

Fig. 2: DC motor’s electrical model 
 

 
 

Fig. 3: Simulink model 
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Fig. 4: Simulation results: Angular velocity vs cost function and angle, for α = -1 and β = -10000 
 

In this manner, the complete control model can be 

written (see (3)): 
 

( )

2
1

2 1 3

3

3 2

0

1
sin

0

t

v

x
x

g
x x x K x u

L L
x

R K
x x

L L

 
             = = −  +  +                −  − 
  

 (3) 

 

where, ( ) ( )1 2 3 }, ,{ ,x x x I t u V t = = = = with g = 9.8 m/seg2 

and L the pendulum’s length. 
It is possible to write a cost function to optimize to 

force x2: 
 

( )
2

2

2

tx e


+ 
=  

 
where, α<0 and β<0. Then, according to Theorem 1 and 

taking into account that no constraints are imposed: 
 

( )

( )

2

,

2

1
argmin

2

1

2

t

u U U

t

sign x e
u G u U

x

sign x e
U











  



 + +   =   =  +


 − + 
 + 

 

 
where, G = [0,1/L,0]’ with the transpose and sign(.), 

the classical sign function.  
Figure 3 shows a Simulink model presented with 

separate components: Sign functions and cost functions. 
Figure 4 shows the simulation results in 

Matlab/Simulink, as it is clear, the angular velocity 𝜃̇ 
tends to zero as required, whereas the angle  tends to 
180º smoothly, as required. 

Materials and Methods 

All the simulation were performed in a core i7 laptop 
with 20GB RAM, with Matlab release 2020b under ODE 
113 (Adams) solver with a maximum relative tolerance 
error of 1e-1. 

Results and Discussion 

The methodology in this study turns to be universal, in 

the sense that any affine control system with one input can 

be controlled in an optimal way according to Theorem 1. 

Moreover, the optimal control formulation presented 

avoids the problem of mixed initial/final conditions 

providing also a closed-loop control policy. 

The asymptotic stability proved in the Corollary for a 

kind of affine system, becomes very useful and very 

uncommon in the context of optimal control. 

Finally, a connection with geometric control via Lie 

derivatives, opens the door to more intense research and 

extensions to this methodology, in order to analyze 

observability and controllability. Also notice that the 

complex structure of an inverted pendulum including the 

DC motor dynamics can be successfully controller with 

the universal optimal control in this study. 

Conclusion 

In this study, the important concept of singular 

optimal control with no integral cost functional terms 

was formalized. Even with the pioneering work of 

(García et al., 2009; García and Pons, 2017), a formal 

and general proof including state/input constraints in 

this context, was lacking. 

One of the main contributions in this direction is about 

the closed-form control law, that is, a closed-loop 

avoiding the classical problem o mixed initial-final 

conditions when applying Pontryagin's principle. 

On the other hand, the connection with geometrical 

control using Lie derivatives opens a new direction in 

optimal control exploring also the future connections with 

non-linear controllability and observability. 

A final contribution in this study is about Corollary 1, 

even for simplified versions of affine systems (f(x)=0) the 

connection with Lyapunov stability unifies the three 

branches of control: Optimal control, geometric control, 

and Lyapunov stability. 
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Table 1: Pontryagin-Singular control comparison 

Issue Pontryagin Singular 

Mixed initial/final Yes No 

Asymptotic stability Difficult to prove Straightforward in affine cases 

Input/State constraints Yes Yes + Input constraints 

Reference tracking Difficult Straightforward 

Connection with other tools No Geometric control 

 

The practical implication of such a methodology is 

rather straightforward, possessing a closed-loop rather 

than open-loop strategy (as it comes from pure 

Pontryaing’s principle) the controller becomes very 

effective and simple to implement in real control systems. 

A summary comparison between the classical 

Pontryagin’s principle and the methodology with no 

integral term (singular) in this study is shown in Table 1. 

In future work, further connections with geometrical 

control and asymptotic stability will be studied. 
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