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Abstract: In this study, we address the problem of singularities of a hybrid 

serial-cable driven planar robot. Based on an analytical kinetostatic analysis 

three types of singularities are determined, i.e., serial, parallel, and combined 

singularities. In addition, cable tensions should be positive, otherwise, the 

robot will be uncontrollable. The serial singularity corresponds to positions 

where the serial port of the robot is fully extended or fully folded. The 

parallel singularity corresponds to aligned cables and combined singularities 

correspond to both cases. Cable tensions distribution, within the workspace, 

is determined, which allowed the identification of regions where the cable 

tensions exceed an allowable value. The influence of physical parameters on 

the workspace of the robot and its singular configurations is also studied. An 

example of a gait rehabilitation system using this type of robot is shown. 

Based on the kinetostatic analysis, multi-objective optimization of the 

dexterity and the cable tensions is performed, which yielded solutions 

represented by a Pareto front. The results have been extended to the case of 

3 degrees of freedom hybrid robot. 

 
Keywords: Hybrid Serial-Cable Driven Planar Robot Singularities Lower   

Limb Rehabilitation 

Introduction  

Cable-driven robots with passive support are a special 

case of robots combining the advantages of parallel robots 

and those of serial robots (Trevisani et al., 2006; Pigani and 

Gallina, 2014). The serial part provides stiffness normal 

to the plane of motion, which means that the robot is 

suspended by cables rather than being supported. The 

passive joints in the serial part can be equipped with 

sensors, which improves the precision of the robot, 

especially when high masses and accelerations are 

involved. These robots are lightweight and have a high 

payload and a large workspace.   

Singularities are well studied in the case of serial and 

parallel robots (Litvin and Parenti, 1985; Gosselin and 

Angeles, 1990; Yang et al., 2002; Bonev et al., 2003; 

Firmani and Podhorodeski, 2009; Liu et al., 2012). Most of 

these works study the Jacobian matrices of the robot. A 

singularity is detected when there is a loss of rank in those 

matrices. For serial robots, singularities correspond to the 

limits of the workspace where some of the geometrical 

inverse solutions meet (Litvin and Parenti, 1985). However, 

for closed-loop mechanisms, there are three main groups of 

singularities (Gosselin and Angeles, 1990) Serial 

singularities correspond to the case where the chain reaches a 

limit of the workspace or an internal limit of a branch of the 

closed chain. The second kind of singularity is a parallel 

singularity, which usually corresponds to the case where the 

gripper is locally movable even if the actuators are locked. 

These singularities can occur within the workspace. The third 

kind is the combined singularity (Gosselin and Angeles, 1990) 

where the two previous singularities occur simultaneously.   

To deal with singularities and to avoid dangerous 

positions for the robot, several works are focused on 

determining a singularity-free workspace within a 

prescribed region. This is done by varying geometrical 

parameters (Zou et al., 2012; Li et al., 2016). Other 

works detect singular configurations during the path 

planning process. In (Lahouar et al., 2008) singularities 

of parallel robots were treated as obstacles and were 

avoided during path planning generation. This method 

was extended to cable-driven robots (Lahouar et al., 

2009; Ismail et al., 2016). Several other authors 

validate prescribed trajectories by optimizing the time 
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or the force (Boudreau and Nokleby, 2012;                      

Barnett and Gosselin, 2015; Trevisani, 2013; Zhang 

and Shang 2016). Although singular configurations can 

be crossed during the motion of the robot, these 

positions cannot be initial or final. Detecting static 

singular configurations is helpful to avoid using these 

configurations as start and final positions. Cable 

tensions are evaluated dynamically during the motion 

without knowing the shape of the singularity-free 

workspace and without knowing the distribution of the 

cable tensions in the workspace. In this study, the 

singularity-free workspace is studied and the cable 

tensions are evaluated. The dexterity in the workspace 

is also studied as a function of certain geometric 

parameters of the robot. To evaluate dexterity, some 

studies used the determinant of the Jacobian matrix 

(Paul and Stevenson, 1983). In (Angeles and López-

Cajún, 1992) the conditioning index is used. It is defined 

as the reciprocal of the condition number of the 

homogeneous Jacobian matrix. Yoshikawa proposed the 

manipulability index (Yoshikawa, 1985). Many other 

studies use the condition number of the Jacobian matrix 

as a dexterity measure (Zargarbashi et al., 2012). 

Although singularity and cable tension-related 

problems are well studied in the literature, to the best of our 

knowledge, this is the first paper where they are 

investigated simultaneously. This subject is worthy of 

investigation to understand the workspace of this kind of 

robot and its possible use in lower limb rehabilitation.  

Kinetostatic Analysis  

The studied robot is shown in Fig. 1. It corresponds 

to a hybrid serial-cable driven planar robot. The serial 

part is composed of two passive revolute joints. Two 

cables are attached on one side to the tip of the serial 

port and attached on the other side to two pulleys 

actuated by two motors. Figure 1 shows the geometrical 

parameters of the studied robot as well as the applied 

forces. P1 and P2 correspond to the weights of links 1 

and 2 of the serial part of the robot. Cables are 

considered nonextensible and their weight is neglected. 

T1 and T2 correspond to tensions in the cables applied 

at the tip of the serial part. Using a kinetostatic analysis 

can give an idea about both singularities and cable 

tensions, which is, in our opinion, better than using the 

usual velocity relationships. 

Applying equilibrium equations on bodies 1 and 2 

gives the following equations:  

 

1 2 1 2
1 20,2, 1, , ,

{ } {0}, { } {0}i ii P i P T T
T T→ →= =

= =   (1) 

 

The reaction forces and moments in the revolute joints 

correspond to wrenches, which can be written as: 

 
 
Fig.1: Geometrical parameters and applied forces for the 

Hybrid serial-cable robot: 
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The weights of link 1 and link 2 are applied in the 

middle of each bar: 
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where, g is the gravity constant and m1 is the mass of bar 

1. Putting the previous screws at the same point O gives 

the following equation system: 
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The tension of each cable applies a force at the tipping 

point M given by the following screw: 
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Equations of equilibrium of body 2 can be written as 

follow:
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Fig. 2: Serial singularities 
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Putting together Eq. (4) and Eq. (6) in a matrix form 

we obtain: 
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where: 
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Solving Eq. (7) yields the unknown forces applied to 

the robot and especially the cable tensions needed to 

detect singularities. Cable tension values have to be 

positive to ensure the stability of the robot. 

Singularities and Negative Cable Tensions 

Singularities occur when det[A] = 0. The det[A] can 

be written as follows: 
 

  1 2 2 2 1det 11 sin ( )A q  = −  (9) 

 

Three cases can be considered where det[A] = 0. 

These singularities are serial, parallel, and combined. 

Serial Singularities 

The first case of singularity occurs when sin 𝑞 = 0, 

which means that 𝑞2 = 0 or 𝑞2 = 𝜋 as shown in Fig. 2, the 

serial port is in full extension or completely replied. 

This type of singularity defines the limits of the 

workspace of the robot. Indeed, as the robot is fully 

extended, point M generates a circle defining the outer 

limits of the workspace. However, since the actuation is 

through the cables, not all the circle is feasible.  

Parallel Singularities 

These singularities occur when sin (𝛼2–𝛼1) = 0, which 

yields 𝛼 = 𝛼 + 𝑘𝜋 as shown in Fig. 3.   

Combined Singularities 

These singularities occur when there are both types of 

singularities, serial and parallel. In this case, we have           

l = l as shown in Fig 4.  

Negative Cable Tensions 

 Cable tensions have to stay non-negative at all times. 

Solving Eq. (7) gives the values of the tensions: 
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When these tensions become negative (T1 ≤ 0 or T2 ≤ 0), 

the motors are no longer capable of driving the robot. In this 

case, the robot fails to execute the required task. It is also 

worth mentioning here that the two cases, where the tensions 

in the cables become infinite, are q2 = 0 or α = α + kπ. These 

cases correspond to the previous three cases, where the robot 

is in either parallel, serial, or combined singular configuration.  
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Fig. 3: Parallel singularities 
 

 
 
Fig. 4: Combined singularities 
 

 
 
Fig. 5: Free workspace elbow up 
 

 
 
Fig. 6: Tensions in the workspace for elbow up 

Simulation Results  

To illustrate this analysis, the following parameters were 

used: g = 9.8 N/kg, 𝐿 = 1 m, 𝑙1 = 𝑙2 = 0.5 and m1 = m2 = 

1 kg. The position of the tip of the robot was modified to 

span a rectangle as follows: −1 <𝑥< 1 and 0 <𝑦< 1. Figure 5 

shows the results of the feasible workspace (in white) of an 

elbow-up configuration of the robot. Indeed, the serial 

passive part of the robot has two possible configurations for 

a given position of the tip, i.e., elbow up and elbow down. It 

is worth mentioning that the second possible solution (elbow 

down) yields the mirror image of the vertical axis of the 

workspace shown in Fig. 4. In what follows, only the elbow-

up solution is shown. It is worth mentioning that the robot 

cannot cross the x-axis without going through a singular 

configuration. Therefore, it is recommended to define the 

feasible workspace only on one side of the x-axis. For the 

application of rehabilitation, the robot will always be below 

the x-axis. The blue zone corresponds to a non-accessible 

region due to the drop of the tensions in the cables below a 

certain limit. Since the value of the sum of the two tensions 

is monitored, one has to make sure that both tension values 

stay above a certain minimum value, and the non-accessible 

region is defined by 𝑇min<𝑇i<𝑇max, 𝑖 = 1, 2. The red zone 

corresponds to configurations where the cable tensions are 

greater than a maximum value (i.e., 𝑇i > Tmax, i = 1, 2 and 

𝑇max = 60 N). This maximum tension ensures that the cable 

is not broken under excessive tension. Isovalues of 

tensions (𝑇1+T2) is given in Newton to show the 

distribution of the cable tensions in the workspace.   

A 3D representation of the sum of tensions (T1+T2) is 

given in Fig. 6. 

The distribution of the tension T1 in the workspace is 

shown in Fig. 7, whereas the one for tension T2 is shown 

in Fig. 8. 

By observing Eq. (10) and (11) it is clear that the shape 

of the tension distribution within the workspace depends 

on 1

2

m

m
 =  (the mass ratio). Figure 9 shows the evolution 

of the workspace depending on λ while keeping m1 + m2 

= 2 kg. It is observed that the singular region decreases 

when λ increases. This observation means that if m1 is 

greater than m2, then the singular positions due to negative 

tensions in the cables are reduced.  

Gait Assisting Robot  

The objective of this section is to present a case study 

where a robot assists a patient in his gait. The mechanism 

has to be designed for three objectives. 

The first one is related to the workspace to be 

attained by the tip, which corresponds to the workspace 

required to move the leg of a patient standing in the 

upright position. This study space is defined by a 

rectangle a × b as shown in Fig. 10.  
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Fig. 7: Tensions T1 in the workspace for elbow up 
 

 
 

Fig. 8: Tensions T2 in the workspace for elbow up 
 

 
 

Fig. 9: Workspace and tensions depending on λ
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Fig. 10: Gait Assisting robot 

 

 
 
Fig. 11: Parameters optimization for gait rehabilitation 
 

The second objective is to maximize the dexterity of the 

mechanism within the desired workspace. The dexterity is 

given by the inverse of the condition number of the matrix 

[A]. Figure 12 shows the evolution of the condition number 

depending on L (Fig. 1), and the position of the cable pulleys 

(Fig. 11). Where λ = 1 and all other parameters are the same 

as in the last section.  

The third constraint is to minimize the required tension 

values in the cables within the desired workspace. 

Since the serial passive robot is going to be used to 

move the full leg, its geometry is to be determined as a 

function of the person’s height.  

The parameters to be optimized are the positions of the 

motors and the height. Figure 11 shows the parameters to be 

optimized, i.e., the positions of the motors optimized x, y, x, 

y and the height given by x, y, for a given lengths l, l and the 

accessible region defined by a, b.  
The optimization process has been tested for the 

following values. 

ll = l2 = 0.5 m, x = −0.3 m, y = −0.7 m, a = 0.3 m and 

b = 0.9 m.  

Figure 13 shows the Pareto front resulting from 

minimizing the dexterity and minimizing the average 

cable tensions in the prescribed region. The optimization 

method is based on an elitist-controlled genetic algorithm 

provided by Matlab (Deb, 2011). The population size is 

300, the number of generations is 1200, the crossover 

fraction is 0.8 and the Pareto fraction is 0.5 and the initial 

penalty is 0.01. This Pareto front shows that minimizing 

the cable tensions minimizes also the inverse of the 

condition number of the Jacobian matrix. Table 1 gives 

three solutions from the Pareto front. These solutions are 

shown in Fig. 14, 15, and 16.  

The best individual in terms of dexterity (solution 1 from 

the Pareto front) is represented in Fig. 14. It is interesting to 

note that the obtained solution is not symmetric concerning 

the y-axis. This result is mainly because the serial robot is in 

the elbow-up configuration.  

In Fig. 15, the results for minimizing cable tensions are 

shown (solution 2 from the Pareto Front). 

We note that this result is close to singular positions as 

the goal here is to minimize cable tensions and in singular 

positions, some cable tensions are near 0.  

Figure 16 shows results in solution 3. This solution as 

shown in the Pareto front is the best compromise as it 

reduces significantly the cable tensions without a 

noticeable change in dexterity. 

Case of the 3 Degrees of Freedom Hybrid Robot  

In this section, we apply the same method for the 3 
degrees of freedom hybrid robot shown in Fig. 17.  

In this example, a link is added to support the foot of the 
patient. This link is actuated using a third cable. The 
kineostatic study of this robot gives the following equations:  
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Fig. 12: Evolution of condition number as a function of L 
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Computing the determinant of this matrix gives the 

following result: 

 

2 1 2 3 2 2 1 1 2 3det 11 1 sin sin( )sin( )A q q q    = − + +   (14) 

 

In this simulation we kept the same values as the 

previous robot, we just added the values of l3= 0.2 m and 

𝑚3= 0.5 kg. 

The Pareto front of the 3 dof hybrid robot is shown 

in Fig18. Values of average tensions in the cables are 

not significant as the chosen masses of the links are in 

the range of 1 Kg max. Average dexterity changes up 

to 20% between solutions 1 and 2. These solutions are 

given in Table 2.  

Figure 19 shows solution 1 which corresponds to the 

maximum dexterity in the workspace.  

Maximizing the dexterity gives results as far as possible 

from singularities. This was the same case for the 2 dof 

hybrid robot.   

 

 

Fig. 13: Pareto front 

 

 
 

Fig. 14: Results of the optimization process maximizing the inverse of the condition number (solution 1) 

 

 
 

Fig. 15: Results of the optimization process minimizing cable tensions (solution 2) 
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Table 1: Solutions from the Pareto front 

 Dexterity  Cable tensions  x1  y1  x2  y2  

1  -0.128  8.3  -0.742  0.005  0.750  0.082  

2  -0.084  6.5           0.001  0.660  0.546  0.032  

3  -0.127  7.2  -0.840  0.009  0.552  0.036  

 

Table 2: Solutions from the Pareto front of the three degrees of freedom hybrid robot 

 Dexterity  Cable tensions  x1  y1  x2  y2  x3  y3  

1  -0.053  6.12  -0.601  0.770  0.623  0.266  0.267  0.991  

2  -0.044  5.87  -0.045  0.834  0.567  0.256  0.553  0.666  

 

 

 

Fig. 16: Results in solution 3 

 

 
 

Fig. 17: Three degrees of freedom hybrid robot 
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Fig. 18: Pareto front of the three degrees of freedom hybrid robot 
 

 
 

Fig. 19: Results of the optimization process maximizing the inverse of the condition number of the 3 dof hybrid robot (solution 1) 
 

 
 

Fig. 20: Results of the optimization process minimizing cable tensions of the 3 dof hybrid robot (solution 2) 
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Whereas Fig. 20 shows solution 2 where the average 

cable tension in the workspace is minimized. 

Discussion 

Singularities in the case of a hybrid cable serial robot are 

studied. Three types of singularities have been identified and 

discussed. These singularities are serial singularities present 

in the boundary of the workspace, parallel singularities in the 

upper limit of the workspace, and combined 

singularities corresponding to both cases. In addition, 

cable tensions are verified, and negative tensions in one 

or both of the cables have to be avoided. It has been 

shown that these configurations depend on the 

geometrical parameters of the serial part of the robot 

and on the position of pulleys (used to attach cables). 

They also depend on the mass ratio 1

2

m

m
 =

, the higher this 

ratio the smaller the cable singularity region. 

Moreover, a region within the workspace where cable 

tensions increase drastically was identified. This region 

should be avoided to prevent excessive tensions in the 

cables. The use of the studied robot in gait 

rehabilitation was proposed. Results of the 

optimization of the pulley positions, given a prescribed 

region for the patient tip, are shown. Two types of 

results are given, the first one is based on the condition 

number of the Jacobian matrix and the second one is 

based on cable tensions. It is shown that minimizing the 

condition number gives better results than minimizing 

the cable tensions in terms of making the prescribed 

region far from singularities. This experiment is also 

conducted on the three degrees of freedom hybrid robot 

and has led to the same conclusion. 

Conclusion  

In this study, the influence of the geometrical parameters 

as well as the mass ratio on the workspace of the hybrid cable 

serial robot have been studied. Understanding this influence 

is useful in the design of such robots that are very promising 

in the stroke rehabilitation field.  
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