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Abstract: Position-servo actuators are by themselves feedback mechatronics 

systems modeled by Ordinary Differential Equations (ODE). From a 

technological point of view, position-servos are based upon an electrical 

motor, a shaft angular position sensor, and a dominant Proportional 

controller. These position servo actuators are at the core of several real-life 

practical and didactic mechatronics and robotics systems. The contribution 

of this study is the introduction of a novel position regulator in Cartesian 

space and the stability analysis of a real-world mechatronic system involving 

the following mechatronics ingredients: A position servo actuated pendulum 

endowed with position sensing for feedback and a novel nonlinear integral 

controller for direct position regulation in Cartesian space avoiding the inverse 

kinematics computational burden. Because of the nonlinear nature of the control 

system, the standard analysis tools from classic linear control cannot be utilized, 

thus this study invokes Lyapunov stability arguments to prove asymptotic 

stability and to provide an estimate of the domain of attraction. 

 

Keywords: Actuators, Position Servo, Pendulum, Control, Stability, Domain 
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Introduction 

Control systems of real-world processes require 

actuators to handle the process to be controlled. 

Mechatronics and robotic devices are also equipped with 

actuators that translate low-power control input signals 

into system motion. So, the position servo actuators are 

electromechanical devices that take the energy-electricity 

and turn it into a motion (Sima and Zapciu, 2022). 

The description of a modular mechatronic system for 

didactic purposes is presented in (Petrescu et al., 2018). 

On the other hand, position servo actuators are at the 

core of many mechatronics and low-scale robotics 

systems such as Robot arms, humanoids-biped mobile 

robots- and wheeled or legged mobile robots. 

Acording to Hasan and Dhingra (2020): “Servo motors 

refers to a complete system that includes a motor itself, 

driver, motor position/velocity sensor that runs based on 

some close loop control algorithm”. 

A low-cost 2 Degrees Of Freedom (DOF) servo 

actuated drawing robotic arm is presented                 

(Fahim et al., 2019). 

This study focuses, from an automatic control point of 

view, upon a low–cost didactic position servo actuated 

mechanism, which involves the following mechatronics 

ingredients: Position servo actuator, external position 

sensor (incremental encoder), pendular mechanism, 

and a novel control system (Fig. 1 for setup hardware 

of system under study). 

 

 
 
Fig. 1: A position-driven pendulum experimental setup powered 

by a position servo actuator (at Robotics Lab., CICESE) 
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Mathematical models of automatic control systems are 

usually described by differential equations (Astrom and 

Murray, 2008), so the analysis of automatic control 

systems resorts to differential equations tools, mainly 

from Lyapunov stability theory. 

This study introduces the mathematical model of a real-

life automatic control system: A position–servo commanded 

pendulum (Fig. 1) under feedback control of a novel 

Cartesian regulator which yields a whole closed-loop system 

mathematical structure modeled by the nonlinear ODE: 

 
2

1 ,
d z yd

z z kl z
dt l

 − 
= − −  

   

 (1) 

 

where, z ∈ ℝ stands for the state variable-Cartesian 

position error-and l>0, k> 0, yd ∈ ℝ are real parameters. 

For the concept of asymptotic stability and the direct 

Lyapunov’s stability method, the reader is referred to one 

of the standard textbooks on the topic such as (Khalil, 

2002; Hirsch and Smale, 1974; Hale, 1980; Vidyasagar, 

1993) for a thorough treatment. 

Throughout this study, the scalar variable t≥0 stands for 

the independent variable (time), ℝ denotes the set of real 

numbers which are expressed by italic small letters and 

occasionally, by small Greek letters. The n-dimensional real 

vector space is denoted by ℝn whose entries are n×1 column 

format of vectors: x = col(x1, x2,···,xxn) ∈ ℝn. Vectors are 

denoted by bold small letters, either Latin or Greek. Super–

index T: (·)T stands for vector transposition. 

These papers resort to an asymptotic stability tool 

adapted here for autonomous ODEs as the following 

corollary inspired from Theorems 4.1 and 4.9 of the 

textbooks (Khalil, 2002): 

Corollary 1. Asymptotic Stability and Estimate of 

Domain of Attraction 

Consider the autonomous differential equation: 

 

( ),
dx

x f x
dt

=  (2) 

 

where, f(x) is assumed to be locally Lipschitz from a domain 

D ⊂ ℝn into ℝn containing x = 0 ∈ ℝn, Suppose that the origin 

x = 0 ∈ D is an equilibrium point of Eq. 2 (i.e., f(0) = 0). 

Let z(x): D → R a continuously differentiable function 

such that: 

 

( ) ( ) ( )1 2 ,w x z x w x   (3) 

 

and: 

 

( ) ( )3, 0,
Tdz dz

f x w x
dt dx

=  −   (4) 

∀x ∈ D, where w1(x) w2(x) and w3(x) are continuous 

positive definite functions in D. 

Then x = 0 is a locally asymptotically stable 

equilibrium. Moreover, if r and c are chosen such that: 

 

  ,r rB x D   (5) 

 

and: 

 

( ) 1min ,
x

c r w x=  (6) 

 

then, every trajectory of Eq. 2 starting in: 

 

( ) 2rA x B w x c   (7) 

 

is bounded and it satisfies x(t) → 0 as t → ∞. 

A closely related result about boundedness and 

convergence set is presented as Theorem 5.4 in the 

textbook by Astrom and Wittenmark (1995), (pg. 204). 

According to the Lyapunov theory, function z(x) plays 

the role of a Lyapunov function, so allowing the use of a 

powerful mathematical machinery-Lyapunov stability 

theorems-to study stability of the system. 

For a choice of r in the definition of Eq. 5 for set Br -

hypersphere of radius r centered at the origin, all 

functions: w1, w2, and w3 are required to be known to look 

for the largest hypersphere Br strictly inscribed into D 

where these functions wi are positive definite ones. 

Concerning constant c, the definition of Eq. 6 about 

the computation of constant c means that it is computed 

as the minimum value of function w1(x) evaluated for 

all x such that ∥x∥ = r. 

This study borrows the definition of region of 

attraction from (Vidyasagar, 1986), namely. 

The region of attraction is defined as the set S of initial 

conditions x0 = x(0) ∈ D which have the property that any 

solution trajectories starting from them eventually 

approach the origin (assumed to be an asymptotically 

stable equilibrium), i.e.: 

 

( ) 0 0S x x t as t→ →   

 
Regions of attraction are (Vidyasagar, 1986): Invariant 

sets of system Eq. 2 and they are open sets. 

An estimate of the domain of attraction, say A, is a proper 

subset of the true and unique Region of Attraction S. 

It is worthy of remark that set A defined in Eq. 7 can 

be thought of as an estimate of the domain of attraction. 

Plant Model and Control Objective 

A mathematical model of n Degrees of Freedom 

(DOF) position-servo actuated mechanisms-robot 

manipulators included- has the general structure: 
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( ), , , , , 0,df t q q q u  =  (8) 

 

( ), , , , ,y h t q q q u=  (9) 

 

where, f and h are smooth functions. , , nq q q  stand for 

the generalized positions, velocities, and accelerations, 

respectively. Variables , , n

du y   are the mechanism 

input, output, and exogenous disturbances, respectively. 

Since this study deals with models of ideal position 

servos and ideal position-servo actuated mechanisms, a 

few definitions can be introduced. 

Definition 1. Ideal Position-Servo 

By ideal position-servo, this study refers to position-

servos having the following properties: 

 

• Output variable: Shaft position q 

• Memoryless (algebraic equation model, no ODE model) 

• Identity input-output mapping 

• Disturbance free 

• Without any constraint (neither position nor speed 

nor torque) 

 

The input-output relationship (Fig. 2) of an ideal 

position-servo is modeled by: 
 

,q u=  (10) 

 

where, u is the servo input variable -desired shaft position. 

One recognizes that the ideal servo model of Eq. 10 

may be the simplest and strongly imperfect one. An 

alternative and more realistic dynamic model of 

position servo actuators has been introduced by            

Urrea and Kern (2016). 

Definition 2. Ideal Position-Servo 

Actuated Mechanisms 

Ideal position-servo actuated mechanisms (also called 

position commanded mechanisms or position-driven 

ones) are those whose joints are equipped with ideal 

position servo actuators. 

For a model of position-servo actuated robot arms, 

function f in Eq. 8 may be obtained from the so-called 

robotics jargon: The robot dynamic model (Kelly et al., 

2005, Ch. 3), whereas function h in Eq. 9 is closely related to 

the robot kinematics map (Spong et al., 2020, Ch. 3). 

For ‘Ideal position-servo actuated mechanisms’ 

governed by Eq. 8 and 9 and due to the ideal position 

servo actuator model of Eq. 10, then, the particular 

structure in Eq. 8 becomes: 

 

( ), , , , ,f t q q q u d q u = −  (11) 

Plant Model: Ideal Position-Servo 

Actuated Mechanism 

This study focuses upon the following innocuous 

mechanism: The Ideal position-servo actuated pendulum 

depicted in Fig. 3 which is assumed to be modeled by: 

 

,q u=  (12) 

 

cosy l= −  (13) 

 

where, u, y ∈ R are the input and output of the plant, 

respectively, q stands for the angular position of the rod 

concerning the downward vertical axis, and l > 0 is the rod 

length. System output y is the variable to be controlled 

which has the physical meaning of pendulum Cartesian 

position-vertical or perpendicular distance from the 

horizontal axis X to pendulum tip as shown in Fig. 3. It is 

assumed that the rod mass is negligible and its pivot is 

frictionless. Equation 12 is because an ideal position-

servo actuator has been assumed (Definition 1). From an 

automatic control viewpoint, this physical plant is a 

Single Input-Single Output (SISO) nonlinear static-

memoryless system: y = −lcos(u). 

It is assumed that variables q and y are available from 

measurement. Also, parameter l is assumed to be known. 

So all of them may be utilized by the controller. 

Control Objective: Cartesian Regulation 

Let us define the Cartesian position error y  ∈ ℝ as: 

 

,dy y y−  (14) 

 

where the arbitrary user-selected desired output yd is 

assumed to be constant and to satisfy: 

 

.dy l
 

 

The Cartesian position regulation control objective is: 

 

( )lim 0.
t

y t
→

=  (15) 

 

Proposed Controller 

The proposed smooth dynamic controller to compute 

the control action u to be sent to the position servo 

actuator is modeled by: 

 

( )sin ,u k q y=  (16) 

 

where, k > 0 is a user-free parameter. So, the regulator 

'parameters' are k > 0 and the initial condition u(0) ∈ ℝ to 

be chosen by the user. 
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Fig. 2: Input-Output sketch of position-servo actuated mechanisms 

 

 
 
Fig. 3: Skeleton sketch of the position-servo actuated pendulum 

 

A noticeable practical feature of the proposed control 

law in Eq. 16 is that neither velocity measurement nor 

velocity estimation is needed for its implementation. 

Analysis 

Isolating variable q from plant model Eq. 13, it results: 

 

arccos .
y

q
l

 
= − 

 
 (17) 

 

The time derivative of the output y in Eq. 13 is: 

 

( )1sin ,y q q=  (18) 

 

( )sin .l q u=  (19) 

 

Model of the Closed-Loop System 

The closed–loop system is obtained by substituting the 

derivative u˙ of the control action u from the control law 

Eq. 16 into 19: 

 

( )2sin ,y kl q y=
 

which thanks to the definition in Eq. 14 and assumption on 

constantly desired output yd ( )y y = − , can be rewritten as: 

 

( )2sin .y kl q y= −
 

 

This equation can be better written as an autonomous one 

by substituting q from Eq. 17 and y from Eq. 14 these yields: 

 

2sin arccos .dy y
y kl y

l

  −
= −    

  
 (21) 

 

An equivalent form can be obtained by using the 

following relation: 

 

( )( ) 2sin arccos 1 ,x x= −  

 

which holds as far as |x| ≤ 1. 

Thus, the closed-loop differential Eq. 21 becomes: 

 

( )

2

,

,

d

d

y y

y y
y kl y

l



  −
 = − − 
   

 (22) 

 

which is valid for: 

 

1 ,dy y
y

l

 − 
  

    
 

in other words, for y satisfying: 

 

.d dl y y l y− +   +
 

 

Let the domain D be defined as: 

 

 ,d dD y l y y l y − +   +  (23) 

 

where differential Eq. 22 under analysis is defined. Such 

a differential Eq. 22 describes the closed–loop system 

behavior in function of the position error y, so in control 

systems analysis, it is also so-called the error model 

system or equation. 

Straightforward substitution of numerical values from 

Table 1 into Eq. 23 yields: 

 

 0.5 1.5 .D y y=  −    (24) 

 

This is the domain where the nonlinear differential   

Eq. 22 under numerical parameters in Table 1 makes 

sense. The system Eq. 22 equilibria are the solution y of: 
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( ), 0.dy y =
 

 

Although the origin y = 0 is a solution, two more 

solutions are: 

 

,dy l y= +
 

 

and: 

 

dy l y= − +
 

 

Notwithstanding, the unique solution within the 

domain D is the trivial one y = 0. 

In sum, the above arguments are proof of the 

following: 

Proposition 1. Closed–loop system ODE 

Consider the plant model Eq. 12 and 13 under 

control of the proposed Cartesian regulator of Eq. 16. 

Then, the whole closed–loop system behavior is 

modeled by the autonomous nonlinear Ordinary 

Differential Eq. 22: 

 
2

1 , .dy y
y kl y y D

l

  −
 = − −  
   

 (25) 

 

being the origin y = 0 its unique equilibrium within D is 

defined in Eq. 23. 

Stability Analysis 

For the reader’s convenience let us rewrite explicitly 

the right-hand side of Eq. 22: 

  

( )
3 2

2

3 2 2

2

3 2 2

2 2 2

3 2 2

3 2 2

3 2

2
, 1 ,

2
,

2
,

2
,

2
,

2

d d
d

d d

d d

d d

d d

d

y y y
y y kl y

l

y y y y y
kl y

l

y y y y y
kl y

l l l

y y y y y
k ly

l l l

y y y y
k l y

l l l

y y y
k l

l l


  − +

− −  
  

  +
= −  

  

 
= − − + − 

 

 
= − − + − 

 

  
= − − + + −  

  

= − − −
2

.dy
y

l

  
  

  

 (26) 

Table 1: Plant and regulator parameter values 

Parameter Value Units 

l 1 m 

yd 1/2 m 

k 1 rad/m s 

ε 10−3 N/A 

 

The qualitative shape of function ϕ( y , yd) in Eq. 26 

is depicted in Fig. 4. It vanishes at the equilibrium             

y = 0 and its borders. 

The derivative of Eq. 26, depicted in Fig. 5, yields: 

 

( )
223 4

, ,d d
d

d y y y y
y y k l

dy l l l


  
  = − − −

    

 (27) 

 

which vanishes at: 

 
2 2

1

4 2 3
,

6

dy l yd


− +
 (28) 

 
2 2

2

4 2 3
,

6

dy l yd


− +
 (29) 

 
Both β1 and β2 correspond to critical points of function 

ϕ. They are illustrated in the plot of Fig. 4. 

Evaluating Eq. 27 at the equilibrium y = 0 yields: 
 

( ) 2 20, 0.d d

d
y l y

dy
 = − +   

 
Therefore, by invoking the so-called Lyapunov's indirect 

method (Khalil, 2002, Theorem 4.7, pg. 139), one has 
formally proven that the equilibrium y = 0 of nonlinear 
system Eq. 22 is an asymptotically stable one (for alternative 
analysis tools see also the book of (Wiggings, 2003), 
Theorem 1.2.5, pg. 11, or the Linearization Theorem in 
(Arrowsmith and Place, 1992), Theorem 3.3.1, pg. 77. 

To study the asymptotic behavior of the Cartesian 
position error y, this study also shall invoke e 

Lyapunov base arguments stated as Corollary 1 
previously in this study. To this end, let us consider the 
following globally positive definite and radially 
unbounded functions: 
 

( ) 21
.

2
z y y=  (31) 

 
Following the notation of Corollary 1, Eq. 31 

satisfies Eq. 3 where: 
 

( ) ( )
2

1 2

1
.

2
w y w y y= =

 
 

The time derivative of Eq. 31 along the closed-loop 

Eq. 22 yields: 
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( )

( )

2

2

3

,

1 ,d

z y yy

y y
kl y

l

w y

=

  −
 = − −  
   

= −

 (32) 

 

where: 
 

( ) 2

3 1 dy y
w y kl y

l

  −
−  

  
 (33) 

 
is sketched in Fig. 6. This is a positive definite function in 

D already defined in Eq. 23. 

The time derivative z˙(y) in Eq. 32 is a negative 

definite function in the region D, Fig. 7. 

Concerning Corollary 1, this study proposes the 

following formula to choose constants r and c (Fig. 8): 
 

,
1

dl y
r



− +

+
 (34) 

 
and: 
 

21 1
,

2 2 1

dl y
c r



 − +
 =
 +
   

 

for any ε ∈ (0, ∞). 

According to numerical values in Table 1 one gets:            

r = 0.4995 and c = 0.1248. 

Set Br defined in Eq. 5 becomes: 

 

 

 

,

,

rB x r

y r

= 

= 
 

 

Such a set Br is strictly inscribed into domain D, i.e., 

Br ⊂ D, in other words, the condition in Eq. 5 is fulfilled. 

Thus, invoking Corollary 1, we conclude that the 

equilibrium y = 0 is locally asymptotically stable and an 

estimate of the domain of attraction in Eq. 7 is: 

 

( ) 

 
 

2

2

,

1
,

2

2 ,

.

r

r

r

r

A y B w y c

y B y c

y B y c

y B y r

=  

 
=   

 

=  

=  

 (35) 

 

Given the values in Table 1 one gets: 

 

 0.4995 .rA y B y=  
 

One summarizes the main stability result in the 

following. 

Proposition 2. Asymptotic Stability and Estimate of 

the Domain of Attraction 

Consider the closed-loop system modeled by the 

nonlinear ordinary differential Eq. 25. Then, the trivial 

equilibrium y = 0 is asymptotically stable and an estimate of 

the domain of attraction is A in Eq. 35 with r in Eq. 34, i.e.: 
 

2

1
,

2 1

dl y
A y y



  − + 
 =   
 +     

 
for any 0 < ε < ∞. 

Numerical Simulations 

Numerical simulations of the nonlinear closed-loop 

differential Eq. 22 have been carried out utilizing the 

MATLAB® software calling upon the ODE45 numerical 

engine under configuration: Variable-step integration and 

relative tolerance 1e-3. Numerical values of parameters 

involved in Eq. 22 are listed in Table 1. 

Per the numerical values of Table 1, the important sets 

are summarized in Table 2. Among them is the estimated 

domain of attraction: 
 

 0.4995 .A y= 
 

 

Figure 9 depicts the resulting trajectories y(t) for a set 

of eight initial conditions arranged in the form: 
 

( )  

( )  

( )  

0 0.45, 0.25, 0.1 .

0 0.50,1.0,1.45 .

0 0.5,1.5 .

y A

y D A

y D

 − − − 

  −

 − 
 

 

As one expected, initial condition inside the estimate 

of the domain of attraction A tend to the equilibrium         

y = 0. Also, for initial conditions starting in D-A (outside 

the estimate of attraction A), they converge to the 

equilibrium y = 0. This unexpected result shows that A is 

a conservative estimate of the domain of attraction. 

Initial conditions: y(0) = -0.5 and y(0) = 1.5 correspond 

to spurious equilibria beyond the domain of definition D 

of the system. 

 
Table 2: Sets involved in Corollary 1 

Set Interval of y Numerical interval e 

D 
d dl y y l y− +   +  0.50 1.50y−    

Br 

1

dl y
y r



− +
 =

+

 
0.4995y 

 

A 
1

dl y
y r



− +
 =

+

 
0.4995y 
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Fig. 4: Plot of function  in Eq. 26, zeroes at small red full circles 

 

 
 

Fig. 5: Derivative of function   within the valid interval 

( )0.5,1.5y D − =  

 

 
 

Fig. 6: Plot of w3 ( )y  in Eq. 33 

 
 

Fig. 7: Plot of ( )z y  = − ( )w y  in Eq. 32. Function ( )z y  is a 

locally negative definite function in the domain D 
 

 
 
Fig. 8: Sets; D: System domain of definition, and A an estimate 

of the domain of attraction 
 

 
 

Fig. 9: Trajectories y (t) for 8 initial conditions: y (0) ∈ {−0.5, 

−0.45, −0.25, −0.1, 0.5, 1.0, 1.45, 1.5} 
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Conclusion 

A didactic mechatronic device composed of an ideal 

position servo actuator powering a rigid pendulum rod 

endowed with an angular position sensor for feedback 

purposes has been modeled. This model is at the origin 

of an original nonlinear Cartesian regulator design 

whose advantage is that it avoids the annoying inverse 

of the kinematic mapping. An additional pro is that 

angular speed sensing is not needed by the proposed 

controller. The closed-loop system stability and an 

estimate of the basin of attraction have been established 

by invoking Lyapunov analysis tools. Numerical 

simulations illustrate the system's performance. 
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