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Abstract: An accurate knowledge on solar irradiance prediction is 

particularly required for proper development and planning of Photovoltaic 

(PV) energy systems. The main purpose of the present research is to assess 

the accuracy of Artificial Neural Networks (ANN) short-term forecast of 

univariate solar irradiance time series, with conventional point prediction and 

Prediction Intervals (PIs), comparing models. The Lower Upper Bound 

Estimation trained with Particle Swarm Optimization (PSO-LUBE) was used 

for PIs estimation. Solar irradiance data collected from a station in Amazon 

region in Brazil was used to train and test the models. Results demonstrate 

that all ANN models yield good accuracy in terms of prediction error: 8.1-

8.5% for normalized root Mean Square Error (nRMSE), 5.8-6.0% for 

normalized Mean Absolute Error (nMAE) and 94-95% for determination 

coefficient (R2). However, due to the accuracy of PI information (Coverage 

Probability = 94.94% and PI Normalized Average Width = 32.50%), PSO-

LUBE was the best method tested for decision-making. 

 

Keywords: Solar Irradiance, Univariate Time Series Forecasting, Artificial 

Neural Networks, Prediction Intervals 

 

Introduction 

The energy crisis has become a major concern for all 

countries around the world due to increasing energy 

demand. Consequently, Renewable Energy Sources 

(RESs) have become significantly important in the 21st 

century due to environmental pollution and depletion of 

fossil fuels (Qazi et al., 2015).  

Solar energy is one of the promising alternatives, 

particularly in Brazil since most of its territory is at the 

tropical region (Ferreira et al., 2018). Solar power also 

plays an important role for electrification in remote 

communities in the Brazilian Amazon region, which are 

not reached by the Brazilian interconnected electricity 

distribution system (Lima et al., 2016). 

The power produced by Photovoltaic (PV) generators 

depends mainly on the absorbed solar irradiance. 

However, solar irradiance on a panel varies with 

geographic location, time, orientation of the panel and 

shading conditions. Such factors explain the variable and 

intermittent behavior of solar power. Therefore, the 

prediction of solar irradiance is advantageous for 

efficient PV power generation. 

Accurate forecasts of solar irradiance data are 

important inputs for successful planning and decision-

making processes. Thus, in recent years several works 

focus on improving the quality of forecast methods and 

developing new ones, aiming at more reliability in the 

estimation of outcomes. Particularly Artificial Neural 

Networks (ANNs; Haykin, 1998) have been applied to 

several problems related to PV solar energy, for 

example maximum power point tracking (Mitsuya and 

Meneses, 2019) as well as solar radiation forecasting 

(Khosravi et al., 2018). 

When ANNs are used for point predictions no 

information about the uncertainty in the data is given. 

Although point forecasting is successfully used for 

different applications, complementing results with 

measures of uncertainty is particularly interesting.  

In order to cope with that issue, Prediction Intervals 

(PIs) may be applied to forecasting problems. PIs 

provide an adequate quantification of uncertainty, in 
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which the desired value in the forecast will be within the 

limits of such intervals, with an associated confidence 

level (Khosravi et al., 2011a).  

Due to the importance of forecasting the solar 

irradiance and the need of representing the uncertainty 

related to the prediction, our work aims to evaluate and 

compare different point forecasting accuracy in relation 

to PIs estimation. For that purpose, three ANN models, 

namely Multilayer Perceptron (MLP), Elman (ELMAN) 

and Non-linear Auto-Regressive (NAR) networks were 

implemented for point predictions, as well as the Lower 

Upper Bound Estimation (Khosravi et al., 2011a) with 

an ANN trained with Particle Swarm Optimization 

(PSO-LUBE) was implemented for determining PIs for 

a univariate solar irradiance time series, with data from 

the Brazilian city of Belém, in the state of Pará, located 

in the Amazon region. 

The main contributions of the present work are: (i) 

Assessment and comparison of the accuracy of the 

estimated PIs with the point forecast provided by 

conventional ANN models and (ii) forecasting of a 

univariate solar irradiance time series for a real case 

study, located in the Amazon region, with a great solar 

energy potential and variability due to clouds, providing 

information for future studies. 

Related Work 

Artificial Neural Network  

An ANN is an information processing system 

inspired by the human brain architecture (Haykin, 1998), 

able to learn complex and non-linear relations among 

variables from observed data. The ANN is defined as a 

distributed system with simple processing units, called 

neurons. During training process, those neurons have the 

natural propensity for storing experiential knowledge and 

making it available (Haykin, 1998). ANNs are based on 

training algorithms that adjust the synaptic weight values 

to approximate to an expected output, when certain targets 

are given. Several works discuss the successful application 

of Artificial Neural Networks (ANNs) in solar irradiance 

forecasting (Voyant et al., 2017). 

Kashyap et al. (2015) developed and compared ANN 

models to predict solar radiation in India. They varied 

the architecture parameters for eight ANN models for 

comparison, with 10 meteorological parameters in sub-

categories. In such work, the authors obtained a Root 

Mean Square Error (RMSE) around 25-30% for the best 

model with an Elman network.  

Wang et al. (2016) compared three types of ANN 

models considering meteorological variables (air 

temperature, relative humidity and other estimates) 

from different stations with different climate zones as 

input to the models. The results indicate that the 

Multilayer Perceptron (MLP) provides the best 

accuracy in such case.  

Two MLP models with four different training 

algorithms were investigated by (Premalatha and 

Armirtham, 2016) for the prediction of monthly average 

global solar radiation. Models were trained with data 

respectively from four and five different locations in 

India. Such data were collected during 10 years. A good 

agreement was found between predictions and real 

values, especially in the case of the second ANN model, 

which used data from all locations.  

Renno et al. (2016) developed two models based on 

ANN for irradiance for a solar application to a residential 

building. In order to evaluate the performance of the 

models the MAPE, RMSE and R² were proposed as 

metrics. The best ANN configuration to predict the solar 

irradiance was obtained with MAPE = 4.57%, RMSE = 

160.3 Wh/m2 and R2 = 0.9918. 

Alsina et al. (2016), developed an ANN model for 

prediction of monthly average daily global solar 

radiation over Italy, considering 17 locations for 

training and 28 locations for testing. The best ANN 

used 7 input parameters, with resulting MAPEs ranging 

from 1.67 to 4.25%. 

Regarding the construction of PIs by ANNs trained 

with PSO, (Quan et al., 2014a) applied PSO-LUBE to 

six datasets, improving the results obtained by 

(Khosravi et al., 2011a; 2011b), with a much faster 

computation. Quan et al. (2014b) obtained high 

quality PIs in the prediction of short-term load and 

wind power with PSO-LUBE.  

Theoretical Background 

Prediction Interval (PI) 

Several time series are predicted with no reference 

with respect to accuracy (Chatfield, 2000). Interval 

forecasts such as the Prediction Intervals (PIs) are 

interesting for coping with such issue, providing an 

assessment of future uncertainty in different scenarios. 

PIs consist of lower and upper bounds that a future 

unknown value will lie within, with a predetermined 

probability, called confidence level. Different from point 

forecasting, PIs are more reliable and informative for 

decision-makers, giving support to select the best action 

under uncertain conditions.  

The LUBE method combines CP and PIW in one 

single quality measure of optimization. The cost 

function developed (Khosravi et al., 2011b) examines 

at the same time coverage probability and width and it 

has been successfully applied to different forecasting 

situations. However, the cost function is nonlinear, 

complex, discontinuous and non-differentiable. In the 

literature, optimization methods are applied to 

minimize this cost function, such as Genetic 
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Algorithms (Ak et al., 2015; Khosravi et al., 2011a; 

2011b) and Particle Swarm Optimization (PSO)     

(Quan et al., 2014a; 2014b; Galván et al., 2017;     

Sousa et al., 2017). PSO has strong search ability for 

optimization and in the present work, PSO was used in 

the optimization of the LUBE method’s ANN. 

Several ANN-based methods for the construction 

and assessment of PIs have been proposed in the 

literature. Khosravi et al. (2011b) proposed a simple 

and fast method, called Lower Upper Bound Estimation 

(LUBE) that applies a fully connected feed forward 

ANN with two outputs to directly generate the bounds 

of PIs. Assessment of the quality of constructed PIs is 

made with two quantitative evaluation indices: 

Coverage Probability (CP) and Prediction Interval 

Width (PIW). Higher CPs and narrower PIWs are 

expected for high quality PIs.  

A PI is described by an interval that include an 

unknown target value with a certain probability, called 

confidence level (1-α) (Ak et al., 2015) and it is 

expressed as: 

 

       Pr 1L x y x U x      (1) 

 

where, L(x) and U(x) are the lower and upper bounds, 

respectively, of the estimated PI of the output y(x) 

corresponding to the input x. The confidence level, 

generally equal to or greater than 0.9, is the reference for 

the expected probability that the next measured value or 

the series lies between the boundaries of the PI. 

CP and Prediction Interval Width (PIW) are the 

metrics that evaluate the quality of constructed PIs. CP 

indicates the probability that the target values will lie 

within the upper and lower bounds and it is considered 

as the calibration of the PI quality, given by: 
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where, np is the total number of samples and ci is a 

Boolean variable, which shows the coverage behavior of 

PIs. If yi[L(x), U(x)], ci = 1, otherwise ci = 0. In 

practice, to consider the PIs as valid, the CP should be 

equal or greater than the nominal confidence level.  

If the width of intervals is too large, they convey little 

information about the targets, which is not useful for 

decision making. Thus, the Prediction Interval 

Normalized Average Width (PINAW) has been used to 

evaluate the width of PIs and it measures the average 

width of PIs, for all points in the dataset, as a percentage 

of the underlying target range (Quan et al., 2014a). 
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where, Li and Ui are respectively the PIs’ lower and upper 

bounds and R is the range of the underlying targets. 

In point forecasting Mean Square Errors (MSE) are 

commonly used for evaluating training models. Thus 

(Quan et al., 2014b) proposed a new width assessment 

index used for training ANNs models. The PI 

Normalized Root-Mean-Square Width (PINRW) is 

described by: 
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where, Li, Ui and R are the same as in PINAW. In the 

present work, PINRW is used for training the ANN 

model while PINAW is used for testing. The cost 

function proposed by (Khosravi et al., 2011b) is called 

Coverage Width-based Criterion (CWC), which 

presents a comprehensive balance between CP and 

PINRW (in the case of testing, PINAW instead of 

PINRW). It is defined as: 

 

    1
CP

CWC PINRW CP e
 


 

   (5) 

 

where,  and  are the nominal confidence level and the 

scaling factor that magnifies the difference between CP 

and , respectively. The function  (CP) is equal to one 

during training, while in testing it is a step function 

whose value depends on CP, that is,  (CP) = 0 when 

measurement of CP is not less than  and  (CP) = 1 

otherwise, penalizing the function CWC. 

Particle Swarm Optimization  

Particle Swarm Optimization (PSO; Eberhart et al., 

2001) is an algorithm based on social and cooperative 

characteristics of several species in the nature. The swarm 

particles are guided by personal particle experience and 

global swarm experience, which act as attractors towards 

optimal or near-optimal positions. In the PSO, the position 

of a group of particles (swarm) is initialized randomly. Each 

one of the positions represents a candidate solution to the 

optimization problem. Each particle has its velocity and 

position value updated and the best positions of each 

particle bestP  and best global solution bestG  act as attractors 

for the other particles. The canonical formulas for velocity 

and position update are defined as: 

 
     1
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and: 
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where, k represents the kth iteration,  is the inertial 

weight, c1 e c2 are acceleration coefficients, r1 and r2 are 

uniformly distributed random numbers, 
,best iP  represents 

the best individual position of the particle i and 

bestG represents the best position of the entire swarm. In 

this study, the canonical PSO is integrated into the 

LUBE method, in order to construct PIs. 

Methodology 

In this section we present the case study and 

corresponding dataset, the ANN models used and the 

performance evaluation criteria. Regarding the analysis 

step, basically we present the results in two parts. In the first 

part we compare the point forecast ANN models (MLP, 

ELMAN and NAR) with the PI Mean Values (PIMVs), that 

is, for each PI predicted by the LUBE method, the mean 

value is considered for calculating the metrics nRMSE, 

NMAE and R2, as if the PIMV were a point forecasting 

result. In the second part, percentage intervals are attributed 

to the point forecast results, in order to compare them to the 

PIs generated by the LUBE method. 

Case Study and Dataset 

The solar irradiance time series data used in the 

present work was obtained in the city of Belém (1°27'S, 

48°29'W), the capital of Pará state in Brazil which is 

located in the eastern Amazon region. The data was 

collected by the Group of Studies and Development of 

Energy Alternatives of the Federal University of Pará 

(GEDAE-UFPA) from December 2015 to November 

2016 (366 days), measured by a pyranometer (CM 11 

Kipp and Zonen) at the site every 10 minutes. Regarding 

the data preprocessing, data belonging to the time 

interval from 5 am to 7 pm were considered, thus 

excluding night hours, with absence of solar irradiance 

(Voyant et al., 2014).  

Temperature, relative humidity, air pressure and 

wind speed were also collected for the same area in the 

same period. In order to perform an exploratory data 

analysis, the Pearson correlation coefficient was 

calculated. The correlation coefficient matrix obtained 

is shown in Table 1. The irradiance has moderate 

positive correlation with temperature variable. It is also 

possible to see a negative correlation between the 

variable humidity with the irradiance. 

In the present work the sliding window method was 

used (Paoli et al., 2010), for both point and interval 

prediction. 

Artificial Neural Networks 

In the present work three ANN models were applied 

to univariate forecast of solar irradiance, namely MLP, 

ELMAN and NAR. Different configurations were 

preliminarily investigated for the ANNs in order to find 

the best performances. The input data was divided 

sequentially as 80% for training and 20% for testing. 

After splitting, these two sets were normalized between 

0.1 and 0.9. According to (Ak et al. 2015), normalization 

leads to better results.  

The main characteristics chosen for those ANNs are 

one hidden layer, the activation functions are the logistic 

function to the hidden layer and linear function in its 

output layer, both transfer functions are chosen because 

better results were achieved with them in our preliminary 

tests and trained with LM learning algorithm. This 

algorithm is suitable for this type of study of time series 

prediction (Neelamegam and Armirtham, 2016;     

Voyant et al., 2017). The training gain, μ, is a parameter 

that measures the adapting and learning rate of the 

model, in the range of [103, 1010], μ decrease and 

increase ratios are 0.1 and 10, respectively. Table 2 

shows the training parameters obtained in the 

preliminary tests. 

 
Table 1: Correlation matrix for the available meteorological variables 

 Air temperature Relative humidity Air pressure Wind speed Solar irradiance 

Air temperature 1.000 

Relative humidity -0.925 1.000 

Air pressure -0.043 0.008 1.000 

Wind speed 0.301 -0.287 -0.185 1.000 

Solar irradiance 0.733 -0.680 0.318 0.165 1 

 
Table 2: Training parameters 

Parameters Value 

Maximum epochs 1000 

Minimum gradient 107 

Maximum validation checks 20 

Minimum μ 103 

Decrease ratio of μ 0.1 

Increase ratio of μ 10 

Maximum μ 1010 
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In order to assess the robustness of the results and the 

reproducibility of the algorithms, each model simulation, 

with the same parameters, was run 10 times with weight 

values were randomly initialized.  

In the present work, all algorithms have been 

implemented in MATLAB®, using its Neural Network 

and Optimization toolboxes. The ANN models are 

described in the following subsections. 

Point Forecast ANN Models 

In order to predict the solar irradiance, a fixed 

number of previous solar irradiance observed values was 

considered as input for the models, in each training 

process (using the sliding window method). The number 

of previous observed values in the window was 

determined by the analysis of the empirical 

Autocorrelation Function (ACF; Chatfield, 2000). The 

ACF measures the correlation between data of a time 

series, that is, how much the current data is correlated to 

next time steps. The ACF for the irradiance time series 

data is shown in Fig. 1. 

Figure 1 shows a non-negligible correlation of the 

solar irradiance time series that is an indication of the 

adequate number of previous observed values to be used 

in the input layer. For the ELMAN network, initially 

only one neuron was considered in the input layer, in 

which it would provide information to predict the next 

irradiance value, but after the results presented 

overfitting, we added one more input, which resulted in 

improvement in the training and validation phases. 

Finally, for NAR network, only one input was fixed to 

forecast the irradiance.  

The number of hidden neurons and delays was 

defined in a trial-and-error basis. The MLP ANN had 

one hidden layer and the number of neurons was varied 

from 2 to 20. The ELMAN network structure was 

tested, varying the number of delays from 2 to 10 and 

the number of neurons in the same range, in one only 

hidden layer. NAR network was defined with just one 

hidden layer and neurons and delays in this layer were 

varied from 2 to 20. 

Table 3 presents the number of neurons in the input 

layer (Ni), number of neurons in the hidden layer (Nh) 

and number of delays obtained in the preliminary tests. 

For MLP network, the best structure presented eight 

neurons in the hidden layer and four inputs of the 

irradiance time series. The ELMAN network was 

achieved with a configuration of five hidden neurons 

and eight delays. The best result with a NAR network 

was found with a 1-3-1 architecture and nineteen 

delays. As mentioned before, the LUBE method uses a 

feed forward ANN model with two outputs to directly 

construct PIs in one step. After a set of different 

architectures, the best PIs results were obtained with a 

3-11-2 configuration. Then, from the PIs calculated by 

PSO-LUBE, the PIMVs were calculated for a 

comparison to point predictions ANNs. 

 
Table 3: Architectures of ANNs obtained in preliminary tests 

and used in the present work. 

Model Ni Nh Delay 

MLP 4 8 - 

ELMAN 2 5 8 

NAR 1 3 19 

PSO-LUBE 3 11 - 

 

 

 

Fig. 1: ACF plot for the solar irradiance time series 
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Fig. 2: Illustration of an MLP architecture for constructing PIs in the LUBE method 
 

 
 
Fig. 3: PSO-LUBE algorithm flowchart 
 

Interval Prediction: PSO-LUBE Method 

The Lower Upper Bound Estimation (LUBE) 

proposed by (Khosravi et al., 2011b) is a method that 

adopts an ANN with two outputs to construct PIs. Figure 

2 illustrates how an ANN is used in LUBE method, with 

two output neurons (one for the lower bound and other 

for the upper bound of the PI). Figure 3 shows the 

flowchart of the PSO-LUBE method. 

For PSO-LUBE implementation details, the interested 

reader is referred to (Quan et al., 2014b). The parameters of 

PSO c1, c2, wmax and wmin were configured with the values 

1.22, 1.49, 0.9 and 0.7, respectively. In the cost function 

CWC α = 0.1, µ = 0.9 and  = 50. The number of particles 

was 50 and the maximum iteration was 2000. In the present 

work, the expected output is the solar irradiance prediction 

interval, which provides information about the uncertainty 

associated with the forecasts, also enabling scenarios for the 

best and worst irradiance conditions. 

Performance Evaluation Criteria  

In order to correctly evaluate the performance of the 

ANN point forecasting models and the related errors, three 

different metrics were considered, namely normalized 

Root Mean Squared Error (nRMSE), Normalized Mean 

Absolute Error (NMAE) and determination coefficient 

(R²) are considered (Khosravi et al., 2018; Leva et al., 

2017). In addition, these metrics are also computed for 

the PIMVs, defined by the difference between upper and 

lower bounds of the estimated PIs and then PIMVs were 

compared with the accuracy of the ANN prediction 

models. These metrics are calculated by: 
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where, yi, ˆ
iy , y  and n are respectively the measured 

value, the predicted value, the mean value and the total 

number of samples.  

The Kruskal-Wallis nonparametric test is used to 

compare different independent samples, indicating if 

there is a statistically significant difference between at 

least two of them. In our case, the Kruskal-Wallis test 

was used to assess significant differences in the 

predictions of solar irradiance obtained between the 

models, considering the nRMSE results of each 

network. The Dunn’s test was the post-hoc test used for 

pairwise comparison (Dmitrienko et al., 2007). A 

significance level α = 0.05 was used as a threshold for 

the statistical tests. 

Results and Discussion  

Part 1: Point Forecasting Results 

Table 4 shows the results of the metrics nRMSE, 

NMAE and R² averaged over 10 experiments. The ANN 

with the lowest average nRMSE and highest R² was 

ELMAN network (respectively 8.184% and 0.949). 

The lowest average NMAE was obtained with NAR 

(5.873%). PSO-LUBE PIMV produces metrics results 

similar to the other models, although slightly 

different. It is important to remember that PIMV 

forecast corresponds to one scenario that can be 

obtained from the interval forecasting performed 

using the PSO-based LUBE method. Likewise, the 

upper and lower bound can also be used as best and 

worst cases scenarios for solar irradiation and this is 

particularly important for decision-making. Despite 

relatively approximate results, Kruskal-Wallis and 

Dunn’s statistical tests were still necessary for further 

analysis, as we will discuss later in this subsection. 

Figure 4 shows a comparison of the time series test 

data observed for solar irradiance forecasts provided 

by ANNs and the PIMVs obtained by PSO-LUBE. 

Figure 4 also shows that all predictions approximately 

follow the real data (black line). Those predictions 

practically overlap each other in most of the time 

interval presented. 

Figure 5 shows the nRMSE box-plots for MLP, 

ELMAN, NAR and PSO-LUBE’s PIMVs, for the testing 

phase (that is, for data which the algorithms were not 

trained with) for 10 tests of solar irradiance prediction by 

each method.  

The point forecasting methods and the PSO-LUBE 

PIMVs had very similar performance for the irradiance 

time series prediction, thus statistical tests were applied to 

nRMSE in order to assess whether there was statistically 

significant difference in such results. Then the Kruskal-

Wallis and Dunn’s tests have been used. Kruskal-Wallis 

test presented a statistically significant difference between 

the models’ results (p < 0.0001; 2 = 35.27) and the null 

hypothesis was rejected. The Dunn’s test was applied 

showing that there is only statistically significant 

difference between ELMAN and PSO-LUBE. The other 

pairwise comparisons failed to reject the null hypothesis. 

In other words, PSO-LUBE PIMVs was only 

outperformed by ELMAN network. 

Considering only the ANN point forecasting models, 

the results are consistent with the related literature, 

although there is no statistically significant difference 

between MLP, ELMAN and NAR.   

 
Table 4: Performance of the point forecasting methods 

(metrics averaged over 10 experiments). 

Models nRMSE (%) NMAE (%) R2 

MLP 8.479 5.973 0.945 

ELMAN 8.184 5.876 0.949 

NAR 8.285 5.873 0.945 

PIMV (LUBE) 9.116 7.307 0.939 

 

 

 
Fig. 4: Solar irradiance point forecasting 
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Fig. 5: Boxplot of the nRMSE metric 

 

Although PSO-LUBE PIMV is outperformed by 

ELMAN, its advantage in obtaining predictions with 

information related to uncertainty is still remarkable and 

will be discussed in the next subsection.  

Part 2: Interval Forecasting Results  

The training process of the LUBE method by the 

PSO algorithm presented a good convergence, obtaining 

in the test phase a high value for CP and lowest possible 

value for PINAW and CWC, as we can see in Table 5. 

For the real data, the PIs constructed by PSO-LUBE 

cover the targets in a great percentage, which implies 

that the CP index reaches close or more than the 

confidence level (90%). 

Figure 6 shows the constructed PIs estimated by the 

PSO-LUBE model. We can observe that the target 

samples (black line) lie within the constructed lower and 

upper (brown and green dashed lines) bound in almost 

all data seen in the plot, as reported by a CP index of 

94.94%. In other words, approximately 95% of the test 

data lie between the limits of the estimated PIs, 

confirming that the prediction given by the PIs ensures 

an optimal confidence level about the future values and 

the width of PIs is determined by the uncertainty level 

present of the dataset, related in this case of solar 

irradiance, especially for the geographical area of 

interest, by intermittent changes according to weather 

conditions in different time scales.  

Figure 6 shows the point predictions of MLP, 

ELMAN e NAR models as well as the PSO-LUBE PIs. 

The PSO-LUBE CP index was calculated considering 

not only the real data, but also each of these forecasting 

outcomes, in order to evaluate the coverage of the PIs 

constructed in relation to the other predictions for the 

case study. Therefore, these ANN point predictions are 

encompassed by the upper and lower bounds of the PI, 

resulting in CPs of 95.95%, 90.14% and 94.50% for 

MLP, ELMAN and NAR, respectively. All the CPs are 

higher than the pre-established confidence level for this 

problem. Therefore, all these ANNs point predictions 

would be considered as scenarios that could be predicted 

directly in a single forecasting in PIs form, with high 

probabilities of success. 

Finally, percentage intervals were attributed from the 

ANNs predictions (±10%, ±30%, ±50% and ±70%). 

Then CP and the average width of the predictions were 

calculated. Table 6 shows the results for those 

percentage intervals. 

Firstly, it is important to emphasize that a narrower 

interval forecast is not necessarily better, mainly if the 

confidence level is not been reached by the CP index. 

According to Table 6, all the intervals created with an 

increment and decrement of 10% presenting very 

narrow widths, but just a few target data is inside their 

bounds, with CPs corresponding to 37.87%, 37.51% 

and 36.84%. Therefore, this interval of forecasts cannot 

be considered as valid since it is very below of the 

confidence level. It was noticed that the larger the 

effect of uncertainty in the point forecasting, the wider 

were the intervals generated by the percentage 

variation. Looking at the 50% intervals, although they 

have obtained width values close to the PINAW 

(32.50%), of 36.10%, 35.95% and 36.09% to MLP, 

ELMAN and NAR respectively and they still presented 

a CP below the pre-determined confidence level. 

Regarding the 50% percentage interval approach, Fig. 

7 shows that the corresponding intervals created around 

point forecasting estimated with MLP. It can be noticed 
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that the CP of these intervals are far worse than the 

original PIs. Regarding the intervals created with a 70% 

variation, low CPs are also obtained as well as very large 

average widths (approximately 50%) compared to 

32.50%, which is the LUBE PINAW (Table 5). 

Therefore, PI forecasting provides reliable information 

and with a high accuracy for the dataset tested. In other 

words, PI can yield high precision point forecasting 

using PIMVs, although from a point prediction it is not 

possible to yield accurate intervals of prediction. 

Therefore PSO-LUBE and the uncertainty information 

associated are helpful and valuable in decision-making.

 
Table 5: Interval indices evaluation of the PI forecasting method 

PSO LUBE CP (%) PINAW (%) CWC (%) 

 94.94 32.50 32.50 

 
Table 6: Evaluation of percent intervals for the point prediction ANN models 

 MLP  ELMAN  NAR 

 -------------------------------------- ---------------------------------------- ------------------------------------- 

Intervals CP (%) WIDTH (%) CP (%) WIDTH (%) CP (%) WIDTH (%) 

±10% 37.87 7.22 37.51 7.19 36.84 7.22 

±30% 68.66 21.66 68.56 21.57 67.18 21.66 

±50% 80.16 36.10 79.55 35.95 79.83 36.09 

±70% 84.94 50.55 83.88 50.34 84.69 50.53 

 

 

 
Fig. 6: PSO-LUBE prediction intervals for solar irradiance forecasting and the comparison to MLP, ELMAN and NAR models 

 

 

 

Fig. 7: MLP 50% percentage interval for solar irradiance forecasting 
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Conclusion 

In the present work, ANN models and a PI 
construction method were used for forecasting a 
univariate solar irradiance time series. Data was acquired 
in the Brazilian city of Belém, in the state of Pará, 
located in the Amazon region. 

MLP, ELMAN and NAR neural networks were used 

to obtain point predictions and the PSO-LUBE method 

was used to obtain PIs.  

In the first part of the results (point forecasting 

analysis), we found statistically significant difference 

between ELMAN point prediction and the PIMV 

estimated by the PSO-LUBE method. There was no 

statistically significant difference between PSO-LUBE 

PIMVs, MLP and NAR networks.  

In the second part (PIs analysis), concerning the PIs 

estimated by the PSO-LUBE method in relation to the 

real data, CP = 94.94% and PINAW = 32.50% were 

achieved. CP was above the pre-determined confidence 

level. PSO-LUBE also covers 95.95%, 90.14% and 

94.50% respectively of MLP, ELMAN and NAR point 

predictions. Percentage intervals generated from the 

ANN point predictions have poor performance. 

In summary, PSO-LUBE is statistically as good as 

MLP and NAR point prediction when its MVPI is 

compared with the ANNs’ results. In relation to the PI 

CP values regarding real data and point predictions, 

PSO-LUBE found values greater than the 90% 

confidence level. When intervals are generated from 

point predictions, PSO-LUBE obtains the best CP. 

In conclusion for situations that require analysis of 

forecasting scenarios, estimating PIs with the LUBE 

method has become the best alternative to predict solar 

irradiance for providing information for decision-

makers, allowing different strategies to be planned for 

the range of possible outcomes indicated by the interval 

prediction.  
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