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Abstract: A new feature (the complement feature) is proposed in an Eigen 

formulations for performing global image thresholding. The goal is to find 

an intensity or gray-level value below which is the background while 

above it is the foreground (object). Each pixel in the image is represented 

by a (2D) unit vector where the x-component is the normalized (to [0,1] 

or [-1,1]) intensity of the pixel, while the y-component is its complement 

(e.g., Euclidian L2-Norm). The correlation matrix can then constructed to 

find the cross-correlation, Eigen vectors (axes of inertia) and Eigen values 

(description of respective sizes). Several implementations for each of the 

three previously mentioned categories are proposed to perform image 

thresholding. Interestingly, some of the proposed implementations do not 

require exhaustive search and a direct solution can be obtained. The results 

are promising on a wide range of images as demonstrated by comparison 

with the well-known Otsu method. 
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Introduction 

Image thresholding, as a binary segmentation, plays a 

vital role in almost all image processing and computer 

vision tasks. The ultimate goal is to delineate the image 

in such a way to obtain useful descriptions of the 

object(s) comprising the scene. To achieve this goal, 

many algorithms has been (and still being) developed, 

see Goh et al. (2018). Details regarding categorization 

of these algorithms and the feature space used can be 

found in many traditional survey papers such as  

Sezgin and Sankur (2004). In fact, the field is so diverse 

that there are survey papers on a single subcategory e.g., 

(Oliva et al., 2019; Lucchese and Mitra, 2001; Dey et al., 

2010; Ilea and Whelan, 2011; Peng et al., 2013; 

Unnikrishnan and Hebert, 2005). 

One of the active areas in image segmentation is 

graph cuts and its variants, e.g., Chandel and Bhatnagar 

(2019). Shi and Malik (2000) proposed a normalized cuts 

scheme where a correlation matrix is constructed between 

all the elements in the image. Image segmentation, is then 

performed by thresholding the Eigen vector with the 

second lowest Eigen value. Results are remarkable, 

however, the computation cost is too high. 

In fact, Eigen structures (mostly Eigen vectors) have 

been found useful in many areas such as: Color 

representation (Ohta et al., 1980), site monitoring 

(Sarkar and Boyer, 1998), image registration    

(Huizinga et al., 2016) and eigenfaces (Turk and 

Pentland, 1991) to name a few. 

In this sutdy, the image thresholding problem is 

addressed. A simple but effective Eigen structure is 

proposed as a solution. To the best of the author 

knowledge, incorporating Eigen value decomposition 

(linear algebra) in image thresholding has not been 

proposed previously. Although some similarity exists 

with graph-cuts schemes, as will be shown in next 

section, the simplicity of the matrix (22) is a huge 

discriminating factor. A more important aspect is the 

introduction of the complement feature that has not been 

proposed previously as concluded by the author 

exhaustive literature search. 

Method 

Without loss of generality, the original image is 

normalized to the interval [0,1] and concatenated to 

produce a column vector of size N1, N is the number of 

pixels in the image. This work investigates the use of 

one feature per pixel: intensity gi. The description of 

each pixel is then extended to form a 2D unit vector 

having the intensity value as the x-component. In other 

words, each pixel is now represented by the vector: 

 

21i i iG g g  
 

 (1) 
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G is now an N2 array, representing the whole image. 

As it is obvious from Equation (1), the complement value 

is appended as a second dimension/feature. Let’s 

explore the use of this formulation into the normalized 

cuts proposed by (Shi and Malik, 2000), resulting in an 

NN matrix D given by: 

 
TD GG  (2) 

 

The second smallest Eigen vector of (normalized) D 

is the closest to the segmented (thresholded) image. It 

should be emphasized, however, that the author is not 

claiming the superiority of the proposed formulation. 

The goal is simply to establish a link with the 

normalized cuts scheme. 

Essentially, matrix D has the same Eigen values to 

that of a lower rank matrix plus some zeroes to 

compensate for the size difference between the two 

matrices (Horn and Johnson, 2012, pp 65). Fortunately, 

the lower rank matrix is the auto correlation matrix (AG) 

of size 22 given by: 

 
T

GA G G  (3) 

 

Another important association is with image 

registration where the axes of the destination object are 

aligned with that of the source object. Interestingly, the 

axes are the Eigen vectors of the auto correlation matrix 

of the data set. 

Unfortunately, 1D data will have a scalar as its auto 

correlation. Equation (3) is in fact a good remedy for 1D 

data to have 2 axes (of inertia). In addition, the Eigen 

values can be seen as a representation of the extent 

(strength) in each direction. 

Equation (3) can be implemented with less 

computational cost through the histogram (h) since, h is 

normalized to have a sum of 1: 
 

    21,1 1 2,2G G i ii
A A h g    (4a) 

 

    21,2 2,1 1G G i i ii
A A h g g    (4b) 

 

Let’s explore the benefits of Equation (3) by solving 

the Eigen formula: 

 

GA V V  (5) 

 

The Eigen vectors of AG represent the axes of inertia 

for the data set. While the Eigen values are the respective 

strengths. The vector Vmax (the one corresponding to the 

maximum Eigen value λmax) points toward the direction of 

maximum inertia. Since the y-component is not an 

independent component, the x-component represents a 

point of concentration of the original data. The Eigen 

vector Vmin (the one corresponding to the minimum Eigen 

value λmin), on the other hand, is normal to Vmax and 

hence, is not guaranteed to have its x-component within 

the original data range. 

The hypothesis adopted in this study can be stated in 

an abstract form as: The largest Eigen value λmax 

(thereby Vmax) should be associated with the major 

process in the data, while the smallest Eigen value λmin 

(thereby Vmin) should be associated with the minor 

process. The major process can be the foreground or the 

background depending on the image content. 

This motivates the author to use the x-component of 

Vmax as a threshold. The Eigen values of AG, (or their 

ratio) can also be used. This ratio can be considered as 

an approximation of the percentage of minorities and 

majorities under the previously proposed hypothesis. 

Minorities can relate to noise or small objects in 

reference to the dominant or major object in the image. 

An exhaustive search can be performed to find the 

optimum threshold based on similarity between the 

original image auto correlation matrix and that of the 

thresholded image. Comparison can then be implemented 

using Equation (4b), Eigen values and/or Eigen vectors as 

will be shown in the following sub-sections. 

The component added to obtain a unit vector, see 

Equation (1), can be generalized to any fuzzy 

complement. The following suggestions where tried and 

perfect thresholding was obtained with certain forms, 

however, it is highly image dependent: 

 

 
1/

1
n

n

i i iG g g
 

   
 (6a) 

 

  2sgn 1
n n

i i i iG g g g  
 

 (6b) 

 

 1
nn

i i iG g g  
  

 (6c) 

 

1
n n

i i iG g g  
 

 (6d) 

 

sin sgn( ) cos
2 2

n n

i i i iG g g g
     

     
    

 (6e) 

 

 sgn
tanh

1 1

n n

i i i

i n n

i i

g g g
G sech

g g

    
    

         

 (6f) 

 

    tanh  
n n

i i i iG k sgn g g sech k g 
  

 (6g) 

 

where, n is a free parameter and k>3. 

The results are evaluated using the dual similarity 

measure DSM recently proposed (Ameer, 2019) given by: 
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T

T

1 min ,
G T G

G T G

B B F F
DSM

B B F F

  
  
  
 

 (7) 

 

where, B stands for background, F stands for 

foreground, subscript G is for ground truth image and 

subscript T is for thresholded image. 

Cross Correlation 

An exhaustive search can be performed using 

Equation (4b) to find the optimum threshold. Various 

schemes can be realized, some suggestions are: 

 

 Scheme CrossMin: For an image normalized to 

[0,1], find (through exhaustive search) a value to be 

subtracted from the x-component, y-component is 

adjusted accordingly, so as to minimize the cross 

correlation between the image and its complement, 

using Equation (4b). This value is then subtracted 

from the image and the resultant image is simply 

thresholded at zero 

 Scheme ComparePos: for an image normalized to 

[0,1], the best thresholded image is the one 

producing a value for Eq.(4b) closer (in absolute 

difference) to that of the original image. In all 

possible thresholded images, each region is 

represented by its mean 

 Scheme CompareNeg: similar to ComparePos with 

image normalized to [-1,1] 

 

Fortunately, a closed form solution can be found for 

scheme CrossMin using Equation (6e), n = 1, as: 

 

  

 
 

 

sin 0

sin
tan

cos

i i

i

i ii

i ii

g T h

g h
T

g h








 








 (8) 

 
 

Eigen Values 

Let’s define: 

 

min

min max

r


 



 (9) 

 

Due to the ambiguity of whether the minority is on 

the dark side or on the bright side, Equation (9) 

should be used in an iterative split and merge 

paradigm. An exhaustive search can also be 

performed to find the optimum threshold based on the 

similarity between the original image auto correlation 

matrix and that of the thresholded image. The 

following form of comparison is adopted: 

 

   

    
* arg min max

max ,

O T

T
i

O T

i i
T

i i

 

 

  
  

  

 (10) 

 

where subscript T is for thresholded image, subscript O 

is for original image and i goes from 1 to 2 is the index 

of the Eigen value used. 

Various schemes can be realized from using Eigen 

values, some suggestions are: 

 

 Scheme TrimPos: Successive merging from the two 

data ends. The portion given by Equation (9) is 

applied at each iteration using the histogram, i.e., 

the components at each end are merged so that the 

end component has a size equal to that given by 

Equation (9). Image is normalized to [0,1] 

 Scheme TrimNeg: Similar to scheme TrimPos with 

image normalized to [-1,1] 

 Scheme ValPos: The best thresholded image is 

the one producing Eigen values closer to that of 

the original image using Equation (10). The two 

regions in each thresholded image is represented 

by their corresponding means. Original image is 

normalized to [0,1] 

 Scheme ValNeg: Similar to scheme ValPos with 

image normalized to [-1,1] 

 

Eigen Vectors 

Various schemes can be realized using the Eigen 

vectors, some suggestions are: 

 

 Scheme PosVec: x-component of Vmax for image 

normalized to [0,1] 

 Scheme NegVec: Similar to scheme PosVec with 

the original image normalized to [-1,1] 

 Scheme VecDual: (successive) trimming, merging 

the values at each end, using the x-components of 

the two vectors λmax Vmax ± λmin Vmin. Image is 

normalized to [0,1]. The process stops when no 

change in the Eigen values is reported 

 Scheme VecPos: The best thresholded image is the 

one producing Vmax closer (in dot product form) to 

that of the original image (normalized to [0,1]). In 

all possible thresholded images, each region is 

represented by its mean. Exhaustive search is 

required. 

 Scheme VecNeg: Similar to scheme VecPos with 

the original image normalized to [-1,1] 
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It should be emphasized that the resultant Eigen 

vector(s) should be renormalized into the same 

arrangement as the auto correlation matrix was 

constructed, see Equation (6). In addition, the resultant 

Eigen vector(s) should be forced to have their last 

component positive, as can be concluded from 

Equation (1). 

Experimental Results 

Figure 1 shows the images used for testing 

together with their ground truth and the popular Otsu 

method. The resultant thresholded images of the 

proposed schemes (given in the previous section) are 

shown in Fig. 2 (cross-correlation), Fig. 3 (Eigen 

values) and Fig. 4 (Eigen vectors) using Equation (6a) 

with n = 2. Table. 1 lists the DSM, Equation (7), for 

the results (only the ones producing a binary image) 

of Fig. 2-4. 

A simple comparison of Fig. 2-4 clearly indicates 

the potential of the proposed schemes. A similar 

conclusion can also be inferred from Table 1. More 

investigation is needed to find the best form of 

complement to each image or domain of images. 

 

 

 

 

 
Fig. 1: Top row: Test images used, middle row: Ground truth and last row: Otsu thresholding. 

 

      

      

      

 
Fig. 2: (Top to bottom rows) resultant images using schemes CrossMin, ComparePos and CompareNeg respectively 
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Fig. 3: Resultant images (top to buttom) for schemes: TrimPOs, TrimNeg, ValPos and ValNeg 
 

      

      

      

      

      
 

Fig. 4: Resultant images (top to buttom): PosVec, NegVec, VecDual, VecPos and VecNeg. 
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Table 1:  DSM values for OTSU and proposed schemes for the images in Fig. 1 

Image/Method 1 2 3 4 5 6 

Otsu 0.133 0.008 0.751 0.097 0.052 0.290 

CrossMin 0.017 0.116 0.668 0.010 0.012 0.153 

ComparePos 0.771 0.013 0.774 0.357 0.122 0.070 

CompareNeg 0.048 0.803 0.001 0.000 0.043 0.026 

ValPos 0.184 0.007 0.002 0.105 0.085 0.057 

ValNeg 0.241 0.016 0.008 0.055 0.006 0.109 

PosVec 0.015 0.088 0.694 0.010 0.016 0.070 

NegVec 0.145 0.202 0.627 0.000 0.262 0.069 

VecPos 0.802 0.484 0.793 0.494 0.176 0.241 

VecNeg 0.000 0.059 0.689 0.000 0.087 0.506 

 
Table 2:  Optimum n value, see Equation (6) for proposed variants of scheme PosVec, ValPos, ValNeg using the images in Fig. 1 

Image/Method 1 2 3 4 5 6 

PosVec(6a) >12 >3 0.55 0.4 >14 4 

PosVec(6b) 1.27 3.5 <0.05 <0.4 <0.1 3.3 

PosVec(6c) 25 <0.67 >8 <0.4 0.9 10 

PosVec(6d) 1.75 4.3 0.35 <0.6 1.4 1.5 

PosVec(6e) 1.55 3.8 0.1 <0.5 0.9 4 

NegVec(6a) 0.23 5 0.7 1.5 20 0.81 

NegVec(6b) 4 0.9 0.4 1 2 1.8 

NegVec(6c) 20 20 1.5 0.5 9 0.5 

NegVec(6d) 2 0.2 3 25 1.2 2.9 

NegVec(6e) .1 1.5 0.5 3 20 2 

ValPos(6a) 0.5 1.2 0.5 0.1 0.6 3 

ValPos(6b) 0.7 0.8 0.5 0.5 0.4 1.6 

ValPos(6c) 0.8 0.1 0.5 0.5 0.6 0.2 

ValPos(6d) 0.8 1.1 0.5 0.1 0.4 2.8 

ValPos(6e) 0.9 1.4 0.4 0.2 0.5 2.7 

ValNeg(6a) 13.5 4 1.3 5 1.1 0.8 

ValNeg(6b) 1.2 1.3 1 22 1 1.2 

ValNeg(6e) 2.4 1.5 20 43 1.7 1.4 

 

It can be seen from Fig. 3 that scheme ValPos and 

ValNeg produce binary images. However, for some 

images, using local minima can produce multi-level 

thresholds or a range of thresholds. On the other 

hand, TrimPos and TrimNeg produced a multi-level 

image after no more merging is possible, i.e., we are 

sure about the black and white regions but not the in-

between. Hence, further decision is needed to obtain a 

binary image. The number of iterations for TrimNeg 

were less compared to that of TrimPos, a notice worth 

future exploring. 

Figure 4 reveals that scheme PosVec produces 

better results than VecPos and VecNeg. Interestingly, 

scheme VecDual produced a multi-level output: 

Black, white and gray. The gray corresponds to 

ambiguous areas in a similar fashion to TrimPos and 

TrimNeg, see previous paragraph. 

Table 2 lists the value of n corresponding to some 

variants of Equation (6) that will create the best output 

(lowest DSM) using schemes PosVec, NegVec, ValPos 

and ValNeg as a subset. The values are rough indicators, 

however. For some images, changing n in some range will 

slightly change the value of DSM. In some other cases, 

there is more than one range. For some images, some types 

from Equation (6) do not produce good results for any n. 

Conclusion and Future Work 

Novel schemes are suggested in this study to 

perform image thresholding using one feature, 

intensity. Three descriptors from the auto correlation 

matrix (using the complement feature) are proposed, 

namely: Cross-correlation, Eigen values and Eigen 

vectors. The algorithms are fully automatic and no 

need for parameters’ adjustment of any sort. 

Interestingly, some schemes do not require exhaustive 

search, see schemes PosVec, NegVec and results from 

Equation (8). In addition, scheme NegVec can be 

extended to a tri-level thresholding by using the x-

component of both Eigen vectors. 

Work is currently in progress to extend the algorithm 

to segment colored images and investigate the 

modification needed to perform segmentation on an 

arbitrary feature space. 

Combining the information from the Eigen vector(s) 

and value(s) can improve the performance, as can be 
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induced from Fig. 4 and Table 1, where scheme 

VecDual can give a tristate solution. 

More work is needed to find the best formula from 

Equation (6) and maybe other fuzzy variants, to obtain 

better results given the domain of the images used. 

Elaborate testing is also needed to compare performance 

of normalizing the image to [-1, 1] Vs. [0,1]. 

One of the extensions to the proposed schemes is to 

threshold at all the minima (instead of global minimum) 

of the objective function of any proposed scheme. This 

extension was noticed to result in multi-level 

thresholding. An aggregated scheme of some form may 

also be helpful. However, performance evaluation is 

differed to a future work on segmentation. 
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