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Abstract: Fossil fuels are currently the world's leading source of energy. 

Environmental legislations, the high price of fossil fuels, the concern about 

the supply of these fuels and technological development, makes it 

necessary to search for alternative sources of energy. The production of 

clean liquid fuels, such as synthetic diesel from synthesis gas, by Fischer-

Tropsch (FT) method, is considered a very appropriate strategy for the 

solution of some of the inconveniences shown by fossil fuels. This method 

consists in the catalytic transformation of a gaseous mixture of CO and H2 

into liquid fuels with variable chain lengths. The fuels produced by this 

process are clean, since they do not have aromatic compounds, sulphur or 

nitrogen-based compounds, preventing the production and release of NOx 

and SOx during combustion. FT processes involve the use of heterogeneous 

catalysts based on active metals (i.e., Co, Ru or Fe) highly dispersed on the 

surface of appropriate supports. In the present investigation, the synthesis of 

new catalysts has been carried out to produce synthetic diesel by means of FT 

processes. For this, spherical SiO2 particles have been used as support, on 

which nanoparticles of the different metals have been dispersed. The 

activity and selectivity of the synthesized catalysts was evaluated in FT 

processes under different experimental conditions.  
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Introduction 

Currently, mainly energy resources from non-

renewable energy sources or fossil fuels (oil, coal or 

natural gas) are used. In the coming years, a significant 

increase in the global consumption of liquid fuels, 

derived from fossil resources, is estimated to increase 

from about 95 million barrels per day (b/d) in 2015 to 

113 million b/d in 2040 (EIA, 2017).  

Fossil fuels (petroleum, natural gas and coal) 

accounted for about 79% of total U.S. primary energy 

production in 2018 (EIA, 2019a). This massive 

consumption permanently leads to significant pollution 

problems arising from the presence of sulfur and 

nitrogen, which are released into the atmosphere during 

combustion in the form of SO2 and nitrogen oxides 

(NOx), among other contaminants. These emissions have 

harmful effects on the environment, such as acid rain and 

the presence of greenhouse gases, responsible for global 

warming and climate change, among many others (EPA, 

2017; Mohajan, 2018; EPA, 2019). The release of these 

pollutants into the atmosphere has been linked to certain 

health problems such as lung disease, heart failure, 

increased risk of certain types of cancer and, in the worst 

case, death (CDCP, 2019). According to the report of the 

Intergovernmental Panel on Climate Change (IPCC) in 

2004, the current life and that of future generations will 

depend largely on the replacement of polluting energy 

sources (coal, oil, gas, nuclear) with clean alternatives 

and respectful with biological ecosystems (solar, wind, 

biomass, etc.) (Sims et al., 2011).  

The US Energy Information Administration (EIA) in 

2019, forecasts renewables will be fastest growing 

source of electricity generation, becoming an important 

component of the energy supply (EIA, 2019b). The 

increasingly demanding environmental legislation, 
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health problems, the constant increase in fossil fuel 

prices, the increase in demand and its limited 

availability, the concern of governments to guarantee the 

security of fuel supply and technological development, 

make the search for alternative sources of renewable 

energy necessary. In this sense, viable technologies with 

high commercial value can be introduced for the 

production of clean liquid fuels such as synthetic diesel, 

which is relevant in a sustainable energy scenario.  

Synthesis of Fischer Tropsch (FT)  

One of the most viable technologies for the production 

of synthetic diesel fuel is the synthesis of Fischer-Tropsch 

(FT), which can be developed by a catalytic process from 

a mixture of carbon monoxide (CO) and hydrogen (H2), or 

syngas (Van de Loosdrecht et al., 2013), The FT process 

allows complex mixtures of straight and branched chain 

hydrocarbons to be obtained, as well as oxygenated 

products such as alcohols, aldehydes, ketones and 

esters, although most are linear paraffins and α-olefins 

(Shafer et al., 2019). Some of the paraffins obtained can 

be used in the pharmaceutical, cosmetic or lubricant 

industry, although the main application of waxes 

produced by FT processes is to obtain synthetic fuels 

such as gasoline and diesel (Eslava, 2017). The 

molecular weight range of the hydrocarbons obtained 

includes products in the gas phase (C1-C4), liquid 

hydrocarbons (C5-C18) and waxes (C19+). The 

hydrocarbon fraction from C5 is especially relevant in 

the energy sector, since it is the fraction corresponding to 

diesel fuel (Huffman, 2003).  

Experimentally, FT processes produce a wide range 

of C1-C50+ hydrocarbons, being one of the biggest 

challenges of this process to find catalysts that 

selectively produce the desired product, or fraction of 

product (Jahangiri et al., 2014). FT catalysts must meet 

the following characteristics: (1) Ability to form metal 

carbonyls; (2) high activity in hydrogenation reactions; 

and (3) the operating conditions of the FT process must 

not be very far from those under which metal carbonyls 

are produced (Fierro et al., 2003).  

The metals that combine activity in the dissociation 

of CO and H2 and that are active in the conversion of 

syngas, are mainly Fe, Co, Ni, Ru and Rh. However, Ni 

and Rh are not suitable for FT processes, since, in addition 

to other inconveniences, they produce methane (Steen and 

Claeys, 2008; Vannice, 1975). Although catalysts for FT 

based on Co, Fe and Ru have been developed, it is 

considered that, due to the high activity, high selectivity to 

linear products, greater stability against deactivation, low 

activity towards the change of water gas and low cost, 

cobalt catalysts are clearly preferred for these processes 

(Wook et al., 2009).  

One of the required characteristics of these catalysts 

is that they must have a high surface area. The material 

used as support, which in our case was SiO2, is of great 

importance since it influences the dispersion, the size of 

the metal particles and the activity. The support allows to 

favor the dispersion of the active metal, maximizing the 

available surface area of the metal and reducing the 

amount required, which is of relevance due to the high 

cost of some of these metals (Dry, 2002).  

The FT process represents a clear alternative for the 

production, not only of clean fuel worldwide but also of 

other liquid products with high added value. Given the 

shortage of oil and the need to implement new 

environmental requirements worldwide, FT technology 

can be considered as a real research alternative that 

focuses on improving the efficiency and selectivity of 

catalysts, reaction media, pressure-temperature 

conditions, the H2/CO ratio and the design of better 

industrial reactors. As these conditions are optimized, 

the FT process will be more commercially competitive.  

Methodology  

Synthesis of Silicon Oxide Microspheres as Support  

The synthesis of SiO2 microspheres was carried out 

by the Stöber-Fink-Bohn (SFB) method, which consists 

in the hydrolysis and condensation of a silicon precursor 

in a water/alcohol solution as a solvent, using a basic 

catalyst (Márquez and Roque, 2006).  

The first stage of the synthesis (Fig. 1), consists in the 

controlled hydrolysis of a silicon precursor (tetraethyl 

orthosilicate, TEOS). The addition of TEOS causes the 

formation of a white precipitate (SiO2). This stage occurs 

in the presence of ultrafiltered deionized water (D.I.U.F. 

water), this reagent being the one that will limit the final 

yield of the process. The presence of an alcohol (ethanol) 

in defined proportions and of a catalyst (ammonium 

hydroxide, NH4OH), will be essential to obtain 

amorphous silicon oxide (Valtchev and Tosheva, 2013).  

In a second stage (Fig. 1), condensation occurs, 

giving rise to micrometric particles of silicon oxide. 

The silicon oxide support can form nano or 

microspheric particles of controlled dimensions during 

the synthesis process, which can range between 30 nm 

and 1 μm in diameter (Márquez and Roque, 2004, 

2005, 2006). It is important to mention that the 

distribution and size of the SiO2 microspheres will 

depend on the precursor, catalyst, temperature and 

solvent used (Valtchev and Tosheva, 2013).  

The synthesis of SiO2 microspheres was carried 

out according to the SFB method (Valtchev and 

Tosheva, 2013; Stöber et al., 1968), at temperatures of 

20°C, 30°C and 40°C. The proportions of each reagent 

were adjusted to be able to have the highest yield in 

each of the processes.  
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Fig. 1: Mechanism for the synthesis of SiO2 particles, using the Stöber-Fink-Bohn (SFB) procedure 

 

Dispersion of the Metal Precursor on the Support  

The dispersion of metals was carried out by wet 

impregnation. In a typical synthesis, 20 mL of the 

previously prepared solution of the metal precursor 

(cobalt (II) chloride, iron (III) chloride, or ruthenium 

(III) chloride) was introduced into a 50 mL Erlenmeyer 

flask at concentrations of 0.0150 M or 0.030 M and at 

different temperatures (20°C, 30°C or 40°C). 

Subsequently, 0.1 g of the SiO2 support was added and 

the mixture was homogenized by magnetic stirring for 1 

h. The reaction mixture was transferred to a beaker and 

allowed to evaporate in an oven at 60°C for 12 h.  

The material obtained from each precursor was 

calcined in air in a muffle (Thermolyne-Eurotherm 

2116), at 300° C for 15 min (Márquez and Roque, 2004, 

2005, 2006). The calcination process allowed to obtain 

the oxides of the different metals on the SiO2 support. 

Subsequently, the material obtained was reduced in 

flowing hydrogen (300 sccm) at 600°C, for 20 min, 

using a Carbolite tube furnace (Márquez and Roque, 

2004, 2005, 2006). As a result, metallic nanoparticles of 

cobalt, iron or ruthenium, dispersed on the surface of the 

support, were obtained.  

Results Obtained  

SiO2 Support Characterization  

More than 90 different syntheses of the SiO2 support 

were performed under different experimental conditions 

(concentration, catalyst, or temperature) obtaining 

average diameters ranging from 0.056 μm to 0.473 μm. 

For this investigation, the one that showed the greatest 

surface area was selected as support material.  

Figure 2 shows some Scanning Electron Microscopy 

(SEM) images corresponding to the synthesis of SiO2, at 

20°C, 30°C and 40°C. As can be seen, spherical particles 

of micrometric size were obtained in all cases, quite 

homogeneous in size and with little agglomeration. 

Characterization of Active Metals 

Figure 3 shows SEM images (a and b) and 

Transmission Electron Microscopy (TEM) images (c and 

d) of SiO2 microparticles with different active metals of 

Co and Ru, synthesized at 0.0150 M and 40°C.  

Figures 3a and 3b show catalysts with a 

homogeneous spherical morphology. The metal 

nanoparticles of Ru and Co can be clearly seen in the 

TEM images (Fig. 3c and 3d). In all cases, the average 

diameters of the metal particles are below 10 nm. The 

distribution and size of these metal particles are the most 

relevant factors, together with the specific area of the 

material, to justify the catalytic activity of these catalysts 

(Naito et al., 2018).  

The specific area of the catalysts synthesized under 

different concentration and temperature conditions was 

characterized by the BET method (Table 1).  

As shown in Table 1, surface areas showed very high 

values for all catalysts. However, the largest areas were 

observed for Co catalysts.  

Catalytic Tests  

Fischer-Tropsch catalytic activity tests were carried 

out in a fixed bed reactor at a temperature of 493 K and a 

pressure of 10 bar. The catalyst was diluted in SiC and a 

reaction mixture of H2: CO: Ar = 6: 3: 1 (v/v/v) was used, 

with a molar ratio H2/CO = 2. The space velocity was 13 

L (CO + H2)/(gcat•h). The catalysts were reduced in situ at 

400°C for 6 h in H2 flow. The FT reaction products were 

measured by Gas Chromatography (GC), using a triple 

column system (Porapak Q, Molecular Sieve 13X, fused 

silica WCOT) and TCD and FID detectors. Three 

hydrocarbon fractions were studied, corresponding to C1-

C3, C4-C5 and C6+. These hydrocarbon fractions indicate 

the number of carbon atoms generated by the FT process.  
Figure 4 shows the catalytic results obtained for the 

analyzed hydrocarbon fractions, with Co, Fe and Ru 

catalysts prepared at concentrations of 0.0150 M and 

0.030 M and at different synthesis temperatures (20°C, 

Alcohol 

(C2H6O) 

Si(OC2H5)4 + 4H2O 

(TEOS) 

Si(OH)4 + 4C2H5OH 

Catalyst 

(NH4OH) 

1st phase 

2nd phase 

 (SiO2)n + 2nH2O nSi (OH)4 
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30°C and 40°C). As can be seen in Fig. 4a, at 

concentrations of 0.0150 M and 0.030 M synthesized at 

20°C, the Fe catalyst obtained greater selectivity to C1- 

C3 short chain products, followed by Co and Ru, 

respectively. Similarly, at the concentration of 0.0150 M 

at 20°C, it is observed that the Fe catalyst, obtained 

greater selectivity to C4-C5 products, followed by Co and 

Ru, respectively. On the other hand, at 0.030 M and 

20°C, it was observed that the Co catalyst obtained 

greater selectivity to C4-C5 fractions, followed by Ru and 

Fe, respectively. Finally, at the same experimental 

conditions, the Ru catalyst obtained the highest 

selectivity to C6+ long chain products; followed by Co 

and Fe, respectively. 

Figure 4b and 4c show that at concentrations of 0.015 

M and 0.030 M and 30°C and 40°C respectively, the Ru 

catalyst obtained greater selectivity to C1-C3, C4-C5 

products. At the same experimental conditions, Co 

catalysts showed the highest selectivity for C6+ long 

chain products.  
 
Table 1: Specific surface area (BET) (m2/g) of catalysts synthesized at 20°C and 40°C, at 0.0150 M and 0.030 M 

Analysis of the specific surface area (BET) m2/g at 20°C Analysis of the specific surface area (BET) m2/g at 40°C 

----------------------------------------------------------------------- ------------------------------------------------------------------------- 

Catalyst 0.0150M 0.030M Catalyst 0.0150M 0.030M 

Co@SiO2 448 352 Co@SiO2 467 456 

Fe@SiO2 405 343 Fe@SiO2 453 438 

Ru@SiO2 401 337 Ru@SiO2 412 426  

 

 
 

Fig. 2: SEM micrographs of SiO2 microspheres synthesized at 20°C (a); 30°C (b); and 40°C (c) 
 

 
 

Fig. 3: SEM micrographs of Ru@SiO2 (a) and Co@SiO2, (b); and TEM micrographs of Ru@SiO2 (c) and Co@SiO2, (d) 
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Fig. 4: Catalytic activity of Co, Fe and Ru catalysts synthesized from concentrations of 0.015 M and 0.030 M at 20°C (a); 30°C (b) 

and 40°C (c) 
 

Conclusion  

The results obtained show a clear selectivity to 

short chain hydrocarbons (olefins and paraffins) in 

catalysts whose supports were synthesized at low 

temperatures (20°C and 30°C). On the other hand, this 

selectivity changes to long chain hydrocarbons (diesel 

fraction) when the catalysts were prepared at higher 

temperatures (40°C).  

As mentioned earlier, the C6+ fraction is the most 

interesting, since it is the fraction corresponding to 

diesel. The Co catalyst achieved the highest selectivity 

for long chain (C6+) products, especially at 40°C, 

compared to the Ru catalyst. The Ru catalyst was 

expected to show optimum performance and better 

results for the C6+ fraction, especially at 40°C. However, 

the best results were found in Co and Fe, respectively. 

These results are certainly interesting because Ru is an 

expensive metal and the manufacture of these Ru-based 

catalysts entails a very high economic expense, but this 

is not the case for Co and Fe catalysts.  

The results obtained may be influenced by the 

synthesis temperature and the specific areas of the 

different catalysts. In fact, the Co catalyst is the one that 

shows the greatest area and the best results, compared to 

the Fe and Ru catalysts. Although the results obtained 

are promising, additional studies are needed to 

understand how small changes in the synthesis 
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temperature of the SiO2 support can affect the area of the 

material and, therefore, the catalytic behavior of the 

materials obtained. 
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