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Abstract: Control Allocation (CA) in aviation is the problem of 
distributing the commands among the available actuation means, in order to 
ensure the achievements of the moments requested by the flight control 
laws. CA plays a key role in fault-tolerant control systems since it gives 
robust performances and stability also in presence of faults to one or more 
aircraft actuators. In this study, a new algorithm is proposed for Control 
Allocation under both static and dynamic constraints. The proposed 
algorithm aims at overcoming the most common limitations of the existing 
algorithms, most of which do not account for actuator dynamics (i.e. they 
compute a control command that might not be compatible with aircraft 
performance limitations) and rely on iterative methods. The proposed 
approach does not need an iterative procedure because it rearranges the CA 
as a state observer problem in which observer states are the actual 
commands to actuators and observer measurements are the requested 
moments by the flight control laws. The observer is implemented through a 
Kalman Filter (KF), with the actuator dynamics as process model and the 
algebraic relationships between moments and commands as measurement 
model. The effectiveness of the proposed CA strategy has been shown 
through a numerical analysis. The numerical simulations showed that the 
control commands computed by Control Allocation algorithms guarantee 
moments that match the ones requested by the attitude control laws. This 
has been verified in nominal conditions (i.e. no actuator faults) but also in 
faulty ones, where one or more actuators are subject to malfunctioning and, 
furthermore, in simulations scenarios in which aggressive maneuvers led to 
the saturation of one or more control surfaces. 
 
Keywords: Control Allocation, Fault-Tolerant Control, Kalman Filter 

 
Introduction 

Typically, the problem of designing attitude control 
laws is split in two sub-problems: closed-loop 
computation of the moments needed to regulate the 
vehicle attitude (Control laws) and computation of the 
commands for the aerodynamic surface actuators, which 
generate the required moments (Control Allocation) 
(Harkegard and Glad Torkel, 2005). 

In modern aircrafts, the number of control surfaces is 
typically greater than the minimum required for the 
vehicle control around the three axes. This redundancy 
gives more flexibility in choosing the combination of 
control surfaces that gives the moments required to 
control the vehicle rotational dynamics. This degree of 
freedom can be then used in nominal conditions (i.e. 
when all the control surfaces are available) for 
minimizing the command effort, but also in faulty 

conditions (i.e. when one or more actuators are subject to 
malfunctioning after a fault event) in order to still 
guarantee the required moments in spite of faulted actuators. 
In the latter case, the possibility of distributing the control 
effort among the “healthy” actuators may preserve vehicle 
performance and stability, when there is enough control 
redundancy to attain the requested moments. 

The problem of Control Allocation is made even 
more complicated by the fact that the control actuators 
are limited in both position and rate. Therefore, the 
problem of finding a n-ple of control surfaces positions 
that satisfies the moments requested by the flight control 
laws is intrinsically a constrained problem. 

In the last decades, a great effort has been spent in the 
design and development of control allocation algorithms 
based on different techniques. The simplest ones rely on 
the solution of unconstrained problems and subsequent 
modifications to account for control surfaces constraints 
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(Virnig and Bodden, 1994). However, most of the CA 
techniques try to solve a constrained optimization 
problem where constraints are imposed by actuator 
limitations. One of the most appreciated techniques is 
Direct Allocation (Durham, 1994; Durham and 
Bordignon, 1996), based on geometric approach where 
the set of attainable moments is defined and the control 
commands are computed. Other popular methods 
concern the use of linear programming, quadratic 
programming, redistributed pseudo-inverse, active set, 
etc (Kenneth et al., 1995; Anthony and Marc, 2000; 
Durham and Bordignon, 1996). 

As mentioned earlier, these approaches try to solve a 
constrained optimization problem where the objective 
function is usually the norm of the “moment error”, i.e. 
the difference between the requested and the actual 
moment vector. In case more than one solution can be 
achieved (i.e. there are more than one n-ple of control 
surfaces positions, which ensures a zero moment error), a 
secondary minimization objective can be set. For a 
detailed overview of the most common techniques, one 
may refer to Bodson (2002) and Petersen and Bodson 
(2006) and references therein. 

The above-cited methods solve the control allocation 
problem by computing control commands that guarantee 
the achievement of a requested moment vector while 
taking into account some constraints arising from the 
actuators limitations (mainly actuator positions and 
rates). However, the presence of such constraints may 
not give the possibility to find an analytical solution to 
the problem. In that case, numerical solutions based on 
iterative methods can be used but this may lead to the 
well-known issues related to the convergence and 
stability of the solutions. Furthermore, the great majority 
of the mentioned approaches neglects the actuator 
dynamics, since an instantaneous relationship between 
control commands and moment vector is assumed. 
Therefore, the computed control commands may exhibit 
discontinuities that cannot be followed by the actuation 
system. To the best of our knowledge, the inclusion of 
actuators dynamics in CA problem is considered only in the 
approach described in Luo et al. (2007) where the authors 
present an algorithm based on model predictive control. 
However, the approach still relies on an iterative procedure. 

In this study, a new approach for tackling the control 
allocation problem is presented. This approach uses a 
Kalman Filter (KF) for the computation of control 
commands and it is able to satisfy all the actuators 
constraints, both static and dynamic. Furthermore, this 
approach does not suffer from convergence issues since 
no iterative procedure is used. 

KF is usually used for the state estimation of 
stochastic dynamic systems and it solves an optimization 
problem where the objective function is the covariance 
of the estimation error, which obviously depends on the 
process model, the measurement equations and the 

covariance matrices of process and measurement errors. 
In the proposed CA strategy, the states estimated by KF 
are represented by the control commands. This is done 
by including the actuators dynamics in the process model 
while the requested moment vector is used as an external 
(virtual) measurement. In this way, actuator dynamics 
are taken into account by the process model thus making 
the computed control commands feasible for the 
actuators dynamics. At the same time, algebraic 
relationships between desired moments and control 
surfaces are taken into account in the measurement 
equations. Process and measurement covariance matrixes 
are finally used for obtaining a solution that is a good 
compromise between control effort and control accuracy 
(i.e. the capability to match the required moments), as it 
will be better explained later. 

As mentioned earlier, the proposed control allocation 
strategy aims at overcoming the major limitations of the 
existing approaches. As a matter of fact, it allows to 
account for dynamic constraints, therefore the control 
commands are feasible, i.e. they can be followed by the 
actuation system. In addition, no iterative procedures are 
required to compute the control commands, thus avoiding 
the possible lack of convergence of the control allocation 
solution. This is of paramount importance to guarantee 
that the proposed algorithm can be suited for hard real-
time applications such as the aircraft attitude control. 

In the following sections, the problem of control 
allocation is introduced, the proposed algorithm is 
described and its effectiveness is shown by means of 
some numerical analyses. 

Problem Overview 

As explained earlier, Control Allocation (CA) allows 
an effective distribution of the requested control effort 
(the moments computed by flight control laws) among 
all the available effectors (Fig. 1). More in detail, 
linearized aircraft dynamics can be written as: 
 
x Ax Bu

y Cx

= +

=

ɺ

  (1) 

 
where, x∈ℜn, y∈ℜl and u∈ℜm are the state, output and 
control commands respectively, A∈ℜ

nxn, B∈ℜ
n×m, 

C∈ℜ
lxn are the state, input and output matrices 

respectively. The goal of control allocation is then to find 
the control commands u  such that the requested moment 

vector Mdes is achieved, i.e. CBu = Mdes ∈ℜ
l. 

With a sufficient number of control inputs, i.e. m≥l 

and without any constraint on the control authority, it is 
always possible to find a control input vector u for which 
CBu  = Mdes. However, considering that actuators are 
subject to position and rate limits, the solution might not 
exist. For this reason, the control allocation problem is 
usually set as a constrained optimization problem, that is: 
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( )
min max

2
min ||| |

v des
u u u

u W CBu v
≤ ≤

= −  (2) 

 
where ║·║2 is the L2-norm and Wv is a non-singular 
weighting matrix. In other words, the difference between 
the requested moments Mdes and the actual ones CBu is 
minimized while taking into account the constraints on 
actuators positions and rates. 

As mentioned earlier, the control allocation is even 
more important in case of actuator faults. Indeed, once a 
fault has been detected, CA shall be able to re-distribute the 
control authority among the healthy effectors. In that case, 
the input matrix B is replaced by the matrix Bfault. This 
matrix accounts for the fact that faulted surfaces cannot be 
used anymore to change the aircraft dynamics, i.e.: 
 

( ) ( )

( ) 0

i i

fail nom

i

fail

B B i j

B i j

= ≠

= ≠

 (3) 

 
where, Bi is the i-th column of the matrix B and j is the 
index of the faulted actuator. 

Proposed Algorithm 

In this section, the proposed algorithm for dynamic 
control allocation is described. 

Kalman Filter Approach 

As explained earlier, in the proposed CA strategy, the 
computation of control commands is performed by a 
Kalman Filter. KF is a well-established method for the 
optimal estimation of state variables in presence of 
process and measurement noises (Gelb, 1989) for 
details). A discrete linear system model is given: 
 
( ) ( ) ( ) ( )

( ) ( ) ( )

1k k k k

k k k

x t Fx t Gu t w t

z t Hx t v t

+
= + +

= +

 (4) 

 
where, x∈ℜh is the state vector, u∈ℜp is the input vector, 
z∈ℜm is the output vector, w and v are uncorrelated 
white Gaussian noises with zero mean and diagonal 
covariance matrices Q∈ℜ

hxh and R∈ℜmxm respectively. 
KF then provides an optimal estimation of the state 

vector x according to the assigned statistics of process 
and measurement noises. As a matter of fact, Kalman 
filter minimizes the difference between the actual and 
estimated system state. Within the Control Allocation, 
this KF feature is exploited for estimating the control 
commands (which are the KF states) minimizing the 
error with respect to the desired control moments while 
satisfying the applicable constraints. 

More in detail, the state of the Kalman filter will be 
made of both the commanded and the actual control 
surface positions, i.e.: 

[ ]
T

cmd act
x δ δ=  (5) 
 
where, the superscript T indicates the transpose operator. 
Commanded positions are the ones given as reference to 
the actuation system while the actual positions are the 
ones that actuation system is able to obtain. 

As explained before, the commanded deflections of 
control surfaces δcmd do not come from the control laws 
as the latter only compute the requested moment vector 
Mdes. For this reason, they are considered as a part of the 
Kalman filter state and the following process equation is 
assigned to them: 
 

( ) ( ) ( )1 1cmd k cmd k k
t t w tδ δ

+
= +  (6) 

 
where, w1 is the noise related to this process equation. 

As it can be seen from the above equation, 
commanded deflections are modeled as a process with 
zero derivative. However, the covariance matrix of the 
related process noise is a design parameter, which allows 
modifying the control command dynamics to obtain the 
desired moment vector as it will be explained later. 

Instead, process equation for the actuated deflections 
act

δ  is straightforward as they clearly depend on the 
actuator bandwidth. If we assume linear actuator 
dynamics, the resulting process can be written as: 
 

( ) ( ) ( ) ( )1 2 2 2act k act k cmd k k
t A t B t w tδ δ δ

+
= + +  (7) 

 
where, w2 is the noise related to this process equation. 

Therefore the process model for the design of the CA 
KF will be the one of equation (4) with: 
 

[ ]

[ ]

[ ]

2

1 2

1

2

0

0

T

cmd act

n

T

mxm

mxm

x

F I A

w w w

Q
Q

Q

δ δ=

=

=

 
=  
 

 (8) 

 
where, Q1 and Q2 are the covariance matrices (with m 
rows and m columns) of w1 and w1, In is the nxn identity 
matrix with and 0mxm is a matrix with m rows and m 
columns, having all the elements equal to zero. 

As mentioned earlier with reference to the system of 
equation (1), the control surface positions should 
guarantee the achievement of the requested moments, i.e. 

act des
CB Mδ = . Therefore, they can be used as an external 
(virtual) measurement and included in the output 
equation of KF: 
 

des act
M CB vδ= +  (9) 
 
where, v is the measurement noise with a covariance 
matrix equal to R. 
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Hence, comparing equation (8) with equation (4), we 
have z = Mdes and G = [03xm CB] where 03xm is a matrix 
with 3 rows (i.e. the 3 moment’s components) and m 
columns having all the elements equal to zero. 

Once the model equations have been set, the values 
of Q1, Q2 and R matrices should be chosen (see equation 
(4)). It is worth recalling that Q2 is the process noise 
related to the actuator dynamics, which are supposed to 
be known with a sufficient degree of accuracy. 
Furthermore, the limited actuators bandwidth represents 
a constraint to be satisfied by the control allocation 
algorithm. Hence the values of Q2 matrix are expected to 
be chosen significantly smaller than the ones of Q1 and 
R. In this way, the solution found by KF will be compatible 
with the limited bandwidth of actuators. On the other hand, 
Q1 and R matrices can be seen as design parameters to be 
tuned, since control effort and accuracy in achieving the 
requested moments can be traded-off by selecting the 
covariance related to the actuator commands (equation (6)) 
and moments equation (9). Indeed, small values of R w.r.t. 
the ones of Q1 give much more importance to the output 
equation (9), i.e. to the fact that obtained moments CBδact 
should be equal to the requested ones Mdes. On the contrary, 
small values of Q1 (w.r.t the ones of R) give much more 
importance to the equation of commanded surface positions 
(equation 6), i.e. to the fact that control effort should be as 
small as possible (commanded positions are indeed constant 
according to equation 6). 

Constraint Management 

As it is clear from the previous section, dynamic 
constraints (i.e. limited bandwidth of actuators) are 
implicitly taken into account by adding the actuators 
dynamics in the process model and assigning a “small” 
covariance to the noise process. However, actuators (and 
thus the control surfaces) are subject to specific position 
and rate limits that become inequality constraints for the 
control allocation problem, i.e.: 
 

( )

( ) ( ) ( )
min max

1 _ 1 _

act k

k rate min c act k k rate min c

t

t T t t T

δ δ δ

δ δ δ δ δ
− −

≤ ≤

+ ≤ ≤ +
 (10) 

 
where, Tc is the sample time. 

In the proposed strategy, the inequality constraints 
are taken into account through the on-line update of 
equation (7). Indeed, for the current solution of CA 
problem ( )

act k
tδ , the constraints of equation (10) are 

checked. This equation can also be recast as: 
 

( )_ _min maxactsat satk
tδ δ δ≤ ≤  (11) 

 
where, { }_ _mmin min i1 n, ( )

act k ratesat c
max Ttδ δ δ δ

−

= +  and 

{ }_ _mmax max a1 x, ( )
act k ratesat c

min Ttδ δ δ δ
−

= + . 

If the i-th component of ( )
act k

tδ  is outside the limits 
defined by equation (11), i.e. if 

max_

i i

act sat
δ δ>  or 

min_

i i

act sat
δ δ>  for some integer i in the range [1, 2,…,n], 
the equation (7) is changed to force the i-th component to 
the constraint limit value. Once that the i-th component 
of δact has been fixed, the remaining components, i.e. the 
remaining control surfaces can be anyway used to 
achieve the requested moments. However, we have to 
distinguish between two different situations: 
 
1. Constraint reached due to the position limits  
2. Constraint reached due to the rate limits 
 

In the first case, the i-th component of equation (7) is 
re-arranged as follows: 
 

( ) ( ) ( ), ,

1 2 2 lim 2

i i i i i i i i

act k act k k
t A t B w tδ δ δ

+
= + +  (12) 

 
where, ,

2

i i
A is the element in the i-th-row and i-th column 

of the matrix A2, ,

2

i i
B is the element in the i-th-row and i-

th column of the matrix B2, δ
i

lim
is equal to min_

i

sat
δ or 

max_

i

sat
δ depending on whether the lower or upper position 
limit has been reached. In this way, the i-th component 
of the surface position vector i

act
δ  will follow the value 

δ
i

lim
 instead of the commanded value δ i

cmd
. 

In the second case (rate limits reached), the i-th 
component of equation (7) is set as: 
 

( ) ( ) ( )1 _ 2

i i i i

act k act k c rate lim k
t t T w tδ δ δ

+
= + +  (13) 

 
where, δ i

rate_lim  is equal to δ i

rate_min  or δ i

rate_max  depending 
on whether the lower or upper rate limit is reached. In 
this way, the i-th component of the surface position 
vector i

act
δ will have a constant derivative equal to 

δ
i

rate_lim . 
It is worth recalling that the equations reproducing 

the actuator dynamics (i.e. equation 7) has a process 
noise with a very small covariance Q2 (with respect to 
both Q1 and R). Clearly, this is true also for Equation 
(12) and (13). In this way, control surface position will 
be “forced” to the constraints, which will then become 
active equality constraints. In constrained optimization 
problems, equality constraints are closely related to 
Lagrange multipliers, which give a measure of how 
much the cost function changes when the constraint is 
relaxed (see Harkegard, 2002). More in detail, negative 
Lagrange multipliers imply that relaxing the constraints 
increases the cost function. For this reason, before 
executing the steps of the Equation 12 and 13, the CA 
logic checks the sign of Lagrange multipliers. Indeed, in 
case the Lagrange multiplier is negative, the equality 



Gianfranco Morani et al. / American Journal of Engineering and Applied Sciences 2019, 12 (1): 46.56 

DOI: 10.3844/ajeassp.2019.46.56 

 

50 

constraint is relaxed (i.e. it is no more an active 
constraint) and all the n control surfaces can be used 
again to achieve the target moment vector Mdes. 

Lagrange multipliers can be computed as follows: 
 

( )( )
T

constr des act
C CB M CBλ δ= −  (14) 

 
where, the superscript T indicates the transpose operator 
and 

constr
C is the matrix describing the inequality 

constraints of equation (11), re-casted as follows: 
 

constr act sat
C δ δ≥  (15) 
 
with: 
 

min_

min_

nxn

constr
nxn

sat

sat

sat

I
C

I

δ
δ

δ

 
=  

−  

 
=  

−  

  (16) 

 
A similar approach is used by Active Set method 

proposed in Harkegard (2002) to account for the 
presence of inequality constraints. Indeed, in the Active 
Set Method, saturated inputs are used as active (equality) 
constraints and the problem of control allocation is 
solved in an iterative way. However, Kalman filter 
solves it dynamically, giving the advantage of no 
convergence issues at each time step; on the other hand, 
the achievement of the requested moment vector is not 
instantaneous but it follows Kalman filter dynamics. 

Numerical Analysis 

In order to show the effectiveness of the proposed CA 
algorithm, some numerical analyses have been carried 
out using a 6DOF model of the flight test bed High 
Altitude Performance Demonstrator (HAPD), an 
unmanned vehicle of the High Attitude Long Endurance 
(HALE) category designed by Italian Aerospace 
Research Centre (Imperatore and Vecchione, 2009). 

For what concerns the vehicle control surfaces, the 
HAPD vehicle has a set of redundant control surfaces 
that are listed below (see Fig. 1): 
 
• Three elevators pairs (Inboard, Midboard and 

Outboard), with ±25° saturations; 
• Two ailerons pairs (Inboard and Outboard ailerons), 

with ±25° saturations; 
• Two rudders (Upper and Lower), with ±25° 

saturations. 
 

Moreover, it is equipped with eight independent 
engines, commanded by the auto-throttle subsystem (not 
managed by the Control Allocation algorithm). 

Simulation Model 

The simulation model is made of: 
 
• HAPD 6 DOF model (including external 

environment, actuators and sensors, see Baraniello et 

al., 2011; Cicala et al., 2011) 
• Flight Control Laws 
• Control Allocation subsystem 

 

 

 
 

Fig. 1: HAPD control surfaces 
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Fig. 2: HAPD control laws architecture 

 

 
 

Fig. 3: Stability and Control Augmentation System (SCAS) architecture 

 
Actuators dynamics have been modeled as a first 

order linear system with a bandwidth equal to 5 Hz. Rate 
limits are equal to 60 deg/s. 

As we can see in the Fig. 2, Control Laws compute 
the moments required to guarantee the desired attitude 
dynamics. 

Control Laws module (Fig. 3) is composed by two 
macro-elements, the inner loop to control the angular rate 
components p, q and r and the outer loop to control the 
angles ϕ, θ, β. Both the modules are based on Adaptive 
Model Following Control strategy (Sollazzo et al., 2009; 
Poderico et al., 2014 for further details). 

The reference commands for the Control Laws are the 
roll angle ϕ the pitch angle θ and the sideslip angle β. 
With reference to the inner loop, that controls the angular 
rates, the following variables are defined: 
 

[ ]

[ ]

[ ]

[ ]

x y z

ref ref ref

x u v w p q r

y p q r

u v v v

ref p q r

=

=

=

=

 (17) 

 
where, u, v, w are the components of the true air speed in 
body frame, p, q, r are the roll, pitch and yaw rate 
respectively and vx, vy, ,vz are the requested moments 
along the three axes of the body frame. It is worth 
noting that, considering the system reported in Equation 
17, the moments have the dimension of angular 
accelerations (rad/s2). Finally, the subscript ref 
indicates the reference value. 

The generation of control surfaces commands is a 
task of the Control Allocation module. It receives the 
requested moments vx, vy, ,vz from the Control Laws and 
provides the control commands δ1, δ2,…, δ12, i.e. six 
elevators (three pairs, Inboard, Midboard and Outboard 
respectively), four ailerons (two pairs Inboard and 
Outboard) and two rudders (Upper and Lower). 

Simulation Scenarios 

The numerical analyses concern both nominal and 
fault scenarios where the fault of one or more control 
actuators is simulated. It is worth specifying that, in fault 
scenarios, it is assumed that the information about failed 
actuators are provided by a FDI system that is anyway 
beyond the scope of this paper. Hence, at each time instant, 
CA is assumed to know which are the healthy surfaces. 

A first simulation has been carried out by considering 
a nominal situation (i.e. no fault). Initial conditions have 
been set as follows: 
 

0

0

0

0

0

0

0

0
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25 /

0

0
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h m

V m s
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Step commands for roll and pitch angles have been 
given to Stability and Control Augmentation System 
(SCAS), while reference for sideslip angle is zero. 

In Fig. 5, a comparison between the moments 
requested by the control laws (labeled as “ref”) and the 
ones commanded by the control allocation logic (labeled 
as “actual”) is reported. As it can be seen from the figure, 
the difference between reference and actual moments is 
quite negligible. This ensures the tracking of the 
reference commands as shown in Fig. 4. 

In order to show the effectiveness of the proposed CA 
algorithm in presence of an actuator fault, the fault of 
outboard ailerons and inboard elevators during the same 
maneuvers has been simulated. As it is shown in the Fig. 
8 and Fig. 9, where the control commands are reported, 
the outboard ailerons and inboard elevators are no more 
used by the CA algorithm after the fault event. This is 

possible since CA uses the remaining control surfaces to 
obtain the requested moments (Fig. 7). This allows the 
tracking of the referenc commands, as shown in Fig. 6. 

Finally, the effectiveness of the proposed CA 
algorithm in managing the actuators position limits is 
shown. To this end, a demanding roll maneuver is 
executed (i.e. a step of 45 deg). 

One of the two rudder commands reaches the 
saturation value (25 degrees), therefore the rudder 
command is not used for several seconds, as shown in 
Fig. 11. However, the control effort is effectively re-
distributed among the remaining control surfaces thus 
ensuring that the requested moments are anyway 
achieved (Fig. 10). As explained earlier, the command is 
kept at its saturation value (at about 12 sec) because the 
Lagrange multipliers are non-negative (Fig. 12). 
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Fig. 4: Reference vs actual outputs (nominal scenario) 
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Fig. 5: Requested vs Actual Moments (nominal scenario) 
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Fig. 6: Reference vs actual outputs (Outboard Ailerons and Inboard Elevators Locked at 11.5 sec) 
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Fig. 7: Reference vs Actual moments (Outboard Ailerons and Inboard Elevators Locked at 11.5 sec 
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Fig. 8: Latero-Directional Control commands (Outboard Ailerons and Inboard Elevator Locked at 11.5 sec) 
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Fig. 9. Longitudinal Control commands (Outboard Ailerons and Inboard Elevator Locked at 11.5 sec) 
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Fig. 10: Reference vs Actual moments (aggressive roll maneuver) 
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Fig. 11: Latero-Directional Control commands (aggressive roll maneuver) 
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Fig. 12: Lagrange Multipliers (aggressive roll maneuver) 
 

Conclusion 

In this study, a new algorithm for Control Allocation 
has been proposed. It is based on a Kalman filter 
approach and presents some advantages with respect to 
the existing methods. 

Indeed, the algorithm allows solving the control 
allocation problem by taking into account not only 
position and rate limits of the actuators but also the 
actuator dynamics thus ensuring that the computed 
solution is feasible, i.e. it can be followed by the actuation 
system. Furthermore, this approach does not suffer from 
the well-known problems of convergence and stability of 
numerical methods based on iterative methods. 

The effectiveness of the proposed Control Allocation 
strategy has been shown in both nominal and fault 
scenarios. To this end, a numerical analysis has been 
carried out by using 6DOF vehicle model of HAPD 
vehicle (a Flying Test Bed developed by Italian Aerospace 
Research Centre). Simulations have shown good 
capabilities of ensuring robust performance and stability 
also in presence of a fault affecting the control surfaces. 
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