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Abstract: In this study, the problem of transient conduction heat transfer 
for an infinite hollow cylinder under non-homogeneous mixed boundary 
conditions at the both surfaces simultaneously in radial direction with 
general heat source depend on time and radius, also general initial condition 
by the method of superposition and separation variables, is solved and 
temperature distribution is obtained analytically. A new series based on the 
Bessel functions is obtained for the problem of transient heat conduction 
without heat source by using separation of variables. Any function that has 
expanded conditions by the Fourier series can be expanded by this new 
series. Then, by expanding the heat source function according to this new 
series, the problem of transient heat transfer involving the thermal source 
has been solved and the radial temperature distribution is obtained. Due to 
the limited case studies, numerical solution of heat conduction equation 
with implicit finite difference method also is presented. Finally, a numerical 
example is given to compare between analytical and numerical solutions. 
 
Keywords: Hollow Cylinder, Mixed Boundary Condition, Heat Conduction, 
Fourier Series, Finite Difference Method, Heat Source 

 
Introduction  

Heat transfer problems are prominent in engineering 
due to several applications in industry and environment 
performance of propulsion systems such as the design 
of conventional space and water heating systems, 
which in the cooling of electronic equipment, in the 
design of refrigeration and air-conditioning systems 
and in many manufacturing processes, as well plume 
and chemical nuclides dispersion, global warming, for 
example (Bejan and Kraus, 2003; Zare and Ganjalikhan 
nassab, 2014; Pletcher et al., 2012; Zalba et al., 2003). 
One of the important mechanisms of heat transfer is the 
conduction heat transfer. Heat conduction in cylindrical 
materials and tubes has been extensively studied due to 
various industrial applications such as thermodynamics, 
food processing, fuel cells, electrochemical reactors, air 
conditioning, high density microelectronics, composite 
materials, solidification processes, heat treatment of 
metals and many others (Dincer, 1995a; Dincer, 1994; 

Dincer, 1994; Carslaw and Jaeger, 1959). Chemical 
engineers encounter transient conduction in the 
cylindrical geometry when they analyze heat loss 
through pipe walls, heat transfer in double-pipe or 
shell-and-tube heat exchangers and other similar 
situations. The transient heat conduction problems 
include of heat source with mixed boundary conditions 
have some applications in engineering. In the nuclear 
reactors, cylindrical rods are heated internally by 
fission and are immersed in cooling fluid to produce 
energy using heat transfer at the surface. If the process 
by wetting or immersing in a fluid involves only part of 
the cylinder, a mixed boundary value problem is 
formed (Jackson, 2002). Analytical solutions of 
different linear heat conduction equations are 
meaningful in heat transfer theory. In addition, they are 
very useful to computational heat transfer to verify 
numerical analysis and to develop numerical schemes, 
grid generation methods. The common applied 
techniques for analytical methods to solve the heat 
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conduction problem are Green functions, orthogonal 
expansions and the Laplace transformation (Carslaw and 
Jaeger, 1959). One of the effective methods for 
analytical solution of problem, including partial 
equations, is separation of variables. The partial 
differential equations are transferred into ordinary 
differential equations by separating the independent 
variables involved in the problem. A systematic 
procedure for determining the separation of variables 
for a given partial differential equation can be found in 
(Vedat, 1966; Adam et al., 2000). The superposition 
and the separation method are used in this study to get 
the analytical solutions of the temperature distribution. So 
far, many studies have been reported on conduction heat 
transfer in a hollow cylinder with different boundary 
conditions. (Holman, 2009) obtained the transient 
temperature field in a long solid cylinder, solid sphere and 
infinite flat plate, with a homogenous boundary condition. 
Exact analytical solution for Transient Heat Conduction in 
a Hollow Cylinder Using Duhamel Theorem was 
presented by Fazeli et al. (2013). Zhao et al. (2006) 
analyzed the temperature change when the thermal and 
thermo elastic properties are assumed to vary 
exponentially in the radial direction. Atefi et al. (2009) 
expressed an analytical solution of a two-dimensional 
temperature field in a hollow cylinder under a time 
periodic boundary condition using Fourier series. A 
number of analytical solutions for heat conduction can 
be obtained and found in the text book by Ozisik 
(1968). Recently, Wang and Liu (2013) have employed 
the method of separation of variables to develop the 
analytical solution of transient temperature fields for two 
dimensional transient heat conduction in a fiber-reinforced 
multilayer cylindrical composite. However, a cylindrical 
transient heat problem involved two non-homogeneous 
mixed boundary conditions simultaneously with general 
heat source and general initial condition not solved in the 
existing literature on this subject. In this study, the 
superposition and the separation method are used to get 
the analytical solutions of the temperature distribution. 
Initially, using these two methods, the heat transfer 
problem is solved, regardless of the heat source. Then, a 
new series will be obtained based on the Bessel 
functions. By expanding the heat source function based 
on this new series, an analytical solution to the main 
problem is found. Due to the lack of a similar analytical 
solution, for the purpose of comparison, the same problem 
is solved using the numerical method of implicit finite 
difference. Finally, a numeric example is solved with both 
methods and the results are compared. The results of these 
two comparisons show a very small difference between 
the results of analytic and numerical solutions. 

Problem Formulation 

The energy equation in cylindrical coordinates including 
radial conduction heat transfer and heat source in transient 
state with homogenous properties, is as follows: 

1 ( , ) 1
( , ) ( , ) ( , ) 0rr r t

q r t
T r t T r t T r t a r b t

r K α
′′

+ + = ≤ ≤ >  (1) 

 
where, q"(r,t) is the general heat source per unit volume 
inside the circular hollow cylinder, K is the thermal 
conductivity, α is the thermal diffusivity, r is the space 
variable, t is the time variable and a and b denote inner 
and outer radii, respectively. To simplify, 

( ) ( , )
,

q r t
Q r t

K

′′
′′ =  is considered. 

Boundary conditions at the inner and outer surfaces 
are mixed and non-homogeneous. These conditions can 
be shown as follow: 
 

( )
( )

1 1

2 2

, ( , )

, ( , )

r

r

T a t H T a t G

T b t H T b t G

+ =

+ =
 (2a) 

 

1,2i
i

i

K
H i

h
= =  (2b) 

 
where, K1 and K2 along with h1 and h2 are the thermal 
conductivities and the heat transfer coefficients at the 
inner and outer surfaces respectively. G1 and G2 is 
constant temperature of the surrounding medium at the 
inner and outer surfaces respectively. To better illustrate 
the physical concept, these two boundary conditions may 
be written as follows: 
 

( )1 1 1( , ) ( , )rK T a t h T a t G− = −  (3a) 

 

2 2 2( , ) ( ( , ) ) rK T b t h T b t G− = −  (3b) 

 
The concept of these two equations is that the heat 

flux on the internal and external surfaces are equal to 
the convection heat transfer between these surfaces and 
their surrounding medium. 

The general initial condition is: 
 

( ),0 ( )T r I r=  (4) 

 
where, I(r) is an initial temperature function. 
 

Analytical Solution 

 By considering Equation (2) as a boundary 
condition, the problem cannot be solved directly. 
Therefore, the solution of the Equation (1) according to 
the superposition method can be considered as follows: 
 

( ) ( )0 1, ( , )T r t T r T r t= +  (5)  

 
where, T0(r) is the steady-state temperature and T1(r,t) 
is the transient-state temperature. Substituting (5) into 
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(1), (2) and (4), the differential heat conduction 
equation in steady-state is: 
 

0 0

1
( ) ( ) 0rr rT r T r

r
+ =  (6) 

 
And the boundary conditions of the steady-state are 

as follows: 
 

( )0 1 0 1( )rT a H T a G+ =  (7a) 

 
( )0 2 0 2( )rT b H T b G+ =  (7b) 

 
The transient differential equation is: 

 

( )1 1 1

1 1
( , ) ( , ) , ( , )rr r tT r t T r t Q r t T r t

r α
′′+ + =  (8) 

 
The conditions presented in Equations (9) and (10) 

must be satisfied: 
 

( )1 1 1, ( , ) 0rT a t H T a t+ =  (9a) 

 
( )1 2 1, ( , ) 0rT b t H T b t+ =  (9b) 

 
( ) ( ) ( )1 0,0 ( )T r I r T r E r= − =  (10) 

 
Equation (6) is the Euler ordinary differential 

equation. With solving this equation in radial direction, 
the steady solution T0(r) is: 
 

( ) ( )0  T r A Ln r B= +  (11)  

 
where, A and B are two constants to be determined. 
From the boundary condition, Equation (7a) and (7b), 
Constants A and B get the following: 
 

2 1G G
A

∆

− =  
 

 (12a) 

 

( ) ( )2 1
1 2

H H
G Ln b G Ln a

b a
B

   + − +   
   =

∆
 (12b) 

 
where, ∆ is defined by: 
 

2 1 0
b H H

Ln
a b a

   ∆ = + − ≠   
   

 (13) 

 
Solution of Transient-State Problem 

To solve the transient Equation (8), we first ignore 
the heat source term. Therefore: 

1 1 1

1 1
( , ) ( , ) ( , )rr r tT r t T r t T r t

r α
′ ′ ′+ =  (14) 

 
The boundary and initial condition are given by 

Equation (9) and (10). 
Using the separation of variables, the solution of 

Equation (14) is considered as follows: 
 

( ) ( )1 , . ( )T r t R r F t′ =  (15) 

 
Substituting (15) into (14), (9) and (10), the ordinary 

differential equation for variable of (r), is Bessel 
equation (Byerly, 2003) as follows: 
 

2
2 2 2

2
0

d R dR
r r r R

dr dr
λ+ + =  (16) 

 

( ) 1 | 0r a

dR
R a H

dr
=+ =  (17a) 

 

( ) 2 | 0r b

dR
R b H

dr
=+ =  (17b) 

 
where, λ2 is separation constant. The general solution of 
Equation (15) is as follows (Boas, 2006): 
 

( ) ( )1 0 2 0 ( )R r C J r C Y rλ λ= +  (18) 

 
where, J0(r) and Y0(r) and are Bessel functions of the 
first and second kind with order zero respectively 
(Boas, 2006). C1 and C2 are constants to be 
determined from the boundary conditions (17). 
Appling these boundary conditions: 
 

( ) ( )
( ) ( )

1 0 1 1

2 0 1 1 0

C J a H J a

C Y a H Y a

λ λ λ

λ λ λ

 −  

+  −  = 
 (19a) 

 

( ) ( )
( ) ( )

1 0 2 1

2 0 2 1 0

C J b H J b

C Y b H Y b

λ λ λ

λ λ λ

 −  

+  −  = 
 (19b) 

 
For having nontrivial solution, the determinant of 

Equation (19) must be zero, thus the transcendental 
equation can be obtained as: 
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0 1 1 0 2 1

0 2 1 0 1 1

.

. 0

J a H J a Y b H Y b

J b H J b Y a H Y a

ω λ λ λ λ λ λ λ

λ λ λ λ λ λ

=  −   −    

−  −   −  =   
 (20) 

 
Equation (20) in terms of λ, has infinite roots for the 

specified values of a, b, H1 and H2. Equation (20) can be 
rewritten as follows: 
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( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0 1 1 0 2 1

0 2 1 0 1 1

.

.

0 1,2,3,

j j j j j j j

j j j j j j

J a H J a Y b H Y b

J b H J b Y a H Y a

j

ω λ λ λ λ λ λ λ

λ λ λ λ λ λ

   = − −   

   − − −   
= = …

 (21) 

 
Here the eigenvalues λj (j = 1,2,3,…) are the j-th 

roots of the transcendental Equation (20). 
The relationship between C1, C2 from Equation (19a) 

or (19b) is obtained: 
 

( ) ( )
( ) ( )

0 2 1

2 1

0 2 1

j j j

j j j

J b H J b
C C

Y b H Y b

λ λ λ

λ λ λ

 − = −
 − 

 (22) 

 
So, the solution in r direction can be written as follows: 

 
( ) ( )1 j jR r C rϕ λ=  (23) 

 
where, C1j (j = 1, 2, 3,…) are constants and the Eigen 
functions ϕ(λjr) is as follows: 
 

( ) ( ) ( ) ( )
( ) ( ) ( )

0 2 1 0

0 2 1 0

j j j j j

j j j j

r Y b H Y b J r

J b H J b Y r

ϕ λ λ λ λ λ

λ λ λ λ

 = − 

 − − 

 (24) 

 
Generally, homogeneous 2-point Boundary Value 

Problem (BVP) with homogeneous.  
Boundary conditions have infinite number of 

solutions and the set of Eigen functions, form an 
orthogonal system with respect to the weight function r, 
over interval a≤r≤b (Zill et al., 2011). Since Equation 
(16) and (17) are homogeneous 2-point boundary value 
problem with homogeneous boundary conditions, thus 

( ){ }
1

j
j

rϕ λ
∞

=
is the sequence of Eigen functions of a (BVP) 

on an interval [a b] and can be written: 
 

( ) ( ). . 0
b

j k
a

r r r dr j kϕ λ ϕ λ = ≠∫  (25) 
 

Using this property, each piecewise smooth function 
like f(r) in interval (a, b), can be expanded in terms of 
the Eigen functions ϕ(λjr) as follows: 
 

( ) ( )
1

.j j

j

f r C rϕ λ
∞

=

=∑  (26) 

 
For obtaining Cj the both side of Equation (26) must 

be multiplied by r.ϕ(λjr) and integrate from a to b: 
 

( )
( )2

. ( ). .

. .

b

j
a

j b

j
a

r f r r dr
C

r r dr

ϕ λ

ϕ λ
= ∫

∫
 (27) 

 
Now, to find the solution T1(r,t) in Equation (8) we 

use the Eigen functions expansion method and assume 
the solution to be in the form: 

( )1 1
1

( , ) ( ).j j

j

T r t T t rϕ λ
∞

=

=∑   (28) 

 
The heat source function is expanded in terms of 

Eigen functions as follows: 
 

( ) ( )
1

, ( ).j j

j

Q r t Q t rϕ λ
∞

=

′′ ′′=∑  (29) 

 
Substituting (28) and (29) into (8) yields the 

following equation: 
 

( ) ( )

( ) ( )

1
1

1

1
. ( )

1
( ) 0

rr j r j j

j

j j j

r r T t
r

Q t T t r

λ λ

λ

ϕ ϕ

ϕ
α

∞

=

 +  

 ′′+ − =  

∑

&

 (30) 

 
Using Equation (24), ϕrr, are calculated as follows: 

 

( ) ( ) ( )2.
r j

rr j j j

r
r r

r

ϕ λ
ϕ ϕλ λλ= − −  (31) 

 
After substituting (31), into (30), we obtain the 

following characteristic equation: 
 

( ) ( ) ( ) ( )2
1 1

1

1
. 0j j j j j

j

T t T t Q t rλ ϕ λ
α

∞

=

 ′′− − + =  
∑ &  (32) 

 
Thus: 

 

( ) ( ) ( )2
1 1

1
. 0j j j jT t T t Q tλ

α
′′− − + =&  (33) 

 
The initial condition for the nonhomogeneous 

ordinary differential Equation (33) can be calculated 
from Equation (10) and (28) as follows: 
 

( ) ( ) ( )1 1
1

,0 (0).j j

j

T r E r T rϕ λ
∞

=

= =∑  (34) 

 
T1j(0) is given by the orthogonality condition: 

 

( )
( )

( )
1

2

. ( ). .
0

. .

b

j
a

j b

j
a

r E r r dr
T

r r drϕ

λ

λ

ϕ
= ∫

∫
  (35) 

 
The solution of Equation (33) with initial condition 

(35) is: 
 

( ) ( ) ( )
2 2( )

1 10
. 0 .j j

t t t t

j j jT t Q t e dt T e
αλ αλα − − −′′= +∫  (36) 

 
In Equation (36), ( )jQ τ′′  is unknown. Again, by 

the orthogonality condition and using Equation (29), 
we can write: 
 

( )
( ) ( )

( )

''

2

. , . .

. .

b

j
a

j b

j
a

Q t d
Q

d

ξ ξ ϕ λ ξ ξ
τ

ξ ϕ λ ξ ξ
′′ = ∫

∫
 (37) 
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Plugging (37) into (36) the result is as follows: 
 

( )
( ) ( )

( )
( )

2 2( )
1 10 2

. , . .
. 0 .

. .

j j

b

t j t t ta
j jb

j
a

Q t d
T t e dt T e

d

αλ αλ
ξ ξ ϕ λ ξ ξ

α
ξ ϕ λ ξ ξ

− − −
 ′′
 = +
 
  

∫
∫

∫
 (38) 

 
Substituting (38) into (28), the transient-state solution is as follows: 

 

( ) ( )
( )

( )
( )

( )
2 2
j j( t ) t

1 0 2 2
1

.Q ξ, . . . ( ). .
( , ) .e d .e .

. . . .

b b

t j jta a
jb b

j
j j

a a

t d E d
T r t t r

d d

αλ αλ
ξ ϕ λ ξ ξ ξ ξ ϕ λ ξ ξ

α ϕ λ
ξ ϕ λ ξ ξ ξ ϕ λ ξ ξ

∞
− − −

=

     ′′     = +               

∫ ∫∑ ∫
∫ ∫

 (39) 

 
Finally, using the superposition principle in accordance with Equation (5) with the sum of the transient and 

steady-state solutions, the solution of the conduction heat transfer Equation (1) is as follows: 
 

( ) ( )
( )

( )
( )

( )

( )
( ) ( )

2 2
j j( t ) t

0 2 2
1

2 1
1 2

2 1

.Q ξ, . . . ( ). .
( , ) .e d .e .

. . . .

0

b b

t j jta a
jb b

j
j j

a a

t d E d
T r t t r

d d

H H
G Ln b G Ln a

G G b a
Ln r

αλ αλ
ξ ϕ λ ξ ξ ξ ξ ϕ λ ξ ξ

α ϕ λ
ξ ϕ λ ξ ξ ξ ϕ λ ξ ξ

∞
− − −

=

     ′′     = +               

   + − +   −     + + ∆ ≠ ∆ ∆ 

∫ ∫∑ ∫
∫ ∫

 (40) 

 
where, ∆ is calculated from Equation (13). 

To simplify the answer and to plot the result, 
Equation (40) is converted into dimensionless form, by 
assuming the dimensionless numbers given below: 
 

( ) ( )

( )

( ) ( )

* * *
2

*

2
*

, , , ,

, 1,2 ,

, .
, ,  

r r

i i i i
i

i r r

i

i r

I rr a T t
r r

b b T T b

G h b G Bi
G i

K T T

Q r t bb
Bi G r t

H T

α
η θ θ τ= = = = =

= = =

′′
= =

 (41) 

 
where, r

*, η, θ,θ*, Tr, τ, Bi, *,
i

G G  are dimensionless 

radius, dimensionless thickness, dimensionless 
temperature, dimensionless initial temperature function, 
reference temperature Fourier number, Biot number, 
Dimensionless parameter in relation to Gi  and 
dimensionless number of the heat source, respectively.  

The boundary value problem of the heat conduction 
in dimensionless form is: 
 

* * **

1
r r r

G
r

τθ θ θ+ + =  (42) 

 

( ) ( ) *
1

*
1 1

,1
,

G

Bi r Bi

θ η τ
θ η τ

∂
+ =

∂
 (43a) 

 

( ) ( ) *
2

*
2 2

1,1
1,

G

Bi r Bi

θ τ
θ τ

∂
+ =

∂
 (43b) 

( ) ( ),0r rθ θ∗ ∗ ∗=  (43c) 

 
Thus, the dimensionless Equation (40) is as follows: 

 

( ) ( )

( ) ( )
( )

( ) ( ) ( )
( )

( )

2
j

2
j

* *
0

1

τ (τ )η

10 2

η *

1 *j 1
0 τη

1 2

η

θ r , τ θ r

. ξ, . .
.e d

. .
 . r  

.(θ θ ). .
.e

. .

j t

j

j

j

j

t d
t

d

d

d

λ

λ

ξ ϕ ξ ξ

ξ ϕ ξ ξ
ϕ λ

ξ ξ ξ ϕ ξ ξ

ξ ϕ ξ ξ

λ

λ

λ

λ

− −

∞

=

−

=

   
   
   
       +  
  −
  +   
    

∫
∫

∫
∑

∫
∫

G

 (44) 

 
where: 
 

( )

*
0

* *
*1 2 2 1

* *
1 2

* *
2 2
2
2 1 1

. .

.

( )

1
( )

1
, * 0

.

Bi .η

r

Bi G i G
Ln r

Bi Bi

G G
Ln

B

B

Bi i

θ

η

 −
 

∆ ∆

 = +  
 

     
− + ≠     

 



  
∆

  

 (45) 

 

*

2 1

1 1
( )

.
Ln

Bi Bi
η

η
 

− + −= 


∆ 


 (46) 

 
Numerical Solution 

 In the study of transient heat conduction in hollow 
cylinders under two non-homogeneous mixed boundary 
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conditions simultaneously, with general internal heat 
source and initial condition, only limited studies can be 
found. To check the quality and accuracy of the analytical 
solution, in this section using the Finite Difference 
Method (FDM), numerical solution of the problem is also 
formulated. Then, a numerical example is given to 
compare analytical solution and numerical solution. 

Using the implicit finite difference method, the 
dimensionless partial differential Equation (42) and 
conditions (43) are discrete to the algebraic equations. 
Introduce a mesh or nodes *

i
r , (i = 1,2, …, N) with 

uniform spacing ∆r
*. Consider also a mesh in time formed 

by instants of time separated by a constant amount of time 
∆τ. The mesh points in time are τ1, τ2, …τ1, τj+1,… τm. 
Note that time level t1 represents the initial condition of 
the system. An implicit scheme is readily obtained by 
using a central differences formula for the space derivative 
and an Euler forward difference for the time derivative. 
Hence, writing ( )*

,, ji i jr τθ θ≈ , the FDM analog is: 
 

( ) ( )* * * *
, 1, 1 1, 1 , 1

, 1 , 1* *2

   2

.

i j i i j i i j i j

i j i j

i

r r r r

r r

θ θ θ θ

τ
θ τ

− + + + +

+ +

 −∆ + +∆ − 

 −∆
× + ∆ 

∆

=

−


G

 (47) 

 

where, ( )*
, 1 1,i j i jr τ+ +=G G . Equation (47) for the first node  

( )*
1r η=   and the last node ( )* 1Nr = is written as follows: 

 

( ) ( )* *
1, 2, 1 2, 1 1, 1

, 1 1, 1*2

  2

 

 

j j j j

i j j

η r η r

r
η r

θ θ θ θ

τ
θ

− + + +

+ +

 = −∆ + +∆ − 

 −∆
× + − ∆ ∆ 

G

 (48) 

 

( ) ( ), 1, 1 1, 1 , 1

, 1 , 12

1 1 2

.

N j N j N j N j

N j N j

r r

r

θ θ θ θ

τ
θ τ

∗ ∗
− + + + +

+ +∗

 = − ∆ + + ∆ −

− × + 



∆


−


∆

∆
G

 (49) 

  
In Equation (48) and (49), the auxiliary node to the 

left of node 1 will be labeled node -2 and the one to the 
right of node N will be node N + 1. These nodes are 
fictitious (ghost node) they are only a device to obtain 
higher accuracy and do not appear in the final formulae. 
Second order accurate central difference formulae are 
derived by performing differential energy balances to 
approximate the corresponding boundary condition and 
the temperature of the ghost nodes is eliminated by 
combining the result with the finite difference formula 
corresponding to the boundary node. According to the 
boundary conditions in Equation (43a), a second order 
accurate finite difference approximation at (r* = η) is: 

*
2, 1 2, 1 1

1, 1 *
1 1

1

2
j j

j

G

Bi r Bi

θ θ
θ + − +

+

− 
+ = 

∆ 
 (50) 

 
A similar approximation at at (r* = 1) yields: 

 
*

1, 1 1, 1 2
, 1 *

2 2

1

2
N j N j

N j

G

Bi r Bi

θ θ
θ + + − +

+

− 
+ = 

∆ 
 (51) 

 
Combining with the finite difference 

approximation according to the Equation (48) and 
(49) and rearranging yields: 
 

( ) ( )* *2 *
1, 2, 1 1 1*2

1 1
1, 1 1, 1*2 *

2 2

2 2
1 .

j j j

j j

r r G
r
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G

r r

τ
θ ηθ η τ

η

τ τ τ
θ τ

η

+ +

+ +

 −∆  = + − ∆ + ∆   ∆ 

 ∆ ∆ ∆
+ − + + −∆ ∆ ∆ 

 (52) 

 
and: 
 

( ) ( )* *2 *
, 1, 1 2 1*2

2
2 , 1 , 1*2 *

2 2

2 τ 2Bi τ
Bi τ 1 .

r r

N j N j j

N j N j

r r G
r

G

τ
θ θ τ

θ τ

− + +

+ +

−∆   = + ∆ + ∆  ∆ 
∆ ∆ + + + ∆ + − ∆ ∆ ∆ 

 (53) 

 
Equation (47), (52) and (53) are a nice tri-diagonal 

system of algebraic equations. This set of algebraic 
equations can be solved by Thomas algorithm (El-Mikkawy 
and Moawwad, 2004). 

Verification 

Verification of the New Series 

 Because of the analytical transient- state solution of 
the transient heat transfer in hollow cylinder with mixed 
boundary conditions is dependent on the series given in 
Equation (26), here, with an example, the precision of 
this series is investigated. Firstly, to expansion a function 
by this series, the roots of Equation (21) must be 
obtained. A graph of Equation (21), is shown in Fig. 1. 

For the solution region, [1, 10] and amounts of, H1 
= H2 = 10. The first 21 roots of this equation are given 
in Table 1. 

Let’s assume that the function f(r) to be expanded as 
in Equation (26) is the square function expressed as: 
 

( )
1       1 5

1         5 10

for r
f r

for r

≤ ≤ 
=  

− < ≤ 
 (54) 

 
This function is piecewise smooth in solution region 

[1, 10]. Furthermore Both H1 and H2 are equal to 10 (m). 
The function expressed by Equation (54) and three 
approximate expansions are plotted in Fig. 2.  
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Fig. 1: Equation (20), as ʎ for H1 = H2  = 10 
 

 
 

Fig. 2: Square function with Equation (46) and three approximated expansion With the number of different sentences, in [1, 10] and 
with H1 = H2  = 10 

 
Table 1: First twenty-one roots of Equation 20, in solution 

region [1, 10] for H1 = H2  = 10  

λj for H1 = 10 H2 = 10 a = 1 and b = 10 
0.1121 2.4580 4.8945 
0.4057 2.8054 5.2430 
0.7369 3.1531 5.5917 
1.0765 3.5011 5.9404 
1.4197 3.8492 6.2891 
1.7648 4.1975 6.6379 
2.111 4.5460 6.9866 

 
Table 2: First twenty-one Cj Square function with Equation 

(46) in [1,10] and with H1 = H2 = 10 
j Cj j Cj j Cj  
1 -107.7978 8 -0.4516 15 -0.0406 
2 -18.0603 9 -0.4908 16 -0.1962 
3 -4.2623 10 -0.3128 17 -0.1096 
4 -2.2454 11 -0.0660 18 -0.0072 
5 -1.4590 12 -0.2569 19 -0.0640 
6 -1.1704 13 -0.2431 20 -0.1444 
7 -0.3566 14 -0.0814 21 -0.0267 

It is obvious that, by increasing the number of series 
sentences fluctuation range around the main function is 
lower from the same radial domain. Summation over the 
first 21 terms produced an acceptable estimation in the 
interval [1,10] with some apparent oscillations around 
the exact function. The calculated Cj coefficients for this 
function are shown in Table 2.  

The Cj coefficients have a general absolute level of 
<1 except C1 to C6. The coefficients are less than one, 
indicating that their associated terms in the series are 
very small. 

Comparison between Analytical Solution and 

Numerical Solution 

As seen, the analytical solution to the problem of the 
transient heat conduction in a hollow cylinder, including 
general heat source with non-homogeneous mixed 
boundary conditions at the both boundaries, is somewhat 
complicated. Thus, in this section, to better 
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understanding of the analytical solution, a numerical 
example is considered. Then, analytical solution is 
compared with numerical solution.  

Consider the transient heat conduction in a hollow 
cylinder with general heat source as follows: 
 

( ), . tQ r t r e−′′ =  (55) 

 
According to the conditions of the problem, the 

dimensionless number of the heat source is as follows: 
 

( )* * 36τ, 4.32 r .eG r τ −=  (56) 

 
The boundary conditions in dimensionless form are 

as follows: 
 

( ) ( )
*

θ η,τ5 4
θ η, τ

3 r 5

∂
+ =

∂
 (57a) 

 

( ) ( )
*

1,5 6
1,τ

6 5r

θ τ
θ

∂
+ =

∂
 (57b) 

 
According to the boundary conditions, can be writing: 

 

1

3

5
Bi =  (58a) 

 

2

6

5
Bi =  (58b) 

 
Dimensionless initial condition is: 

 

( )*θ ,0 1r =  (59) 

Figure 3 depicts analytical and numerical 
dimensionless temperature profiles along the radial of 
the hollow cylinder at different times. To calculate the 
analytical radial dimensionless temperature distribution, 
twenty-one sentences from series are used in Equation 
(44) and in the numerical method, number of the mesh 
points in space are twenty-one. 

In addition, the temperature distribution in steady-
state is also shown in this graph. As can be seen, the 
distribution of numerical and analytical temperatures has 
little difference. It is clear that as the time pass, the 
temperature distribution in the cylinder increases and 
approaches to steady-state temperature. In addition, the 
rate of increase in temperature at the inner surface is 
higher than the outer surface, thus direction of heat 
transfer is, from the inner surface to the outer surface. In 
order to analyze the temperature distribution along the 
radial of the hollow cylinder, all three factors must be 
considered: initial condition, boundary conditions and 
heat source function. Despite the increase in radius, the 
power of the heat source increases, but the outer 
surface temperature is lower than the inner surface 
temperature. The reason for this behavior is the 
boundary conditions of the problem, because of 
Bi2>Bi1, so the convection heat transfer from the outer 
surface is greater and the temperature drop in this area 
is higher. To show the effect of time on the temperature 
of the internal, middle and external surfaces, in Fig. 4, 
the analytical and numerical temperature variations of 
these surfaces are shown with time.  

Furthermore, In Table 3, the numerical value of 
analytical temperature variations of these surfaces from 
the initial time to the steady state are given for several τ 
values. Obviously, the temperatures of these surfaces 
will increase over time.  

In Fig. 5, a schematic of the geometry of the problem 
and the direction of heat transfer are shown. 

 

 
 

Fig. 3: Analytical and numerical dimensionless radial temperature variations in hollow cylinder from initial time to the steady state 
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Fig. 4: Analytical and numerical dimensionless temperature variations at the inner, middle and outer surfaces of the hollow 

cylinder with Fourier number 
 

 
 
Fig. 5: The schematic of a hollow cylinder contains heat source, under non-homogeneous mixed boundary conditions in the both 

surfaces along with the direction of heat transfer 
 
Table 3: Analytical dimensionless temperatures at the inner, 

middle and outer surfaces of the hollow cylinder at 
various dimensionless time 

 r* 

 ------------------------------------------------------ 
τ 0.67 0.83 1.0 
0 1.000 1.000 1.000 
0.111 1.212 1.186 1.181 
0.25 1.309 1.27 1.252 
0.389 1.379 1.333 1.304 
0.528 1.432 1.38 1.344 
0.667 1.471 1.415 1.374 
0.805 1.501 1.442 1.396 
0.944 1.524 1.524 1.413 
1.083 1.541 1.477 1.426 
1.222 1.554 1.488 1.435 
1.361 1.563 1.497 1.442 
τ→∞ 1.593 1.522 1.464 

Conclusion 

In this article, two analytical and numerical solutions 
were presented for the problem of transient heat 
conduction in hollow cylinder with general source term, 
under mixed non-homogeneous boundary condition at 
the inner and outer surfaces simultaneously. By solving 
the governing equation for conduction heat transfer, 
temperature distribution was obtained. An Analytical 
solution was expressed based on a new series. Using this 
series, each piecewise smooth function can be expanded. 
The quality of the series was examined with an example. 
Numerical solution was performed using implicit finite 
difference method. The solutions obtained from the analytic 
and numerical methods were compared with a numerical 
example. Due to the difference in the nature of these two 
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methods, the resulting solutions differed slightly. 
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