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Abstract: The Assuric Structural Groups are the most well-known 
classification and modulation used in machine and machine theory, and even 
though other modular classifications adapted to robots have emerged today, 
they still remain a reference classification in industrial mechanics and 
engineering. Diada in the mechanics can be studied similarly to the diode in 
the electronics, the triad is studied in the theory of machine and robot 
mechanisms similar to triode (or transistor) study in electronics. Further, the 
theory of the mechanisms is studying: tetrad, pentad ... but it cannot go 
further than for a 12th-order structural group because the efficiency of 
mechanisms using such very large groups is very small and such a 
mechanism can be blocked in operation. If the similarity between the 
mechanisms and the electronics is correct up to the 5-6th class, the larger 
ones are of no use, the advantages of the electronics being that it can also 
function in the large or very large group with high yields, without blockages, 
which is why the integrated circuits and electronic chips were born. The 
present work is intended presenting a triad kinematics general used only with 
the kinematic couplings rotational (C5), because such approaches are rare in 
the area, although triad is a structured group Assuric often used. The 
calculation method presented is an analytical one. 
 
Keywords: Mechanisms, Robots, Mechatronics, Structural Groups, Dyad, 
Triad, Kinematics, Triad Kinematics, An Analytical Method 

 
Introduction 

In machines, mechanisms and robots theory, 
structural or modular groups are often used to ease 
calculations of various mechanisms used on machines 
and industrial robots. 

The most well-known structural classification in 
groups is the Assuric one which use dyads and triads... 

A less studied Assuric group is the triad, which is 
why the present paper wants to present the analytical 
kinematics of this third-class structural group, 
determined by an original method. 

Structural groups have been thoroughly analyzed in 
some specialized papers (Pelecudi, 1967; Antonescu, 2000; 
Comănescu et al., 2010), but not from an analytical point of 
view, but more structurally and graphically. 

The Assuric Structural Groups are the most well-
known classification and modulation used in machine 

and machine theory, and even though other modular 
classifications adapted to robots have emerged today, 
they still remain a reference classification in industrial 
mechanics and engineering.  

Dyad in the mechanics can be studied similarly to 
the diode in the electronics, the triad is studied in the 
theory of machine and robot mechanisms similar to 
triode (or transistor) study in electronics. Further, the 
theory of the mechanisms is studying: tetrad, pentad 
... but it cannot go further than for a 12th-order 
structural group because the efficiency of mechanisms 
using such very large groups is very small and such a 
mechanism can be blocked in operation. If the 
similarity between the mechanisms and the electronics 
is correct up to the 5-6th class, the larger ones are of 
no use, the advantages of the electronics being that it 
can also function in the large or very large group with 
high yields, without blockages, which is why the 
integrated circuits and electronic chips were born.  
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The present work is intended presenting a triad 
kinematics general used only with the kinematic couplings 
rotational (C5), because such approaches are rare in the 
area, although triad is a structured group Assuric often 
used. The calculation method presented is an analytical 
one (Pelecudi, 1967; Antonescu, 2000; Comănescu et al., 
2010; Aversa et al., 2016a; 2016b; 2016c; 2016d; 2017a; 
2017b; 2017c; 2017d; 2017e; Berto et al., 2016a; 2016b; 
2016c; 2016d; Mirsayar et al., 2017; Cao et al., 2013; 
Dong et al., 2013; De Melo et al., 2012; Garcia et al., 
2007; Garcia-Murillo et al., 2013; He et al., 2013; Lee, 
2013; Lin et al., 2013; Liu et al., 2013; Padula and 
Perdereau, 2013; Perumaal and Jawahar, 2013; Petrescu 
and Petrescu, 1995a; 1995b; 1997a; 1997b; 1997c; 2000a; 
2000b; 2002a; 2002b; 2003; 2005a; 2005b; 2005c; 2005d; 
2005e, 2016a; 2016b; 2016c; 2016d; 2016e; 2013; 2012a; 
2012b; 2011; Petrescu et al., 2009; 2016a-e; 2017a-ae; 
Petrescu and Calautit, 2016a-b; Reddy et al., 2012; 
Tabaković et al., 2013; Tang et al., 2013; Tong et al., 
2013; Wang et al., 2013; Wen et al., 2012; Antonescu and 
Petrescu, 1985; 1989; Antonescu et al., 1985a; 1985b; 
1986; 1987; 1988; 1994; 1997; 2000a; 2000b; 2001). 

Materials and Methods 

The kinematic scheme of a 6R triad can be seen in 
Fig. 1. 

The kinematic equations of positions are written for 
two independent contours in the form of the system (1). 

Although a system of four equations with four 
unknowns results, solving the system is more difficult 
because the equations are transcendental. 
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Write the system (1) in form (2) and lift each 

equation to square, then add the first two and the last 
two to eliminate the two unknown (ϕ2 and ϕ4). We 
obtain the new system (3) of two equations with two 
unknowns which are arranged successively in the 
forms (4), (5) and (6). 
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In order to solve the transcedental system (6), the 
method of successive approximations is used, 
considering the known trigonometric functions by 
knowing the angles ϕ3 and ϕ5 (they are given an initial 
value of any of these two angles for the priming of the 
iterative calculations) and the differences are calculated 
∆ϕ3 and ∆ϕ5. The system (6) is rewritten into shape (8) 
by replacing the angles with the angle plus a difference 
according to the relations (7). 
 

( )
( ) ( ) ( )

( )
( ) ( ) ( )

3 3 3 3

3 3 3 3

5 5 5 5

5 5 5 5

5 3

5 3 5 3 5 3

5 3

5 3 5 3 5 3

cos cos sin

sin sin cos

cos cos sin

sin sin cos

cos

cos sin

sin

sin cos

 ⇒ − ∆ ⋅
 ⇒ + ∆ ⋅


 ⇒ − ∆ ⋅

 ⇒ + ∆ ⋅


 − ⇒
 − − ∆ − ∆ ⋅ −




− ⇒
 − + ∆ − ∆ ⋅ −

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

     (7) 

 

( ) ( )
( ) ( )
( )
( )
( ) ( )
( ) ( )
( ) ( )

2 22 2 2
2 3

3 3 3 3

3 3 3

3 3 3

5

5 5

2 cos 2 sin

2 sin

2 cos

2 cos sin cos

2 cos sin sin

2 cos

C B C B

C B C B

C B

C B

C B C B

C B C B

C B C B

l x x y y l g

l x x l y y

l x x

l y y

g x x y y

g x x y y

g y y x x

= − + − + + +

⋅ ⋅ − ⋅ + ⋅ ⋅ − ⋅

− ⋅ ⋅ − ⋅ ⋅ ∆ +

+ ⋅ ⋅ − ⋅ ⋅ ∆ +

+ ⋅ ⋅  − ⋅ + − ⋅  ⋅ 

− ⋅ ⋅  − ⋅ + − ⋅  ⋅ ⋅ ∆ 

+ ⋅ ⋅ − ⋅ − − ⋅

ϕ ϕ

ϕ ϕ

ϕ ϕ

α α ϕ

α α ϕ ϕ

α

( ) ( )
( )
( )
( )
( )
( )
( )

5

5 5

3 5 3

3 5 3 5

3 5 3 3

3 5 3

3 5 3 5

3 5 3

sin sin

2 cos sin cos

2 cos cos

2 cos sin

2 cos sin

2 sin sin

2 sin cos

2 sin cos

C B C Bg y y x x

g l

g l

g l

g l

g l

g l

  ⋅ 

+ ⋅ ⋅  − ⋅ − − ⋅  ⋅ ⋅ ∆ 
+ ⋅ ⋅ ⋅ ⋅ − −

− ⋅ ⋅ ⋅ ⋅ − ⋅ ∆ +

+ ⋅ ⋅ ⋅ ⋅ − ⋅ ∆ −

− ⋅ ⋅ ⋅ ⋅ − −

− ⋅ ⋅ ⋅ ⋅ − ⋅ ∆ +

+ ⋅ ⋅ ⋅ ⋅ − ⋅ ∆

α ϕ

α α ϕ ϕ

α ϕ ϕ

α ϕ ϕ ϕ

α ϕ ϕ ϕ

α ϕ ϕ

α ϕ ϕ ϕ

α ϕ ϕ ϕ

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

( )

3

2 22 2 2
4 3

3 3 3 3 3

3 3 3 3 3

5 5 5

5 5 5

3 5 3 3

2 cos 2 sin

2 sin 2 cos

2 cos 2 sin

2 sin 2 cos

2 cos 2 sin

C D C D

C D C D

C D C D

C D C D

C D C D

l x x y y l e

l x x l x x

l y y l y y

e x x e x x

e y y e y y

e l e l

= − + − + + +

⋅ ⋅ − ⋅ − ⋅ ⋅ − ⋅ ⋅ ∆

+ ⋅ ⋅ − ⋅ + ⋅ ⋅ − ⋅ ⋅ ∆

+ ⋅ ⋅ − ⋅ − ⋅ ⋅ − ⋅ ⋅ ∆

+ ⋅ ⋅ − ⋅ + ⋅ ⋅ − ⋅ ⋅ ∆

+ ⋅ ⋅ ⋅ − − ⋅ ⋅ ⋅

ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ( )
( )

5 3 5

3 5 3 32 sine l







































 − ⋅ ∆
+ ⋅ ⋅ ⋅ − ⋅ ∆



ϕ ϕ ϕ

ϕ ϕ ϕ

 (8) 

 
 
Fig. 1: The kinematic scheme of a 6R triad 
 

The system (8) is arranged in the form (9) by 
grouping the corresponding terms so that a linear system 
of two equations with two unknowns appears, the 
unknown being ∆φ3 and ∆ φ5. 

It is now clear what the purpose of adding finite 
differences was. The nonlinear system has linearized in 
the form of a type system (10). 

The solutions of the system (10) are given by the 
relations (11). 
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The coefficients of the system (10) are identified by 

(9) given by the relational system (12). 
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In step 1 it is determined∆φ 0 0

3 5andφ φ∆ ∆  in radii, 

which are added to the values initially considered to 
obtain the angular values for the first iteration, according 
to the system (13). 
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If the values obtained are very close to the exact 

ones, the iterative process stops. Otherwise successive 
approximations will continue until the desired values are 
obtained. The final values φ3 and φ5 are considered to be 
OK when the error (difference) from their calculated 
value at the previous step is small enough. 

It then returns to the initial positional systems to 
determine the other two values, φ2 and φ4 using the 
system (14): 
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Once the four angular positions have been 

determined, the initial systems are derived to obtain 
angular velocities and then angular accelerations. 

The positioning system (1) is first derived to obtain 
the linear speed system (15): 
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For the simpler solution of the system (15) we 
eliminate in the first phase two of the four unknown by 
multiplying the first equation of the system with cosφ2, 
the second with sinφ2, the third with cosφ4 and the last 
with sinφ4. Then the first two equations and the last two 
are collected, resulting in the system (16) formed by two 
linear equations with two unknown equations: 
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To solve the system (16) we apply two steps. 
In the first step, the first system equation is amplified 

with e.sin(φ4-φ5) and the second with –g. sin(φ2-φ5-α).  
We then gather the two expressions obtained and 

result a relationship from which we explicitly explain it 
ω3 (see expression 17): 
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In the second step, the first system equation is amplified 

with sin(φ4-φ3) and the second with –sin(φ2-φ3).  
We then gather the two expressions obtained and 

result a relationship from which we explicitly explain it 
ω5 (see expression 18): 
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From the system (15) it is then explained from the 

first two equations amplified with –sin φ2 respectively 
cos φ2 the angular velocity ω2, (relation 19), and from 
the last two relations amplified with –sin φ4 respectively 
cos φ4 the angular velocity, ω4 (relation 20): 
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Appropriate angular accelerations are obtained most 

safely by direct derivation of corresponding angular 
velocities expressions. 

Write the expression (17) deployed (in form 21) to 
make it easier to derive. 
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The expression (21) of the angular velocity ω3 in 

relation to time is directly derived, and the 
corresponding angular acceleration (22) expression is 
obtained ε3, which then immediately becomes the 
form (23): 
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The angular velocity ω5 (relationship 24) is then 
written so that it can easily be derived: 
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The expression (24) is derived in relation to time to 

obtain the expression of the angular acceleration ε5 
directly. Thus, the relation (25) is obtained, from which 
the value of the angular acceleration ε5 in the form (26) 
is then explained: 
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The expression (27) of the angular velocity ω2 is further derived and the angular acceleration ε2 (relationship 28) is 

obtained directly: 
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Then the expression (29) of the angular velocity ω4 is 
derived, and the expression of the angular acceleration ε4 

(relationship 30) is obtained: 
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Results and Discussion 

The kinematics of inner dome couplings and weight centers on each element of the 6R diaphragm (Fig. 2 and 
relational systems 31-32) can be further determined: 
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With the help of the kinematics of the center of gravity, in the future, it is possible to determine the triad kinetostatic 

and its dynamics. 
Such groups have applications in mechanics, mechanisms, robots, thermal engines, aircraft. 
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Fig. 2: The kinematics of gravity centers at a 6R triad 

 

Conclusion 

The present work is intended presenting a triad 
kinematics general used only with the kinematic 
couplings rotational (C5), because such approaches are 
rare in the area, although triad is a structured group 
Assuric often used. The calculation theoretical method 
presented is an analytical one. 

Such groups have applications in mechanics, 
mechanisms, robots, thermal engines, aircraft. 
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