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Abstract: The dynamic calculation of a certain mechanism and of the 
piston crankshaft mechanism, used as the main mechanism for Otto 
internal combustion engines, also implies the influence of external 
forces on the actual, dynamic kinematics of the mechanism. Take into 
account the strong and inertial engine forces. Sometimes weight forces 
can also be taken into account, but their influence is even smaller, 
negligible even in relation to inertial forces that are far higher than 
gravitational forces. In the present paper, one carry out an original 
method of determining the dynamics of a mechanism, applying to the 
main mechanism of an Otto or diesel engine. The presented method of 
work is original and complete. Relationships (1) express the velocity of 
the center of gravity to calculate the moment of inertia (mechanical or 
mass, of the whole mechanism) reduced to the crank (2). In dynamic 
calculations, the first derivative of the reduced mechanical inertia 
moment, derived by the angle FI (relations 3-4), is also required. For 
dynamic calculation, it is also necessary to determine the expression of 
the total torque momentum and crank-resistance forces (relations 5-6). 
The differential equation of the machine (7) is arranged under the more 
convenient forms (8) to solve it. It is easily observed that a second-degree 
equation has been reached, which is solved by the known formula (9). 
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Introduction 

The gasoline engine wears us every day about of 
150 years. The Old Engine Otto (and his brother, 
Diesel) is today: Younger, more robust, more 
dynamic, stronger, more economical, more 
independent, more reliable, quieter, cleaner, more 
compact, more sophisticated and especially still 
necessary. At the global level, we can eliminate 
roughly 60,000 cars a year, but millions of new cars 
appear annually (Table 1), (Amoresano et al., 2013; 
Anderson, 1984; Bishop, 1950; Choi and Kim, 1994; 
De Falco et al., 2013a; 2013b; Ganapathi and 
Robinson, 2013; Heywood, 1988; Hrones, 1948; 

Karikalan et al., 2013; Leidel, 1997; Petrescu, 2012a; 
2012b; Rahmani et al., 2013; Ravi and Subramanian, 
2013; Ronney et al., 1994; Sapate and Tikekar, 2013; 
Sethusundaram et al., 2013; Zahari et al., 2013). 

There is a lot of discussion about the removal of 
the Otto engine, but nothing has yet been prepared to 
take its place. 

Let's talk a little about electric motors. An electric 
motor is an electrical machine that converts electricity 
into mechanical energy. If we talk in reverse, we are 
dealing with converting mechanical energy into 
electricity and is made by an electric generator. 
Generators and electric motors are extremely 
important, today more than ever. 



Relly Victoria Virgil Petrescu et al. / American Journal of Engineering and Applied Sciences 2018, 11 (1): 273.287 
DOI: 10.3844/ajeassp.2018.273.287 

 

274 

Table 1: World cars produced 
Year Cars produced in the world  
2011 59,929,016 
2010 58,264,852 
2009 47,772,598 
2008 52,726,117 
2007 53,201,346 
2006 49,918,578 
2005 46,862,978 
2004 44,554,268 
2003 41,968,666 
2002 41,358,394 
2001 39,825,888 
2000 41,215,653 
1999 39,759,847 

 
Most electric motors work by interacting with a 

magnetic field of an electric motor and the winding currents 
to generate force. In some applications, such as regenerative 
braking with traction motors in the transport industry, 
electric motors can also be used in the reverse direction as 
generators to convert mechanical energy into electricity, 
that is, they recover energy that otherwise would lose. 

Electric motors can be found in as diverse applications 
as industrial fans, blowers and pumps, machine tools, 
household appliances, power tools and disc drives, electric 
motors can be powered by DC sources such as Be batteries, 
cars or rectifiers; through AC (AC) sources, such as from 
the mains, inverters or generators. Small motors can be 
found in electric watches. General purpose motors with 
very standardized dimensions and features provide a 
convenient mechanical power for industrial use.  

The largest of the electric motors are used for ship 
propulsion, pipe compression and pumping-storage 
applications with a rating of 100 megawatts and today are 
increasingly used in industrial robots and in mechatronic 
mobile systems. Electric motors can be classified by types 
of power sources, internal construction, applications, 
output type of motion and so on. 

Electric motors are therefore used to produce linear 
or rotary forces and must be distinguished from devices 
such as magnetic solenoids and loudspeakers that 
convert electric power into motion but do not generate 
usable mechanical powers which are referred to as 
actuators and transducers. 

Perhaps the first electric motors were simple 
electrostatic devices created by the Scottish monk 
Andrew Gordon in the 1740s. Only today, after nearly 
three hundred years of existence, the electric motors 
begin to be put to work at their full capacity. 

However, in transports, although they have gone a 
long way, electric motors could not take the place of the 
Otto motor home, obviously primarily due to technical 
problems, then for reasons of dynamics and thirdly due 
to social reasons. 

Powering a car with electricity is difficult today, 
compared to vehicles equipped with internal combustion 
engines. 

The Otto engine still remains more dynamic than 
electric motors. 

Globally, two out of three jobs depend directly or 
indirectly on the automotive and machine-building 
industries, in particular of the Otto classical engines. 

If the current mode of production suddenly changed, 
almost half of the world's jobs would disappear, resulting 
in an extremely serious global social crisis (Aversa et al., 
2016a; 2016b; 2016c; 2016d; 2017a; 2017b; 2017c; 
2017d; 2017e; Berto et al., 2016a; 2016b; 2016c; 2016d; 
Mirsayar et al., 2017; Cao et al., 2013; Dong et al., 2013; 
Garcia et al., 2007; Garcia-Murillo et al., 2013; He et al., 
2013; Lee, 2013; Lin et al., 2013; Liu et al., 2013;      
Padula and Perdereau, 2013; Perumaal and Jawahar, 2013; 
Petrescu, 2012a; 2012b; Petrescu and Petrescu, 1995a; 
1995b; 1997a; 1997b; 1997c; 2000a; 2000b; 2002a; 2002b; 
2003; 2005a; 2005b; 2005c; 2005d; 2005e, 2016a; 2016b; 
2016c; 2016d; 2016e; 2013; 2012a; 2012b; 2011;    
Petrescu et al., 2009; 2016a; 2016b; 2016c; 2016d; 2016e; 
2017a; 2017b; 2017c; 2017d; 2017e; 2017f; 2017g; 
2017h; 2017i; 2017j; 2017k; 2017l; 2017m; 2017n; 
2017o; 2017p; 2017q; 2017r; 2017s; 2017t; 2017u; 
2017v; 2017w; 2017x; 2017y; 2017z; 2017aa; 2017ab; 
2017ac; 2017ad; 2017ae; Petrescu and Calautit, 2016a; 
2016b; Reddy et al., 2012; Tabaković et al., 2013;    
Tang et al., 2013; Tong et al., 2013; Wang et al., 2013; 
Wen et al., 2012; Antonescu, 2000; Antonescu and 
Petrescu, 1985; 1989; Antonescu et al., 1985a; 1985b; 
1986; 1987; 1988; 1994; 1997; 2000a; 2000b; 2001). 

Materials and Methods 

Figure 1 shows the kinematic scheme of an Otto 
internal combustion engine (Petrescu, 2012b). 

Relationships (1) express the velocity of the center 
of gravity to calculate the moment of inertia 
(mechanical or mass of the whole mechanism) reduced 
to the crank (2). In fact, squares of the velocities weight 
centers (S2 and S3) of the mechanism are required 
(Mirsayar et al., 2017; Cao et al., 2013; Dong et al., 
2013; Garcia et al., 2007; Garcia-Murillo et al., 2013; 
He et al., 2013; Lee, 2013; Lin et al., 2013; Liu et al., 
2013; Padula and Perdereau, 2013; Perumaal and 
Jawahar, 2013; Petrescu and Petrescu, 1995a; 1995b; 
1997a; 1997b; 1997c; 2000a; 2000b; 2002a; 2002b; 
2003; 2005a; 2005b; 2005c; 2005d; 2005e, 2016a; 
2016b; 2016c; 2016d; 2016e; 2013; 2012a; 2012b; 
2011; Petrescu et al., 2009; 2016a; 2016b; 2016c; 
2016d; 2016e; 2017a; 2017b; 2017c; 2017d; 2017e; 
2017f; 2017g; 2017h; 2017i; 2017j; 2017k; 2017l; 
2017m; 2017n; 2017o; 2017p; 2017q; 2017r; 2017s; 
2017t; 2017u; 2017v; 2017w; 2017x; 2017y; 2017z; 
2017aa; 2017ab; 2017ac; 2017ad; 2017ae;       
Petrescu and Calautit, 2016a; 2016b; Reddy et al., 
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2012; Tabaković et al., 2013; Tang et al., 2013;   
Tong et al., 2013; Wang et al., 2013; Wen et al., 
2012; Antonescu and Petrescu, 1985; 1989; 
Antonescu et al., 1985a; 1985b; 1986; 1987; 1988; 
1994; 1997; 2000a; 2000b; 2001): 
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Fig. 1: The kinematic scheme of an Otto internal combustion 

engine 

 
In dynamic calculations, the first derivative of the 

reduced mechanical inertia moment, derived from the 
angle φ (relations 3-4), is also required (Petrescu, 
2012b): 
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For dynamic calculation, it is also necessary to 

determine the expression of the total torque momentum 
and the crank-resistant strength (relations 5-6): 
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We now have everything we need to solve the 

dynamic (motion, Lagrange) equation of the machine, 
written in a differential form (7) (Petrescu, 2012b): 
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The differential equation of the machine (7) is 

arranged under the more convenient forms (8) to solve it: 
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It is easy to see that we have reached a second-

degree equation, which is solved by the known 
formula (9): 
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Considering the calculated angular velocity obtained 

instead of the constant, dynamic speeds and 
accelerations are obtained. We will keep track of several 
dynamic acceleration charts, obtained for different 
lengths of crank and rod. In Fig. 2 the length of the rod is 
slightly larger than that of the crank, which worsens the 
dynamics of the mechanism (Petrescu, 2012b). 

In Fig. 3, the length of the rod has increased very 
little and the dynamic operation of the piston is already 
greatly improved. Peaks are not so sharp anymore. 

By further increasing the length of the rod, while 
maintaining the constant length of the crank, more 
rounded accelerations, which are closer to sinusoidal 
shapes (Fig. 4-6), are obtained. 

Dynamic elongations are generally smaller than 
kinematics. 

Next, the angular acceleration values, ε, starting from 
the Lagrange Equation 7, already presented, will be 
determined (Petrescu, 2012b). 

Arrange Equation 7 in form (10) to explain the 
variable ε to be determined: 
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The variable angular velocity ω is now known so that 

the angular acceleration value can be determined 
directly, which occurs in the real cinematics of the 
mechanism, at the dynamic operating modes. 
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Fig. 2: Dynamic synthesis of the engine; r = 0.03 [m], l = 0.031 [m], n = 3000[rot/min] 
 

 
 

Fig. 3: Dynamic synthesis of the engine; r = 0.03 [m], l = 0.04 [m], n = 3000[rot/min] 
 

 
 

Fig. 4: Dynamic synthesis of the engine; r = 0.03 [m], l = 0.06 [m], n = 3000[rot/min] 
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Fig. 5: Dynamic synthesis of the engine; r = 0.03 [m], l = 0.1 [m], n = 3000[rot/min] 
 

 
 

Fig. 6: Dynamic synthesis of the engine; r = 0.03 [m], l = 0.15 [m], n = 3000[rot/min] 
 

It is now time to restore the kinematics of the mechanism (relations 11-12), considering the existence of the angular 
acceleration, ε, of the crank (Petrescu, 2012b): 
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Results 

The way Fig. 7 shows the acceleration diagram 
obtained (Petrescu, 2012b). 

Taking into account the variable angular velocity 
and the existence of variable cranial angular 
acceleration, the effect due to the dynamic crank 
angular displacement of the crank should also be 
considered. This is dynamically imposed by the 
crankshaft, so we will have to replace the rotation angle 
(or position) of the crank with its dynamic value 
computed as a compressor, since the crankshaft moves 
only after the laws imposed by it itself, Motor moments 
and other times a permanent drive force that drives all 
the shaft and hence all the cranks (spindles), drive due 
to the engine's all-wheel drive, inertia forces and extra 
high inertia imposed by the engine's steering wheel. 
The dynamic variation of the position angle obviously 
exists, but it can only be imposed by the crank itself, 
that is, the dynamics of the motor shaft itself. 

Angular variable velocity is determined with 
relation (13): 
 
 D CDω ω= ⋅  (13) 
 

Depending on time, the derivative of the position 
angle can be passed (expressed and according to the 
position angle, φ) according to the relation (14). If in its 
classical cinematic derivative it is 1, in the dynamic 
kinematics where this dynamic coefficient exists, the 
derivative of the position angle according to the 
position φ is the value D generally different from the 
value 1. The crank is dynamically influenced directly 
by the shaft the engine on which it is built, so that its 
dynamics will be compressor type that is driving it 
from the motor shaft (crankshaft): 

' Cd d d
D

dt d dt

ϕ ϕ ϕ
ϕ ω ω

ϕ
= ⋅ = ⋅ = ⋅  (14) 

 
We deduce from the relationship (14) the expression 

(15). Further, by integrating the dynamic coefficient D in 
relation to the variable φ, we get the expression (16), 
which is its value, ϕD i.e., the mathematical expression 
of the dynamic position angle: 
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 (16) 

 
By overlapping the dynamic effect of the position in 

the dynamic systems presented above, the acceleration 
diagram of Fig. 8 is obtained (Petrescu, 2012b). 

The dynamic effect seems to be good for the 
movement of the mechanism because it restricts the 
elongation of the acceleration, but when these areas 
are constrained with peaks, oscillations are created in 
the respective areas, which produce vibrations, beats, 
noises and even shocks, Better notable by the variable 
angular velocity model and dynamic positions (no 
longer considering the effect of ε variable) (see 
diagram in Fig. 9). 
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Fig. 7: Diagram of dynamic piston accelerations taking into account and the existence of angular acceleration ε:  r = 0.03 [m], l = 

0.05 [m], n = 3000[rot/min] 
 

 
 
Fig. 8: Diagram of dynamic piston accelerations taking into account variable angular velocity ωD, of angular acceleration ε and the 

variable value of the dynamic position angle: r = 0.03 [m], l = 0.05 [m], n = 5000[rot/min] 
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Fig. 9: Diagram of dynamic piston accelerations taking into account variable angular velocity ωD, of angular acceleration ε and the 

variable value of the dynamic position angle: r = 0.03 [m], l = 0.05 [m], n = 5000[rot/min] 
 

 
 
Fig. 10: Diagram of dynamic piston accelerations taking into account variable angular velocity ωD, of angular acceleration ε and the 

variable value of the dynamic position angle: r = 0.03 [m], l = 0.05 [m], n = 5000[rot/min] 
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Discussion 

There are four vibration zones instead of one for the 
Stirling engine for two complete rotation of the motor 
shaft, but all times are engine times (see the acceleration 
diagram in Fig. 10). The Stirling engine vibrations will 
be more significant than those of an Otto engine, but the 
Stirling engine's theoretical efficiency is much higher. 

Unfortunately, it is not fully realized in practice 
because it would require a temperature difference 
between the hot and cold sources much higher than those 
normally used so that the two engines become somewhat 
close in terms of their qualities and defects. 

However, the Otto engine was imposed on cars, with 
higher and better dynamics, greater adaptability to the 
different working regimes imposed, the Stirling engine 
having problems especially at the transient and startup 
modes (Petrescu, 2012b). 

Conclusion 

If an external combustion engine could not beat the 
Otto internal combustion engine when mounted on cars, 
the same thing did not happen in the field of general 
vehicles where the Diesel internal combustion engine" 
As well as the external Watt steam combustion, used for 
a long time on vehicles, locomotives, boats, boats, etc., 
but also as a stationary engine in plants, where the 
Stirling engine also performs very well. The steam 
engine can work at higher yields and with good 
dynamics and the disadvantages of burning lower fuels 
such as coal can be eliminated by burning oil, gas, 
alcohols, hydrogen, etc., or by vapor heating by other 
modern processes, with Induction resistors, etc. 

Let's not forget that the diesel engine was first created 
to work with peanut oil or plant oil. If diesel has become 
extremely polluting, we do not have to immediately 
dispose of the diesel engine, but it's enough to pass it on 
vegetable oils or hydrogen. 
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