Review

Some New Gears Aspects

Florian Ion Tiberiu Petrescu

ARoTMM-IFToMM, Bucharest Polytechnic University, Bucharest, (CE), Romania

Article history

Received: 05-10-2018
Revised: 24-10-2018
Accepted: 20-11-2018
Corresponding Author: Florian Ion Tiberiu Petrescu ARoTMM-IFToMM, Bucharest Polytechnic University, Bucharest, (CE), Romania
Email: scipub02@gmail.com

Abstract

In today's mechanical transmissions most widely used, the gears, are spread across all industries. For this reason, their importance has become overwhelming, which is why we want to recall in this paper some important aspects regarding toothed wheels. It is the geometry, cinematic, the forces and the yields of these mechanisms, which will be presented in the work in the form of newly synthesized relations on modern bases. Another important aspect in toothed wheels is their synthesis by modern methods that avoid tooth interference during operation. To avoid the interference between teeth, we must know the minimum number of teeth of the driving wheel, in function of the pressure angle (normal on the pitch circle, alpha0), in function of the tooth inclination angle (beta) and in function of the transmission ratio (i). In optimal and high-efficiency gearing, gears require a modern design with increased coverage. These achievements can only be achieved today in the context of lowering the value of the alpha engagement angle. Through all the aspects presented, which relate to the dynamics of gears, the work can be considered among those of the optimal dynamic synthesis of the gears.

Keywords: Gears, Gearboxes, Dynamic Synthesis, Yield

Introduction

Gears have spread today in all areas. They have the advantage of working with very high efficiency. In addition, tools can transmit large tasks. Regardless of their size, tools need to be synthesized carefully according to specific conditions.

This paper tries to present the main conditions that must be met for the correct synthesis of a tool.

The beginning of the use of pinion gears should be sought precisely in ancient Egypt at least a thousand years before Christ, where for the first time wheel drive units were used for irrigation and worm gear worm gears for cotton processing.

Then, 230 years BC, in Alexandria, Egypt, the toothed wheel was used again.

These tools have been built and used since ancient times to handle heavy anchors and catapults used on battlefields. These were then introduced into the wind and water mills (as a reduction or multiplication in wind or water pumps) (Fig. 1).

The Antikythera Mechanism is a name given to a complex astronomical device, a $32 \times 16 \times 10 \mathrm{~cm}$ device discovered in 1900 in a sunken ship near the coast of Antikythera, an island between Crete and the Greek continent, for which several types of evidence
undoubtedly point to around 80 BC . for the date of the shipwreck. The device was made of bronze gears mounted in a wooden box, but due to the fact that it was crushed in the wreck, various parts of the faces were lost and the remainder was then covered with a hard limestone deposit in time at the same time as the corroded metal to a thin core covered with strong metal salts that retains much of the previous bronze shape during the 2000 years of the dive (See Antikythera 1 in Fig. 2).

The modern adventure of the toothed wheel began with the toothed wheel created by Leonardo da Vinci in the fifteenth century. He is also the founder of a new cinema and dynamics, stating, among other things, the principle of overlapping independent movements (Fig. 3).

Benz has created an original toothed and transmission chain engine (patented after 1882, Fig. 4), but the first patent of a toothed gear belongs to British British Starley \& Hillman in 1870 (12 years before the Germans) being designed and built to be used for bicycle transmissions and later for motored tricycles.

In Cleveland (USA), begin after 1912 to produce industrial specialized wheels and gears (cylindrical, worm, conical, with straight teeth, inclined or curved; Fig. 5).

Fig. 1: Transmissions wheeled "spurred" to irrigate crops and worm gears to the cotton processing

Fig. 2: The Antikythera mechanism is the name given to an astronomical calculating device

Fig. 3: The modern adventure began with the gear wheel spurred of Leonardo da Vinci, in the fifteenth century

Fig. 4: The Benz patent

After 1912, in Cleveland (USA), begin to produce industrial specialized wheels and gears (cylindrical, worm, conical, with straight teeth, inclined or curyed).

Fig. 5: In Cleveland, after 1912 begin to produce industrial specialized wheels

The gears are present today everywhere, in the mechanical world (In vehicle's industries, in electronics
and electro-technique types of equipment, in energetically industries, etc.; Fig. 6).

Fig. 6: Gearings today

The paper presents how to accurately determine the mechanical performance of a gearbox. Based on these relationships, an optimal synthesis of the performance of a classic, mechanical, manual gearshift can be achieved regardless of its operating status (Frățilă et al., 2011; Pelecudi, 1967; Antonescu, 2000; Comănescu et al., 2010; Aversa et al., 2016a; 2016b; 2016c; 2016d; 2017a; 2017b; 2017c; 2017d; 2017e; Mirsayar et al., 2017; Cao et al., 2013; Dong et al., 2013; De Melo et al., 2012; Garcia et al., 2007; Garcia-Murillo et al., 2013; He et al., 2013; Lee, 2013; Lin et al., 2013; Liu et al., 2013; Padula and Perdereau, 2013; Perumaal and Jawahar, 2013; Petrescu and Petrescu, 1995a; 1995b; 1997a; 1997b; 1997c; 2000a; 2000b; 2002a; 2002b; 2003; 2005a; 2005b; 2005c; 2005d; 2005e, 2016a; 2016b; 2016c; 2016d; 2016e; 2013; 2012a; 2012b; 2011; Petrescu et al., 2009; 2016a; 2016b; 2016c; 2016d; 2016e; 2017a; 2017b; 2017c; 2017d; 2017e; 2017f; 2017g; 2017h; 2017i; 2017j; 2017k; 2017l; 2017m; 2017n; 2017o; 2017p; 2017q; 2017r; 2017s; 2017t; 2017u; 2017v; 2017w; 2017x; 2017y; 2017z; 2017aa; 2017ab; 2017ac; 2017ad; 2017ae; Petrescu and Calautit, 2016a-b; Reddy et al., 2012; Tabaković et al., 2013; Tang et al., 2013; Tong et al., 2013; Wang et al., 2013; Wen et al., 2012; Antonescu and Petrescu, 1985; 1989; Antonescu et al., 1985a; 1985b; 1986; 1987; 1988; 1994; 1997; 2000a; 2000b; 2001; List the first flights, From Wikipedia;

Chen and Patton, 1999; Fernandez et al., 2005; Fonod et al., 2015; Lu et al., 2015; 2016; Murray et al., 2010; Palumbo et al., 2012; Patre and Joshi, 2011; Sevil and Dogan, 2015; Sun and Joshi, 2009; Crickmore, 1997; Donald, 2003; Goodall, 2003; Graham, 2002; Jenkins, 2001; Landis and Dennis, 2005; Clément, Wikipedia; Cayley, Wikipedia; Coandă, Wikipedia; Gunston, 2010; Laming, 2000; Norris, 2010; Goddard, 1916; Kaufman, 1959; Oberth, 1955; Cataldo, 2006; Gruener, 2006; Sherson et al., 2006; Williams, 1995; Venkataraman, 1992; Oppenheimer and Volkoff, 1939; Michell, 1784; Droste, 1915; Finkelstein, 1958; Gorder, 2015; Hewish, 1970).

Materials and Methods; Gearings Synthesis

In a cylindrical gearing, forces, speeds, powers and efficiency can be determined using relationships 2.1-2.6 and can be seen in Fig. 7:

$$
\left\{\begin{array}{l}
F_{\tau}=F_{m} \cdot \cos \alpha_{1} \tag{2.1}\\
F_{\psi}=F_{m} \cdot \sin \alpha_{1} \\
v_{2}=v_{1} \cdot \cos \alpha_{1} \\
v_{12}=v_{1} \cdot \sin \alpha_{1} \\
\bar{F}_{m}=\bar{F}_{\tau}+\bar{F}_{\psi} \\
\bar{v}_{1}=\bar{v}_{2}+\bar{v}_{12}
\end{array}\right.
$$

Where:
$F_{m}=$ The motive force (the driving force)
$F_{\tau}=$ The transmitted force (the useful force)
$F_{\psi}=$ The slide force (the lost force)
$v_{1}=$ The velocity of element 1 , or the speed of wheel 1 (the driving wheel)
$v_{2}=$ The velocity of element 2 , or the speed of wheel 2 (the driven wheel)
$v_{12}=$ The relative speed of the wheel 1 in relation with the wheel 2 (this is a sliding speed)

The consumed power (in this case the driving power):

$$
\begin{equation*}
P_{c} \equiv P_{m}=F_{m} \cdot v_{1} \tag{2.2}
\end{equation*}
$$

The useful power (the transmitted power from the profile 1 to the profile 2) will be written:
$P_{u} \equiv P_{\tau}=F_{\tau} \cdot v_{2}=F_{m} \cdot v_{1} \cdot \cos ^{2} \alpha_{1}$
The lost power will be written:
$P_{\psi}=F_{\psi} \cdot v_{12}=F_{m} \cdot v_{1} \cdot \sin ^{2} \alpha_{1}$

The momentary efficiency of couple will be calculated directly with the next relation:
$\left\{\begin{array}{l}\eta_{i}=\frac{P_{u}}{P_{c}} \equiv \frac{P_{\tau}}{P_{m}}=\frac{F_{m} \cdot v_{1} \cdot \cos ^{2} \alpha_{1}}{F_{m} \cdot v_{1}} \\ \eta_{i}=\cos ^{2} \alpha_{1}\end{array}\right.$
The momentary losing coefficient, will be written:

$$
\left\{\begin{array}{l}
\psi_{i}=\frac{P_{\psi}}{P_{m}}=\frac{F_{m} \cdot v_{1} \cdot \sin ^{2} \alpha_{1}}{F_{m} \cdot v_{1}}=\sin ^{2} \alpha_{1} \tag{2.6}\\
\eta_{i}+\psi_{i}=\cos ^{2} \alpha_{1}+\sin ^{2} \alpha_{1}=1
\end{array}\right.
$$

It can easily see that the sum of the momentary efficiency and the momentary losing coefficient is 1.

Now, one can determine the geometrical elements of gear. These elements will be used in determining the couple efficiency, η.

The main geometric elements belonging to the external cylindrical gear (for straight teeth, beta $=0$) can still be determined.

The radius of the basic circle of the wheel 1 (of the driving wheel), (2.7):

$$
\begin{equation*}
r_{b 1}=\frac{1}{2} \cdot m \cdot z_{1} \cdot \cos \alpha_{0} \tag{2.7}
\end{equation*}
$$

The radius of the outside circle of wheel 1 (2.8):
$r_{a 1}=\frac{1}{2} \cdot\left(m \cdot z_{1}+2 \cdot m\right)=\frac{m}{2} \cdot\left(z_{1}+2\right)$

Fig. 7: The forces and the velocities of the gearing

It determines now the maximum pressure angle of the gear (2.9):

$$
\begin{equation*}
\cos \alpha_{1 M}=\frac{r_{b 1}}{r_{a 1}}=\frac{\frac{1}{2} \cdot m \cdot z_{1} \cdot \cos \alpha_{0}}{\frac{1}{2} \cdot m \cdot\left(z_{1}+2\right)}=\frac{z_{1} \cdot \cos \alpha_{0}}{z_{1}+2} \tag{2.9}
\end{equation*}
$$

And now one determines the same parameters for the wheel 2 , the radius of basic circle (2.10) and the radius of the outside circle (2.11) for the wheel 2 :

$$
\begin{align*}
& r_{b 2}=\frac{1}{2} \cdot m \cdot z_{2} \cdot \cos \alpha_{0} \tag{2.10}\\
& r_{a 2}=\frac{m}{2} \cdot\left(z_{2}+2\right) \tag{2.11}
\end{align*}
$$

Now it can determine the minimum pressure angle of the external gear (2.12, 2.13):

$$
\begin{align*}
& \left\{\begin{array}{l}
\operatorname{tg} \alpha_{1 m}=\frac{N}{r_{b 1}} \\
N=\left(r_{b 1}+r_{b 2}\right) \cdot \operatorname{tg} \alpha_{0}-\sqrt{r_{a 2}^{2}-r_{b 2}^{2}} \\
=\frac{1}{2} \cdot m \cdot\left(z_{1}+z_{2}\right) \cdot \sin \alpha_{0} \\
-\frac{m}{2} \cdot \sqrt{\left(z_{2}+2\right)^{2}-z_{2}^{2} \cdot \cos ^{2} \alpha_{0}} \\
=\frac{m}{2} \cdot\left[\left(z_{1}+z_{2}\right) \cdot \sin \alpha_{0}-\right. \\
\left.\sqrt{z_{2}^{2} \cdot \sin ^{2} \alpha_{0}+4 \cdot z_{2}+4}\right] \\
\operatorname{tg} \alpha_{1 m}=\left[\left(z_{1}+z_{2}\right) \cdot \sin \alpha_{0}\right. \\
\left.\sqrt{z_{2}^{2} \cdot \sin ^{2} \alpha_{0}+4 \cdot z_{2}+4}\right] /\left(z_{1} \cdot \cos \alpha_{0}\right)
\end{array}\right. \tag{2.12}
\end{align*}
$$

Now we can determine, for the external gear, the minimum (2.13) and the maximum (2.9) pressure angle for the right teeth. For the external gear with bended teeth $(\beta \neq 0)$ it uses the relations $(2.14,2.15$ and 2.16$)$:

$$
\begin{equation*}
\operatorname{tg} \alpha_{t}=\frac{\operatorname{tg} \alpha_{0}}{\cos \beta} \tag{2.14}
\end{equation*}
$$

$$
\begin{align*}
& \operatorname{tg} \alpha_{1 m}=\left[\left(z_{1}+z_{2}\right) \cdot \frac{\sin \alpha_{t}}{\cos \beta}\right. \\
& \left.\sqrt{z_{2}^{2} \cdot \frac{\sin ^{2} \alpha_{t}}{\cos ^{2} \beta}+4 \cdot \frac{z_{2}}{\cos \beta}+4}\right] \cdot \frac{\cos \beta}{z_{1} \cdot \cos \alpha_{t}} \tag{2.15}
\end{align*}
$$

$$
\begin{equation*}
\cos \alpha_{1 M}=\frac{\frac{z_{1} \cdot \cos \alpha_{t}}{\cos \beta}}{\frac{z_{1}}{\cos \beta}+2} \tag{2.16}
\end{equation*}
$$

For the internal gear with bended teeth $(\beta \neq 0)$ it uses the relations (2.14 with $2.17,2.18-\mathrm{A}$, or with 2.19, 2.20-B):

A. When the Driving Wheel 1, Has External Teeth:

$$
\operatorname{tg} \alpha_{1 m}=\left[\left(z_{1}-z_{2}\right) \cdot \frac{\sin \alpha_{t}}{\cos \beta}\right.
$$

$$
\begin{equation*}
\left.+\sqrt{z_{2}^{2} \cdot \frac{\sin ^{2} \alpha_{t}}{\cos ^{2} \beta}-4 \cdot \frac{z_{2}}{\cos \beta}+4}\right] \cdot \frac{\cos \beta}{z_{1} \cdot \cos \alpha_{t}} \tag{2.17}
\end{equation*}
$$

$\cos \alpha_{1 M}=\frac{\frac{z_{1} \cdot \cos \alpha_{t}}{\cos \beta}}{\frac{z_{1}}{\cos \beta}+2}$

B. When the Driving Wheel 1, Have Internal Teeth:

$$
\begin{align*}
& \operatorname{tg} \alpha_{1 M}=\left[\left(z_{1}-z_{2}\right) \cdot \frac{\sin \alpha_{t}}{\cos \beta}\right. \\
& \left.+\sqrt{z_{2}^{2} \cdot \frac{\sin ^{2} \alpha_{t}}{\cos ^{2} \beta}+4 \cdot \frac{z_{2}}{\cos \beta}+4}\right] \cdot \frac{\cos \beta}{z_{1} \cdot \cos \alpha_{t}} \tag{2.19}\\
& \cos \alpha_{1 m}=\frac{\frac{z_{1} \cdot \cos \alpha_{t}}{\cos \beta}}{\frac{z_{1}}{\cos \beta}-2} \tag{2.20}
\end{align*}
$$

The mechanical efficiency of the cylindrical gear shall be determined by integrating the instantaneous efficiency across all gear sections of the gear unit starting from the minimum pressure angle and going up to the maximum pressure angle as defined in expression (2.21):

$$
\begin{align*}
& \eta=\frac{1}{\Delta \alpha} \cdot \int_{a_{m}}^{\alpha_{M}} \eta_{i} \cdot d \alpha=\frac{1}{\Delta \alpha} \int_{\alpha_{m}}^{\alpha_{N}} \cos ^{2} \alpha \cdot d \alpha \\
& =\frac{1}{2 \cdot \Delta \alpha} \cdot\left[\frac{1}{2} \cdot \sin (2 \cdot \alpha)+\alpha\right]_{\alpha_{m}}^{\alpha_{H}} \tag{2.21}\\
& =\frac{1}{2 \cdot \Delta \alpha}\left[\frac{\sin \left(2 \alpha_{M}\right)-\sin \left(2 \alpha_{m}\right)}{2}+\Delta \alpha\right] \\
& =\frac{\sin \left(2 \cdot \alpha_{M}\right)-\sin \left(2 \cdot \alpha_{m}\right)}{4 \cdot\left(\alpha_{M}-\alpha_{m}\right)}+0.5
\end{align*}
$$

External gears are the most common, not because they are the best, but because they are easier to design and build (Fig. 8a). Internal gears can be much more efficient and more reliable if and only if properly designed (Fig. 8b). At inner engagement the teeth in contact make better contact not only on a point or line as on the outside but on a curve or surface, contact being
larger, more natural, stronger, more complete and without wear, noises, shocks, like in external gears. However, due to the fact that the internal gears are provided with additional conditions for avoiding the teeth interference in contact, the correct design is much more difficult and from a technological point of view it sometimes does not work correctly, leading to slight random interferences during the operation of the builtin gear, which in the course of time lead to premature
wear, noises, or even blocking in operation, although their operation should have been much superior theoretically and for this reason the design difficulties most often give up the superiority internal gears preferring the choice of the outer ones.

To an external gearing, contact between profiles shall only be made to a single point, while at the internal gearing the contact between profiles is by winding each other (Fig. 9).

Fig. 8: (a) An external gearing; (b) An internal gearing

External gearing

Internal gearing

Fig. 9: Contact between profiles

Fig. 10: Line of action $\left(t-t^{\prime}\right)$ at an external gearing

Results; Gears Synthesis by Avoid the Interferences

In order to avoid interference phenomenon, point A must lie between C and K_{1} (the addendum circle of the wheel $2, C_{a 2}$ need to cut the line of action between points C and K_{1} and under no circumstances does not exceed the point K_{1}). Similarly, $C_{a 1}$ addendum circle must cut the action line between points C and K_{2}, resulting in point E , which in no circumstances, does not exceed the point K_{2}.

The conditions to avoid the phenomenon of interference can be written with the relations (3.1).

The basic conditions of interference, are the same ($\mathrm{CA}<\mathrm{K} 1 \mathrm{C} ; \mathrm{CE}<\mathrm{K} 2 \mathrm{C}$), but the originality of this new presented method consist in the mode in which it was
solved the classical relationship (see the system 3.1) (Fig. 10).

The system (3.3) represents a simple, unitary and general relationship capable of generating functional solutions for gears, giving the minimum number of teeth of wheel 1 (motor wheel) to avoid interference. In the appendix Table $1-15$ an alpha0 value $\left(35^{\circ}\right)$ will be chosen and the beta angles (from 0° to 40°) and the transmission ratio i (from 1 to 80) are incrementally incremented in order to thus getting the minimum number of teeth correctly.

Then, the alpha value (from 35° to 5°) will be decreased successively.

At the internal gearbox, the interference avoidance condition is the same as for the external gear (relationship 3.3):

$$
\begin{aligned}
& C A<K_{1} C \text { and } C E<K_{2} C \\
& C A=K_{2} A-K_{2} C=\sqrt{r_{a_{2}}^{2}-r_{b_{2}}^{2}}-r_{2} \cdot \sin \alpha_{0} ; \quad C A<K_{1} C \\
& \Rightarrow \sqrt{r_{a_{2}}^{2}-r_{b_{2}}^{2}}-r_{2} \cdot \sin \alpha_{0}<r_{1} \cdot \sin \alpha_{0} \Rightarrow \sqrt{r_{a_{2}}^{2}-r_{b_{2}}^{2}}<\left(r_{1}+r_{2}\right) \cdot \sin \alpha_{0} \\
& \Rightarrow d_{a_{2}}^{2}-d_{b_{2}}^{2}<\left(d_{1}+d_{2}\right)^{2} \cdot \sin ^{2} \alpha_{0} \\
& \Rightarrow m^{2} \cdot\left(z_{2}+2\right)^{2}-m^{2} \cdot z_{2}^{2} \cdot \cos ^{2} \alpha_{0}<m^{2} \cdot\left(z_{1}+z_{2}\right)^{2} \cdot \sin ^{2} \alpha_{0} \\
& \Rightarrow z_{2}^{2}+4 \cdot z_{2}+4-z_{2}^{2}<z_{1}^{2} \cdot \sin ^{2} \alpha_{0}+2 \cdot z_{1} \cdot z_{2} \cdot \sin ^{2} \alpha_{0} \\
& \Rightarrow 4 \cdot z_{2}+4<z_{1}^{2} \cdot \sin ^{2} \alpha_{0}+2 \cdot z_{1} \cdot z_{2} \cdot \sin ^{2} \alpha_{0} \\
& \text { from } C E<K_{2} C \Rightarrow 4 \cdot z_{1}+4<z_{2}^{2} \cdot \sin ^{2} \alpha_{0}+2 \cdot z_{1} \cdot z_{2} \cdot \sin ^{2} \alpha_{0} \\
& \text { it obtains the system }\left\{\begin{array}{l}
4 \cdot z_{2}+4<z_{1}^{2} \cdot \sin ^{2} \alpha_{0}+2 \cdot z_{1} \cdot z_{2} \cdot \sin ^{2} \alpha_{0} \\
4 \cdot z_{1}+4<z_{2}^{2} \cdot \sin ^{2} \alpha_{0}+2 \cdot z_{1} \cdot z_{2} \cdot \sin ^{2} \alpha_{0}
\end{array}\right. \\
& \text { take } i \equiv\left|\dot{i}_{12}\right|=\frac{z_{2}}{z_{1}} \Rightarrow z_{2}=i \cdot z_{1} ; \text { result the system } \\
& \left\{\sin ^{2} \alpha_{0} \cdot(1+2 \cdot i) \cdot z_{1}^{2}-2 \cdot 2 \cdot i \cdot z_{1}-4>0\right. \\
& \sin ^{2} \alpha_{0} \cdot\left(i^{2}+2 \cdot i\right) \cdot z_{1}^{2}-2 \cdot 2 \cdot z_{1}-4>0 \text { with the solutions: } \\
& \left\{\begin{array}{l}
z_{1_{1,2}}=\frac{2 \cdot i \pm 2 \cdot \sqrt{i^{2}+\sin ^{2} \alpha_{0}+2 \cdot i \cdot \sin ^{2} \alpha_{0}}}{(2 \cdot i+1) \cdot \sin ^{2} \alpha_{0}} \\
z_{1_{3,4}}=\frac{2 \pm 2 \cdot \sqrt{1+i^{2} \cdot \sin ^{2} \alpha_{0}+2 \cdot i \cdot \sin ^{2} \alpha_{0}}}{\left(2 \cdot i+i^{2}\right) \cdot \sin ^{2} \alpha_{0}}
\end{array} \text { it keeps solutions }+\right. \\
& \left\{\begin{array}{l}
z_{1_{2}}=2 \cdot \frac{i+\sqrt{i^{2}+\sin ^{2} \alpha_{0}+2 \cdot i \cdot \sin ^{2} \alpha_{0}}}{(2 \cdot i+1) \cdot \sin ^{2} \alpha_{0}} \\
z_{1_{4}}=2 \cdot \frac{1+\sqrt{1+i^{2} \cdot \sin ^{2} \alpha_{0}+2 \cdot i \cdot \sin ^{2} \alpha_{0}}}{\left(2 \cdot i+i^{2}\right) \cdot \sin ^{2} \alpha_{0}}
\end{array}\right.
\end{aligned}
$$

Relationship which generates $z_{1_{4}}$ always gives lower values than the relationship which generates $z_{1_{2}}$ so it is sufficient the condition (3.2) for finding the minimum number of teeth of the wheel 1 , necessary to avoid interference:

$$
\begin{equation*}
z_{\min } \equiv z_{1_{2}}=2 \cdot \frac{i+\sqrt{i^{2}+\sin ^{2} \alpha_{0}+2 \cdot i \cdot \sin ^{2} \alpha_{0}}}{(2 \cdot i+1) \cdot \sin ^{2} \alpha_{0}} \tag{3.2}
\end{equation*}
$$

When we have inclined teeth, one takes $z_{\text {min }} \rightarrow z_{\text {min }} / \cos \beta$ and $\alpha_{0} \rightarrow \alpha_{0 t}$ and the relationship (3.2) takes the form (3.3). The minimum number of teeth of the driving wheel 1 , is a function on some parameters: The pressure angle (normal on the pitch circle, α_{0}), the tooth inclination angle (β) and the transmission ratio ($i=$ $\left|i_{12}\right|=\left|-z_{2} / z_{1}\right|=z_{2} / z_{1}$), (see the relationship 3.3):

$$
\left\{\begin{array}{l}
z_{\min } \equiv z_{1_{2}}=2 \cdot \cos \beta \cdot \frac{i+\sqrt{i^{2}+\sin ^{2} \alpha_{0 t}+2 \cdot i \cdot \sin ^{2} \alpha_{0 t}}}{(2 \cdot i+1) \cdot \sin ^{2} \alpha_{0 t}} \tag{3.3}\\
\text { where }: \operatorname{tg} \alpha_{0 t}=\frac{\operatorname{tg} \alpha_{0}}{\cos \beta} \Rightarrow \alpha_{0 t}=\operatorname{arctg}\left(\frac{\operatorname{tg} \alpha_{0}}{\cos \beta}\right)
\end{array}\right.
$$

In addition, the inner gear can also write the additional condition of the wheel with internal teeth (systems 3.4 and 3.5). If the mechanism is designed and built without checking these two additional conditions for the existence of an internal gear, it will not work properly. As it has already shown, the inner gear is much superior in operation to the outside, but only when rigorous design and construction, its manufacturing technology being much more difficult than that of the classic outer gear:
$\left\{\begin{array}{l}r_{a_{2}}>r_{b_{2}} \Rightarrow \frac{m}{2} \cdot\left(\frac{z_{2}}{\cos \beta}-2\right)>\frac{m}{2} \cdot \frac{z_{2}}{\cos \beta} \cdot \cos \alpha_{0 t} \\ \Rightarrow \frac{z_{2}}{\cos \beta}-2>\frac{z_{2}}{\cos \beta} \cdot \cos \alpha_{0 t} \Rightarrow z_{2}>\frac{2 \cdot \cos \beta}{1-\cos \alpha_{0 t}}\end{array}\right.$
$\left\{\begin{array}{l}z_{2}>\frac{2 \cdot \cos \beta}{1-\cos \alpha_{0 t}} \\ \cos \alpha_{0 t}=\frac{1}{\sqrt{1+\operatorname{tg}^{2} \alpha_{0 t}}}=\frac{1}{\sqrt{1+\frac{t g^{2} \alpha_{0}}{\cos ^{2} \beta}}}=\frac{\cos \beta}{\sqrt{\cos ^{2} \beta+\operatorname{tg}^{2} \alpha_{0}}}\end{array}\right.$

$$
\begin{equation*}
\Rightarrow z_{2}>\frac{2 \cdot \cos \beta}{1-\frac{\cos \beta}{\sqrt{\cos ^{2} \beta+\operatorname{tg}^{2} \alpha_{0}}}} \Rightarrow z_{2}>\frac{2 \cdot \cos \beta \cdot \sqrt{\cos ^{2} \beta+\operatorname{tg}^{2} \alpha_{0}}}{\sqrt{\cos ^{2} \beta+\operatorname{tg}^{2} \alpha_{0}}-\cos \beta} \tag{3.5}
\end{equation*}
$$

$$
\Rightarrow z_{2}>\frac{2 \cdot \cos \beta \cdot \sqrt{\cos ^{2} \beta+\operatorname{tg}^{2} \alpha_{0}} \cdot\left(\sqrt{\cos ^{2} \beta+\operatorname{tg}^{2} \alpha_{0}}+\cos \beta\right)}{\operatorname{tg}^{2} \alpha_{0}}
$$

$$
\Rightarrow z_{2}>\frac{2 \cdot \cos \beta}{\operatorname{tg}^{2} \alpha_{0}} \cdot\left(\cos ^{2} \beta+\operatorname{tg}^{2} \alpha_{0}+\cos \beta \cdot \sqrt{\cos ^{2} \beta+\operatorname{tg}^{2} \alpha_{0}}\right)
$$

$$
\Rightarrow z_{2}>\frac{2 \cdot \cos ^{3} \beta}{\operatorname{tg}^{2} \alpha_{0}} \cdot\left(1+\frac{\operatorname{tg}^{2} \alpha_{0}}{\cos ^{2} \beta}+\sqrt{1+\frac{\operatorname{tg}^{2} \alpha_{0}}{\cos ^{2} \beta}}\right)
$$

It should also be mentioned that additional relations (3.6) have also been used.

$$
\left\{\begin{array}{l}
r_{1}=\frac{1}{2} m \cdot z_{1} ; r_{2}=\frac{1}{2} m \cdot z_{2} ; r_{b_{1}} \tag{3.6}\\
=\frac{1}{2} m \cdot z_{1} \cdot \cos \alpha_{0} ; r_{b_{2}}=\frac{1}{2} m \cdot z_{2} \cdot \cos \alpha_{0} \\
r_{a_{1}}=r_{1}+m=\frac{1}{2} m \cdot z_{1}+\frac{2}{2} m=\frac{m}{2} \cdot\left(z_{1}+2\right) \\
r_{a_{2}}=r_{2}-m=\frac{1}{2} m \cdot z_{2}-\frac{2}{2} m=\frac{m}{2} \cdot\left(z_{2}-2\right) \\
r_{r_{1}}=r_{1}-1.25 m=\frac{1}{2} m \cdot z_{1}-\frac{2.5}{2} m=\frac{m}{2} \cdot\left(z_{1}-2.5\right) \\
r_{r_{2}}=r_{2}+1.25 m=\frac{1}{2} m \cdot z_{2}+\frac{2.5}{2} m=\frac{m}{2} \cdot\left(z_{2}+2.5\right)
\end{array}\right.
$$

Discussion; Determining the Gearing Performance Depending on the Degree of Coverage

In this section, there is briefly presented a completely original method of determining the efficiency of parallel gear gears. Based on the computational relationships presented, the dynamic synthesis of the gears can be made so as to result in mechanisms with high efficiency in operation.

The originality of the method consists in determining the yield (which does not take into account
the friction coefficient in the coupling, this being considered only an additional effect and not the main cause that produces the effective mechanical efficiency, the mechanical efficiency of a machine depends on the authors' mainly by the transmission angle of the main coupler of the mechanism).

Calculate the yield of a gear with a fixed spindle gear, considering that at a certain moment there are several pairs of drive drums, not just one.

It starts from the idea of having four pairs of drums in engagement (simultaneous). The first pair of teeth (which go on the right-to-left engagement line as it engages) are the engagement point i, defined by the radius of the $r_{i 1}$ and the angle (pressure) of the position $a_{i 1}$; the forces at this point are the force of the $F_{m i}$ motors, perpendicular to the point and position of the vector and the force transmitted from the wheel 1 to the second wheel by the point $i, F_{t i}$, parallel to the engagement line and pointing from the wheel 1 to the wheel 2 , the transmission force being basically the projection of the drive force on the engagement axis (line); the defined speeds are similar to the forces (for the original cinematic, precision); the same parameters will also be defined for the other three points of engagement, j, k, l (following the drawing in Fig. 11).

Write the relationships between speeds (4.1) first:

$$
\begin{align*}
& v_{\tau i}=v_{m i} \cdot \cos \alpha_{i}=r_{i} \cdot \omega_{1} \cdot \cos \alpha_{i}=r_{b 1} \cdot \omega_{1} \\
& v_{\tau j}=v_{m j} \cdot \cos \alpha_{j}=r_{j} \cdot \omega_{1} \cdot \cos \alpha_{j}=r_{b 1} \cdot \omega_{1} \tag{4.1}\\
& v_{\tau k}=v_{m k} \cdot \cos \alpha_{k}=r_{k} \cdot \omega_{1} \cdot \cos \alpha_{k}=r_{b 1} \cdot \omega_{1} \\
& v_{\tau l}=v_{m l} \cdot \cos \alpha_{l}=r_{l} \cdot \omega_{1} \cdot \cos \alpha_{l}=r_{b 1} \cdot \omega_{1}
\end{align*}
$$

From relations (4.1) one obtains the equality of tangential speeds (4.2) and we express the motor speeds (4.3):

$$
\begin{equation*}
v_{\tau i}=v_{\tau j}=v_{\tau k}=v_{\tau l}=r_{b 1} \cdot \omega_{1} \tag{4.2}
\end{equation*}
$$

$$
\begin{equation*}
v_{m i}=\frac{r_{b 1} \cdot \omega_{1}}{\cos \alpha_{i}} ; v_{m j}=\frac{r_{b 1} \cdot \omega_{1}}{\cos \alpha_{j}} ; v_{m k}=\frac{r_{b 1} \cdot \omega_{1}}{\cos \alpha_{k}} ; v_{m l}=\frac{r_{b 1} \cdot \omega_{1}}{\cos \alpha_{l}} \tag{4.3}
\end{equation*}
$$

The forces simultaneously transmitted at the four points must be equal to each other (4.4):

$$
\begin{equation*}
F_{\tau i}=F_{\tau j}=F_{\tau k}=F_{\tau l}=F_{\tau} \tag{4.4}
\end{equation*}
$$

Engine forces shall be deducted (4.5):

$$
\begin{equation*}
F_{m i}=\frac{F_{\tau}}{\cos \alpha_{i}} ; F_{m j}=\frac{F_{\tau}}{\cos \alpha_{j}} ; F_{m k}=\frac{F_{\tau}}{\cos \alpha_{k}} ; F_{m l}=\frac{F_{\tau}}{\cos \alpha_{l}} \tag{4.5}
\end{equation*}
$$

Instant yield is written as (4.6):

$$
\begin{align*}
& \eta_{i}=\frac{P_{u}}{P_{c}}=\frac{P_{\tau}}{P_{m}}=\frac{F_{\tau i} \cdot v_{\tau i}+F_{\tau j} \cdot v_{\tau j}+F_{\tau k} \cdot v_{t k}+F_{\tau l} \cdot v_{\tau l}}{F_{m i} \cdot v_{m i}+F_{m j} \cdot v_{m j}+F_{m k} \cdot v_{m k}+F_{m l} \cdot v_{m l}} \\
& =\frac{4 \cdot F_{\tau} \cdot r_{b 1} \cdot \omega_{1}}{\frac{F_{\tau} \cdot r_{b 1} \cdot \omega_{1}}{\cos ^{2} \alpha_{i}}+\frac{F_{\tau} \cdot r_{b 1} \cdot \omega_{1}}{\cos ^{2} \alpha_{j}}+\frac{F_{\tau} \cdot r_{b 1} \cdot \omega_{1}}{\cos ^{2} \alpha_{k}}+\frac{F_{\tau} \cdot r_{b 1} \cdot \omega_{1}}{\cos ^{2} \alpha_{l}}} \tag{4.6}\\
& =\frac{1}{\frac{1}{\cos ^{2} \alpha_{i}}+\frac{1}{\cos ^{2} \alpha_{j}}+\frac{1}{\cos ^{2} \alpha_{k}}+\frac{1}{\cos ^{2} \alpha_{l}}} \\
& =\frac{4}{4+\operatorname{tg}^{2} \alpha_{i}+\operatorname{tg}^{2} \alpha_{j}+\operatorname{tg}^{2} \alpha_{k}+\operatorname{tg}^{2} \alpha_{l}}
\end{align*}
$$

The help lines used shall be marked with (4.7) and (4.8):

$$
\begin{align*}
& \left\{\begin{array}{l}
K_{1} i=r_{b 1} \cdot \operatorname{tg} \alpha_{i} ; K_{1} j=r_{b 1} \cdot \operatorname{tg} \alpha_{j} ; \\
K_{1} k=r_{b 1} \cdot \operatorname{tg} \alpha_{k} ; K_{1} l=r_{b 1} \cdot \operatorname{tg} \alpha_{l} \\
K_{1} j-K_{l} i=r_{b 1} \cdot\left(\operatorname{tg} \alpha_{j}-\operatorname{tg} \alpha_{i}\right) ; \\
K_{1} j-K_{l} i=r_{b 1} \cdot \frac{2 \cdot \pi}{z_{1}} \Rightarrow \operatorname{tg} \alpha_{j}=\operatorname{tg} \alpha_{i}+\frac{2 \cdot \pi}{z_{1}} \\
K_{1} k-K_{l} i=r_{b 1} \cdot\left(\operatorname{tg} \alpha_{k}-\operatorname{tg} \alpha_{i}\right) ; \\
K_{1} k-K_{l} i=r_{b 1} \cdot 2 \cdot \frac{2 \cdot \pi}{z_{1}} \Rightarrow \operatorname{tg} \alpha_{k}=\operatorname{tg} \alpha_{i}+2 \cdot \frac{2 \cdot \pi}{z_{1}} \\
K_{l} l-K_{l} i=r_{b 1} \cdot\left(\operatorname{tg} \alpha_{l}-\operatorname{tg} \alpha_{i}\right) ; \\
K_{1} l-K_{l} i=r_{b 1} \cdot 3 \cdot \frac{2 \cdot \pi}{z_{1}} \Rightarrow \operatorname{tg} \alpha_{l}=\operatorname{tg} \alpha_{i}+3 \cdot \frac{2 \cdot \pi}{z_{1}}
\end{array}\right. \tag{4.7}\\
& \operatorname{tg} \alpha_{j}=\operatorname{tg} \alpha_{i} \pm \frac{2 \cdot \pi}{z_{1}} ; \operatorname{tg} \alpha_{k} \\
& =\operatorname{tg} \alpha_{i} \pm 2 \cdot \frac{2 \cdot \pi}{z_{1}} ; \operatorname{tg} \alpha_{l}=\operatorname{tg} \alpha_{i} \pm 3 \cdot \frac{2 \cdot \pi}{z_{1}} \tag{4.8}
\end{align*}
$$

Relationships (4.8) were retained where the plus sign is for the gears to which the driving wheel 1 has external gear (external or internal gearing) and the minus sign is used when the driving wheel 1 has internal gearing, i.e., when the driving wheel 1 is a ring (only at the inner engagement). The instantaneous yield in the expression (4.6) uses relations (4.8) and takes the form (4.9):

$$
\left\{\begin{array}{l}
\eta_{i}=\frac{4}{4+\operatorname{tg}^{2} \alpha_{i}+\operatorname{tg}^{2} \alpha_{j}+\operatorname{tg}^{2} \alpha_{k}+\operatorname{tg}^{2} \alpha_{l}} \\
=\frac{4}{4+\operatorname{tg}^{2} \alpha_{i}+\left(\operatorname{tg} \alpha_{i} \pm \frac{2 \pi}{z_{1}}\right)^{2}+\left(\operatorname{tg} \alpha_{i} \pm 2 \cdot \frac{2 \pi}{z_{1}}\right)^{2}+\left(\operatorname{tg} \alpha_{i} \pm 3 \cdot \frac{2 \pi}{z_{1}}\right)^{2}} \\
=\frac{4}{4+4 \cdot \operatorname{tg}^{2} \alpha_{i}+\frac{4 \pi^{2}}{z_{1}^{2}} \cdot\left(0^{2}+1^{2}+2^{2}+3^{2}\right) \pm 2 \cdot \operatorname{tg} \alpha_{i} \cdot \frac{2 \pi}{z_{1}} \cdot(0+1+2+3)} \\
=\frac{1}{1+\operatorname{tg}^{2} \alpha_{i}+\frac{4 \pi^{2}}{E \cdot z_{1}^{2}} \cdot \sum_{i=1}^{E}(i-1)^{2} \pm 2 \cdot \operatorname{tg} \alpha_{i} \cdot \frac{2 \pi}{E \cdot z_{1}} \cdot \sum_{i=1}^{E}(i-1)} \\
=\frac{1}{1+\operatorname{tg}^{2} \alpha_{1}+\frac{4 \pi^{2}}{E \cdot z_{1}^{2}} \cdot \frac{E \cdot(E-1) \cdot(2 \cdot E-1)}{6} \pm \frac{4 \pi \cdot \operatorname{tg} \alpha_{1}}{E \cdot z_{1}} \cdot \frac{E \cdot(E-1)}{2}} \\
1+\operatorname{tg}^{2} \alpha_{1}+\frac{2 \pi^{2} \cdot(E-1) \cdot(2 E-1)}{3 \cdot z_{1}^{2}} \pm \frac{2 \pi \cdot \operatorname{tg} \alpha_{1} \cdot(E-1)}{z_{1}} \tag{4.9}\\
=\frac{1}{1+\operatorname{tg}^{2} \alpha_{1}+\frac{2 \pi^{2}}{3 \cdot z_{1}^{2}} \cdot\left(\varepsilon_{12}-1\right) \cdot\left(2 \cdot \varepsilon_{12}-1\right) \pm \frac{2 \pi \cdot \operatorname{tg} \alpha_{1}}{z_{1}} \cdot\left(\varepsilon_{12}-1\right)}
\end{array}\right.
$$

One starts in the relation (4.9) with the expression of the yield (4.6) for 4 pairs of engaging teeth, but immediately (even within the relation) we make a generalization by replacing the number 4 (four pairs of engaging teeth) with the variable E, which represents the full side of the coverage +1 and after the expressions written in the form of sums narrow down, the variable E is replaced with the degree of coverage, thus reaching the final shape. The average yield is more interesting than the instantaneous one and is calculated (precisely by integrating the instantaneous one from the minimum pressure to the maximum angle) simply by the approximation which determines the average yield by replacing in the expression of the instantaneous yield of the variable pressure angle (α_{1}) with its average value given by the normal pressure angle (standardized, α_{0}), (4.10), where ε_{12} represents the degree of coverage and is calculated with the expression (4.11) for the external engagement and the relation (4.12) for the inner engagement:

$$
\begin{align*}
& \eta_{m}=\frac{1}{1+\operatorname{tg}^{2} \alpha_{0}+\frac{2 \pi^{2}}{3 \cdot z_{1}^{2}} \cdot\left(\varepsilon_{12}-1\right) \cdot\left(2 \cdot \varepsilon_{12}-1\right) \pm \frac{2 \pi \cdot \operatorname{tg} \alpha_{0}}{z_{1}} \cdot\left(\varepsilon_{12}-1\right)} \tag{4.10}\\
& \varepsilon_{12}^{a . e .}=\frac{\sqrt{z_{1}^{2} \cdot \sin ^{2} \alpha_{0}+4 \cdot z_{1}+4}+\sqrt{z_{2}^{2} \cdot \sin ^{2} \alpha_{0}+4 \cdot z_{2}+4}-\left(z_{1}+z_{2}\right) \cdot \sin \alpha_{0}}{2 \cdot \pi \cdot \cos \alpha_{0}} \tag{4.11}\\
& \varepsilon_{12}^{a . i .}=\frac{\sqrt{z_{e}^{2} \cdot \sin ^{2} \alpha_{0}+4 \cdot z_{e}+4}-\sqrt{z_{i}^{2} \cdot \sin ^{2} \alpha_{0}-4 \cdot z_{i}+4}+\left(z_{i}-z_{e}\right) \cdot \sin \alpha_{0}}{2 \cdot \pi \cdot \cos \alpha_{0}}
\end{align*}
$$

Fig. 11: Determining the yield of a gear with fixed axle gears (four pairs of simultaneous engagement teeth)
There are wheels of the helical gears, which are used very often (relations 4.13, 4.14, 4.15). For helical gears, the calculations show a decrease in the efficiency of the with the tilt angle on the rise of the teeth (β). For given angle which does not exceed 25°, the efficiency of fishing gear is good enough. However, when the tilt angle is greater than 25°, speeds will suffer a significant decrease in the yield:

$$
\begin{align*}
& \eta_{m}=\frac{z_{1}^{2} \cdot \cos ^{2} \beta}{z_{1}^{2} \cdot\left(\operatorname{tg}^{2} \alpha_{0}+\cos ^{2} \beta\right)+\frac{2}{3} \pi^{2} \cdot \cos ^{4} \beta \cdot(\varepsilon-1) \cdot(2 \varepsilon-1) \pm 2 \pi \cdot \operatorname{tg} \alpha_{0} \cdot z_{1} \cdot \cos ^{2} \beta \cdot(\varepsilon-1)} \tag{4.13}\\
& \varepsilon^{a . e .}=\frac{1+\operatorname{tg}^{2} \beta}{2 \cdot \pi} \cdot\left\{\sqrt{\left[\left(z_{1}+2 \cdot \cos \beta\right) \cdot \operatorname{tg} \alpha_{0}\right]^{2}+4 \cdot \cos ^{3} \beta \cdot\left(z_{1}+\cos \beta\right)}\right. \tag{4.14}\\
& \left.+\sqrt{\left[\left(z_{2}+2 \cdot \cos \beta\right) \cdot \operatorname{tg} \alpha_{0}\right]^{2}+4 \cdot \cos ^{3} \beta \cdot\left(z_{2}+\cos \beta\right)}-\left(z_{1}+z_{2}\right) \cdot \operatorname{tg} \alpha_{0}\right\} \\
& \varepsilon^{a . i .}=\frac{1+\operatorname{tg}^{2} \beta}{2 \cdot \pi} \cdot\left\{\sqrt{\left[\left(z_{e}+2 \cdot \cos \beta\right) \cdot \operatorname{tg} \alpha_{0}\right]^{2}+4 \cdot \cos ^{3} \beta \cdot\left(z_{e}+\cos \beta\right)}\right. \\
& \left.-\sqrt{\left[\left(z_{i}-2 \cdot \cos \beta\right) \cdot \operatorname{tg} \alpha_{0}\right]^{2}-4 \cdot \cos ^{3} \beta \cdot\left(z_{i}-\cos \beta\right)}-\left(z_{e}-z_{i}\right) \cdot \operatorname{tg} \alpha_{0}\right\} \tag{4.15}
\end{align*}
$$

Conclusion

There are wheels of the helical gears, which are used very often. For helical gears, the calculations show a decrease in the efficiency of the with the tilt angle on the rise of the teeth (β). For given angle which does not exceed 25°, the efficiency of fishing gear is good
enough. However, when the tilt angle is greater than 25°, speeds will suffer a significant decrease in the yield.

The highest yield that can be achieved with two gears is that of the inner gear, with the inner driving gear (the wheel becomes the driver and the smaller wheel with external gear will be driven); Conversely, when we form an inner gear with the small (outer gear) driving wheel,
the resulting yield is the smallest possible; When gearing is external, the output is higher for the high steering wheel; The more the normal engagement angle, α_{0}, decreases, the degree of coverage increases and with it the engagement efficiency; when the normal angle of engagement drops to 5 degrees, the coverage reaches 6.5-7.3 and the output reaches theoretical values of $99-$ 99.5%, meaning that the gear will actually work at 100%. Yield increases also with the number of teeth of the driving wheel.

In order to avoid interference phenomenon, point A must lie between C and K_{1} (the addendum circle of the wheel $2, C_{a 2}$ need to cut the line of action between points C and K_{1} and under no circumstances does not exceed the point K_{1}). Similarly, $C_{a 1}$ addendum circle must cut the action line between points C and K_{2}, resulting in point E, which in no circumstances, does not exceed the point K_{2}.

The conditions to avoid the phenomenon of interference can be written with the relations (3.1).

The basic conditions of interference, are the same $(\mathrm{CA}<\mathrm{K} 1 \mathrm{C} ; \mathrm{CE}<\mathrm{K} 2 \mathrm{C})$, but the originality of this new presented method consist in the mode in which it was solved the classical relationship (see the system 3.1).

The system (3.3) represents a simple, unitary and general relationship capable of generating functional solutions for gears, giving the minimum number of teeth of wheel 1 (motor wheel) to avoid interference. In the appendix Table 1-15 of Figure 12 an alpha0 value $\left(35^{\circ}\right)$ will be chosen and the beta angles (from 0° to 40°) and the transmission ratio i (from 1 to 80) are incrementally incremented in order to thus getting the minimum number of teeth correctly.

Then, the alpha value (from 35° to 5°) will be decreased successively.

Acknowledgement

This text was acknowledged and appreciated by Dr. Veturia CHIROIU Honorific member of Technical Sciences Academy of Romania (ASTR) PhD supervisor in Mechanical Engineering.

Funding Information

Research contract: Contract number 36-5-4D/1986 from 24IV1985, beneficiary CNST RO (Romanian National Center for Science and Technology) Improving dynamic mechanisms internal combustion engines. All these matters are copyrighted. Copyrights: 548cgiywDssin, from: 22-04-2010, 08:48:48.

Ethics

This article is original and contains unpublished material. Authors declare that are not ethical issues and
no conflict of interest that may arise after the publication of this manuscript.

References

Antonescu, P., 2000. Mechanisms and Handlers. 1st Edn., Printech Publishing House, Bucharest.
Antonescu, P. and F. Petrescu, 1985. Analytical method of synthesis of cam mechanism and flat stick. Proceedings of the 4th International Symposium on Mechanism Theory and Practice, (TPM' 85), Bucharest.
Antonescu, P. and F. Petrescu, 1989. Contributions to cinetoelastodynamic analysis of distribution mechanisms. Bucharest.
Antonescu, P., M. Oprean and F. Petrescu, 1985a. Contributions to the synthesis of oscillating cam mechanism and oscillating flat stick. Proceedings of the 4th International Symposium on Theory and Practice of Mechanisms, (TPM' 85), Bucharest.
Antonescu, P., M. Oprean and F. Petrescu, 1985b. At the projection of the oscillante cams, there are mechanisms and distribution variables. Proceedings of the 5th Conference for Engines, Automobiles, Tractors and Agricultural Machines, I-Engines and Automobiles, (AMA' 85), Brasov.
Antonescu, P., M. Oprean and F. Petrescu, 1986. Projection of the profile of the rotating camshaft acting on the oscillating plate with disengagement. Proceedings of the 3rd National Computer Assisted Designing Symposium in Mechanisms and Machine Bodies, (MOM' 86), Brasov.
Antonescu, P., M. Oprean and F. Petrescu, 1987. Dynamic analysis of the cam distribution mechanisms. Proceedings of the Seventh National Symposium of Industrial Robots and Spatial Mechanisms, (IMS' 87), Bucharest,
Antonescu, P., M. Oprean and F. Petrescu, 1988. Analytical synthesis of Kurz profile, rotating flat cam cam. Machine Build. Rev. Bucharest.
Antonescu, P., F. Petrescu and O. Antonescu, 1994. Contributions to the synthesis of the rotating cam mechanism and the tip of the balancing tip. Brasov.
Antonescu, P., F. Petrescu and D. Antonescu, 1997. Geometrical synthesis of the rotary cam and balance tappet mechanism. Bucharest.
Antonescu, P., F. Petrescu and O. Antonescu, 2000a. Contributions to the synthesis of the rotary disc-cam profile. Proceedings of the 8th International Conference on Theory of Machines and Mechanisms, (TMM' 00), Liberec, Czech Republic, pp: 51-56.
Antonescu, P., F. Petrescu and O. Antonescu, 2000b. Synthesis of the rotary cam profile with balance follower. Proceedings of the 8th Symposium on Mechanisms and Mechanical Transmissions, (MMT' 000), Timişoara, pp: 39-44.

Antonescu, P., F. Petrescu and O. Antonescu, 2001. Contributions to the synthesis of mechanisms with rotary disc-cam. Proceedings of the 8th IFToMM International Symposium on Theory of Machines and Mechanisms, (TMM' 01), Bucharest, ROMANIA, pp: 31-36.
Aversa, R., R.V. Petrescu, A. Apicella and F.I.T. Petrescu, 2017a. Nano-diamond hybrid materials for structural biomedical application. Am. J. Biochem. Biotechnol., 13: 34-41. DOI: 10.3844/ajbbsp.2017.34.41
Aversa, R., R.V. Petrescu, B. Akash, R.B. Bucinell and J.M. Corchado et al., 2017b. Kinematics and forces to a new model forging manipulator. Am. J. Applied Sci., 14: 60-80. DOI: 10.3844/ajassp.2017.60.80
Aversa, R., R.V. Petrescu, A. Apicella, F.I.T. Petrescu and J.K. Calautit et al., 2017c. Something about the V engines design. Am. J. Applied Sci., 14: 34-52. DOI: 10.3844/ajassp.2017.34.52
Aversa, R., D. Parcesepe, R.V. Petrescu, F. Berto and G. Chen et al., 2017d. Processability of bulk metallic glasses. Am. J. Applied Sci., 14: 294-301. DOI: 10.3844/ajassp.2017.294.301
Aversa, R., R.V. Petrescu, A. Apicella and F.I.T. Petrescu, 2017e. Modern transportation and photovoltaic energy for urban ecotourism. Transylvanian Rev. Admin. Sci., 13: 5-20. DOI: 10.24193/tras.SI2017.1
Aversa, R., F.I.T. Petrescu, R.V. Petrescu and A. Apicella, 2016a. Biomimetic FEA bone modeling for customized hybrid biological prostheses development. Am. J. Applied Sci., 13: 1060-1067. DOI: 10.3844/ajassp.2016.1060.1067
Aversa, R., D. Parcesepe, R.V. Petrescu, G. Chen and F.I.T. Petrescu et al., 2016b. Glassy amorphous metal injection molded induced morphological defects. Am. J. Applied Sci., 13: 1476-1482.
DOI: 10.3844/ajassp.2016.1476.1482
Aversa, R., R.V. Petrescu, F.I.T. Petrescu and A. Apicella, 2016c. Smart-factory: Optimization and process control of composite centrifuged pipes. Am. J. Applied Sci., 13: 1330-1341. DOI: 10.3844/ajassp.2016.1330.1341
Aversa, R., F. Tamburrino, R.V. Petrescu, F.I.T. Petrescu and M. Artur et al., 2016d. Biomechanically inspired shape memory effect machines driven by muscle like acting NiTi alloys. Am. J. Applied Sci., 13: 1264-1271. DOI: 10.3844/ajassp.2016.1264.1271
Cao, W., H. Ding, Z. Bin and C. Ziming, 2013. New structural representation and digital-analysis platform for symmetrical parallel mechanisms. Int. J. Adv. Robot. Sys. DOI: 10.5772/56380

Cataldo, R., 2006 Overview of planetary power system options for education. ITEA Human Exploration Project Authors, at Glenn Research Center. Brooke Park, OH.

Cayley George, From Wikipedia. The free encyclopedia. https://en.wikipedia.org/wiki/George_Cayley
Chen, J. and R.J. Patton, 1999. Robust Model-Based Fault Diagnosis for Dynamic Systems. 1st Edn., Kluwer Academic Publisher, Boston, ISBN-10: 0792384113 , pp: 356.
Clément, A., From Wikipedia. The free encyclopedia. https://en.wikipedia.org/wiki/Cl\�\�ment_Ader
Coandă-1910, From Wikipedia. The free encyclopedia. https://en.wikipedia.org/wiki/Coand\�\�-1910
Comănescu, A., D. Comănescu, I. Dugăeşescu and A. Boureci, 2010. The Basics of Modeling Mechanisms. 1st Edn., Politehnica Press Publishing House, Bucharest, ISBN-10: 978-606-515-115-4, pp: 274.
Crickmore, P.F., 1997. Lockheed's blackbirds-A-12, YF12 and SR-71A. Wings Fame, 8: 30-93.
Donald, D., 2003. Lockheed's blackbirds: A-12, YF-12 and SR-71". Black Jets. AIRtime.
Dong, H., N. Giakoumidis, N. Figueroa and N. Mavridis, 2013. Approaching behaviour monitor and vibration indication in developing a General Moving Object Alarm System (GMOAS). Int. J. Adv. Robot. Sys. DOI: 10.5772/56586
Droste, J., 1915. On the field of a single centre in Einstein's theory of gravitation. Koninklijke Nederlandsche Akademie van Wetenschappen Proc., 17: 998-1011.
De Melo, L.F., R.A., S.F. Rosário and J.M., Rosário, 2012. Mobile robot navigation modelling, control and applications. Int. Rev. Modell. Simulations, 5: 1059-1068.
Fernandez, V., F. Luis, L.F. Penin, J. Araujo and A. Caramagno, 2005. Modeling and FDI specification of a RLV Re-entry for robust estimation of sensor and actuator faults. Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit, Aug. 15-18, San Francisco.
DOI: 10.2514/6.2005-6254
Finkelstein, D., 1958. Past-future asymmetry of the gravitational field of a point particle. Physical Rev., 110: 965-967.
Fonod, R., D. Henry, C. Charbonnel and E. Bornschlegl et al., 2015. Position and attitude model-based thruster fault diagnosis: A comparison study. J. Guidance Control Dynam., 38: 1012-1026. DOI: 10.2514/1.G000309
Frățilă, G., M. Frățilă and S. Samoilă, 2011. Automobiles, Construction, Exploitation, Reparation. 10th Edn., EDP, Bucharest, ISBN-13: 978-973-30-2857-4.
Garcia, E., M.A. Jimenez, P.G. De Santos and M. Armada, 2007. The evolution of robotics research. IEEE Robot. Autom. Magaz., 14: 90-103. DOI: 10.1109/MRA.2007.339608

Garcia-Murillo, M., J. Gallardo-Alvarado and E. Castillo-Castaneda, 2013. Finding the generalized forces of a series-parallel manipulator. IJARS.
DOI: 10.5772/53824
Goddard, 1916. Rocket apparatus patent. Smithsonian Institution Archives.
Goodall, J., 2003. Lockheed's SR-71 "Blackbird" Family. 1st Edn., Aerofax/Midland Publishing, Hinckley, UK, ISBN-10: 1-85780-138-5.
Gorder, P.F., 2015. What's on the surface of a black hole? Not a "firewall"-and the nature of the universe depends on it, a physicist explains.
Graham, R.H., 2002. SR-71 Blackbird: Stories, Tales and Legends. 1st Edn., Zenith Imprint, North Branch, Minnesota, ISBN-10: 1610607503.
Gruener, J.E., 2006. Lunar exploration (Presentation to ITEA Human Exploration Project Authors, at Johnson Space Center). Houston, TX.
Gunston, B., 2010. Airbus: The Complete Story. 1st Edn., Haynes Publishing UK, Sparkford, ISBN-10: 1844255859, pp: 288.
He, B., Z. Wang, Q. Li, H. Xie and R. Shen, 2013. An analytic method for the kinematics and dynamics of a multiple-backbone continuum robot. IJARS.
DOI: 10.5772/54051
Hewish, A., 1970. Pulsars. Ann. Rev. Astronomy Astrophys., 8: 265-296.
Jenkins, D.R., 2001. Lockheed Secret Projects: Inside the Skunk Works. 1st Edn., Zenith Imprint, St. Paul, Minnesota: MBI Publishing Company, ISBN-10: 1610607287.

Kaufman, H.R., 1959. Installations at NASA Glenn.
Laming, T., 2000. Airbus A320. 1st Edn., Zenith Press.
Landis, T.R. and D.R. Jenkins, 2005. Lockheed Blackbirds. 1st Edn., Specialty Press, North Branch, ISBN-10: 1580070868, pp: 104.
Lee, B.J., 2013. Geometrical derivation of differential kinematics to calibrate model parameters of flexible manipulator. Int. J. Adv. Robot. Sys. DOI: 10.5772/55592
Lin, W., B. Li, X. Yang and D. Zhang, 2013. Modelling and control of inverse dynamics for a 5-DOF parallel kinematic polishing machine. Int. J. Adv. Robot. Sys. DOI: 10.5772/54966
List the first flights, From Wikipedia, free encyclopedia. https://ro.wikipedia.org/wiki/List\�\�_cu_prim ele_zboruri
Liu, H., W. Zhou, X. Lai and S. Zhu, 2013. An efficient inverse kinematic algorithm for a PUMA560structured robot manipulator. IJARS.
DOI: 10.5772/56403

Lu, P., L. Van Eykeren, E. van Kampen and Q. P. Chu, 2015. Selective-reinitialization multiple-model adaptive estimation for fault detection and diagnosis. J. Guidance Control Dynam., 38: 1409-1424.

DOI: 10.2514/1.G000587
Lu, P., L. Van Eykeren, E. van Kampen, C.C. de Visser and Q.P. Chu, 2016. Adaptive three-step kalman filter for air data sensor fault detection and diagnosis. J. Guidance Control Dynam., 39: 590-604.

DOI: 10.2514/1.G001313
Michell, J., 1784. On the means of discovering the distance, magnitude and c. of the fixed stars, in consequence of the diminution of the velocity of their light, in case such a diminution should be found to take place in any of them and such other data should be procured from observations, as would be farther necessary for that purpose. Philosophical Trans. Royal Society, 74: 35-57.
Mirsayar, M.M., V.A. Joneidi, R.V. Petrescu, F.I.T. Petrescu and F. Berto, 2017. Extended MTSN criterion for fracture analysis of soda lime glass. Eng. Fracture Mechan., 178: 50-59. DOI: 10.1016/j.engfracmech.2017.04.018
Murray, K., A. Marcos and L.F. Penin, 2010. Development and testing of a GNC-FDI filter for a reusable launch vehicle during ascent. Proceedings of the AIAA Guidance, Navigation and Control Conference, Aug. 2-5, Toronto, Ontario Canada. DOI: 10.2514/6.2010-8195
Norris, G., 2010. Airbus A380: Superjumbo of the 21st Century. 1st Edn., Zenith Press.
Oberth, H., 1955. They come from outer space. Fly. Saucer Rev., 1: 12-14.
Oppenheimer, J.R. and G.M. Volkoff, 1939. On massive neutron cores. Phys. Rev., 55: 374-381.
Padula, F. and V. Perdereau, 2013. An on-line path planner for industrial manipulators. Int. J. Adv. Robot. Sys. DOI: 10.5772/55063
Palumbo, R., G. Morani, M. De Stefano Fumo, C. Richiello and M. Di Donato et al., 2012. Concept study of an atmospheric reentry using a winged unmanned space vehicle. Proceedings of the 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference, Sept. 24-28, Tours, France. DOI: 10.2514/6.2012-5857
Patre, P. and S.M. Joshi, 2011. Accommodating sensor bias in MRAC for state tracking. Proceedings of the AIAA Guidance, Navigation and Control Conference, Aug. 8-11, Portland, Oregon. DOI: 10.2514/6.2011-6605
Pelecudi, C., 1967. The basics of mechanism analysis. Publishing house: Academy of the People's Republic of Romania.
Perumaal, S. and N. Jawahar, 2013. Automated trajectory planner of industrial robot for pick-andplace task. IJARS. DOI: 10.5772/53940

Petrescu, F. and R. Petrescu, 1995a. Contributions to optimization of the polynomial motion laws of the stick from the internal combustion engine distribution mechanism. Bucharest.
Petrescu, F. and R. Petrescu, 1995b. Contributions to the synthesis of internal combustion engine distribution mechanisms. Bucharest.
Petrescu, F. and R. Petrescu, 1997a. Dynamics of cam mechanisms (exemplified on the classic distribution mechanism). Bucharest.
Petrescu, F. and R. Petrescu, 1997b. Contributions to the synthesis of the distribution mechanisms of internal combustion engines with Cartesian coordinate method. Bucharest.
Petrescu, F. and R. Petrescu, 1997c. Contributions to maximizing polynomial laws for the active stroke of the distribution mechanism from internal combustion engines. Bucharest.
Petrescu, F. and R. Petrescu, 2000a. Synthesis of distribution mechanisms by the rectangular (cartesian) coordinate method. University of Craiova, Craiova.
Petrescu, F. and R. Petrescu, 2000b. The design (synthesis) of cams using the polar coordinate method (the triangle method). University of Craiova, Craiova.
Petrescu, F. and R. Petrescu, 2002a. Motion laws for cams. Proceedings of the 7th National Symposium with International Participation Computer Assisted Design, (PAC' 02), Braşov, pp: 321-326.
Petrescu, F. and R. Petrescu, 2002b. Camshaft dynamics elements. Proceedings of the 7th National Symposium with International Participation Computer Assisted Design, (PAC' 02), Braşov, pp: 327-332.
Petrescu, F. and R. Petrescu, 2003. Some elements regarding the improvement of the engine design. Proceedings of the 8th National Symposium, Descriptive Geometry, Technical Graphics and Design, (GTD’ 03), Braşov, pp: 353-358.
Petrescu, F. and R. Petrescu, 2005a. The cam design for a better efficiency. Proceedings of the International Conference on Engineering Graphics and Design, (EGD' 05), Bucharest, pp: 245-248.
Petrescu, F. and R. Petrescu, 2005b. Contributions at the dynamics of cams. Proceedings of the 9th IFToMM International Symposium on Theory of Machines and Mechanisms, (TMM' 05), Bucharest, Romania, pp: 123-128.
Petrescu, F. and R. Petrescu, 2005c. Determining the dynamic efficiency of cams. Proceedings of the 9th IFToMM International Symposium on Theory of Machines and Mechanisms, (TMM' 05), Bucharest, Romania, pp: 129-134.

Petrescu, F. and R. Petrescu, 2005d. An original internal combustion engine. Proceedings of the 9th IFToMM International Symposium on Theory of Machines and Mechanisms, (TMM' 05), Bucharest, Romania, pp: 135-140.
Petrescu, F. and R. Petrescu, 2005e. Determining the mechanical efficiency of Otto engine's mechanism. Proceedings of the 9th IFToMM International Symposium on Theory of Machines and Mechanisms, (TMM' 05), Bucharest, Romania, pp: 141-146.
Petrescu, F.I. and R.V. Petrescu, 2013. Cinematics of the 3R Dyad. Engevista, 15: 118-124.
Petrescu, F.I.T. and R.V. Petrescu, 2012a. The Aviation History. 1st Edn., Books On Demand, ISBN-13: 978-3848230778.
Petrescu, F.I. and R.V. Petrescu, 2012b. MecatronicaSisteme Seriale si Paralele. 1st Edn., Create Space Publisher, USA, ISBN-10: 978-1-4750-6613-5, $\mathrm{pp}: 128$.
Petrescu, F.I. and R.V. Petrescu, 2011. Mechanical Systems, Serial and Parallel-Course (in Romanian). 1st Edn., LULU Publisher, London, UK, ISBN-10: 978-1-4466-0039-9, pp: 124.
Petrescu, F.I. and R.V. Petrescu, 2016a. Parallel moving mechanical systems kinematics, ENGEVISTA, 18: 455-491.
Petrescu, F.I. and R.V. Petrescu, 2016b. Direct and inverse kinematics to the Anthropomorphic Robots. ENGEVISTA, 18: 109-124.
Petrescu, F. and R. Petrescu, 2016c. An Otto engine dynamic model. IJM\&P, 7: 038-048.
Petrescu, F.I. and R.V. Petrescu, 2016d. Otto motor dynamics, GEINTEC, 6: 3392-3406.
Petrescu, F.I. and R.V. Petrescu, 2016e. Dynamic cinematic to a structure 2R. GEINTEC, 6: 3143-3154.
Petrescu, F.I., B. Grecu, A. Comanescu and R.V. Petrescu, 2009. Some mechanical design elements. Proceeding of the International Conference on Computational Mechanics and Virtual Engineering, (MEC' 09), Braşov, pp: 520-525.
Petrescu, R.V., R. Aversa, A. Apicella, M.M. Mirsayar and F.I.T. Petrescu, 2016a About the gear efficiency to a simple planetary train. Am. J. Applied Sci., 13: 1428-1436.
DOI: 10.3844/ajassp.2016.1428.1436
Petrescu, R.V., R. Aversa, A. Apicella, S. Li and G. Chen et al., 2016b. Something about electron dimension. Am. J. Applied Sci., 13: 1272-1276. DOI: 10.3844/ajassp.2016.1272.1276
Petrescu, F.I.T., A. Apicella, R. Aversa, R.V. Petrescu and J.K. Calautit et al., 2016c. Something about the mechanical moment of inertia. Am. J. Applied Sci., 13: 1085-1090.
DOI: 10.3844/ajassp.2016.1085.1090

Petrescu, R.V., R. Aversa, A. Apicella, F. Berto and S. Li et al., 2016d. Ecosphere protection through green energy. Am. J. Applied Sci., 13: 1027-1032. DOI: 10.3844/ajassp.2016.1027.1032
Petrescu, F.I.T., A. Apicella, R.V. Petrescu, S.P. Kozaitis and R.B. Bucinell et al., 2016e. Environmental protection through nuclear energy. Am. J. Applied Sci., 13: 941-946.
DOI: 10.3844/ajassp.2016.941.946
Petrescu, F.I.T. and J.K. Calautit, 2016a. About nano fusion and dynamic fusion. Am. J. Applied Sci., 13: 261-266. DOI: 10.3844/ajassp.2016.261.266
Petrescu, F.I.T. and J.K. Calautit, 2016b. About the light dimensions. Am. J. Applied Sci., 13: 321-325.
DOI: 10.3844/ajassp.2016.321.325
Petrescu, R.V., R. Aversa, B. Akash, R. Bucinell and J. Corchado et al., 2017a. Modern propulsions for aerospace-a review. J. Aircraft Spacecraft Technol., 1: 1-8. DOI: 10.3844/jastsp.2017.1.8
Petrescu, R.V., R. Aversa, B. Akash, R. Bucinell and J. Corchado et al., 2017b. Modern propulsions for aerospace-part II. J. Aircraft Spacecraft Technol., 1: 9-17. DOI: 10.3844/jastsp.2017.9.17
Petrescu, R.V., R. Aversa, B. Akash, R. Bucinell and J. Corchado et al., 2017c. History of aviation-a short review. J. Aircraft Spacecraft Technol., 1: 30-49. DOI: 10.3844/jastsp.2017.30.49
Petrescu, R.V., R. Aversa, B. Akash, R. Bucinell and J. Corchado et al., 2017d. Lockheed martin-a short review. J. Aircraft Spacecraft Technol., 1: 50-68. DOI: 10.3844/jastsp.2017.50.68
Petrescu, R.V., R. Aversa, B. Akash, J. Corchado and F. Berto et al., 2017e. Our universe. J. Aircraft Spacecraft Technol., 1: 69-79.
DOI: 10.3844/jastsp.2017.69.79
Petrescu, R.V., R. Aversa, B. Akash, J. Corchado and F. Berto et al., 2017f. What is a UFO? J. Aircraft Spacecraft Technol., 1: 80-90. DOI: 10.3844/jastsp.2017.80.90
Petrescu, R.V., R. Aversa, B. Akash, J. Corchado and F. Berto et al., 2017g. About bell helicopter FCX001 concept aircraft-a short review. J. Aircraft Spacecraft Technol., 1: 91-96.
DOI: 10.3844/jastsp.2017.91.96
Petrescu, R.V., R. Aversa, B. Akash, J. Corchado and F. Berto et al., 2017h. Home at airbus. J. Aircraft Spacecraft Technol., 1: 97-118.
DOI: 10.3844/jastsp.2017.97.118
Petrescu, R.V., R. Aversa, B. Akash, J. Corchado and F. Berto et al., 2017i. Airlander. J. Aircraft Spacecraft Technol., 1: 119-148.
DOI: 10.3844/jastsp.2017.119.148

Petrescu, R.V., R. Aversa, B. Akash, J. Corchado and F. Berto et al., 2017j. When boeing is dreaming-a review. J. Aircraft Spacecraft Technol., 1: 149-161. DOI: 10.3844/jastsp.2017.149.161
Petrescu, R.V., R. Aversa, B. Akash, J. Corchado and F. Berto et al., 2017k. About Northrop Grumman. J. Aircraft Spacecraft Technol., 1: 162-185. DOI: 10.3844/jastsp.2017.162.185
Petrescu, R.V., R. Aversa, B. Akash, J. Corchado and F. Berto et al., 20171. Some special aircraft. J. Aircraft Spacecraft Technol., 1: 186-203.
DOI: 10.3844/jastsp.2017.186.203
Petrescu, R.V., R. Aversa, B. Akash, J. Corchado and F. Berto et al., 2017m. About helicopters. J. Aircraft Spacecraft Technol., 1: 204-223.
DOI: 10.3844/jastsp.2017.204.223
Petrescu, R.V., R. Aversa, B. Akash, F. Berto and A. Apicella et al., 2017n. The modern flight. J. Aircraft Spacecraft Technol., 1: 224-233.
DOI: 10.3844/jastsp.2017.224.233
Petrescu, R.V., R. Aversa, B. Akash, F. Berto and A. Apicella et al., 2017o. Sustainable energy for aerospace vessels. J. Aircraft Spacecraft Technol., 1: 234-240. DOI: 10.3844/jastsp.2017.234.240
Petrescu, R.V., R. Aversa, B. Akash, F. Berto and A. Apicella et al., 2017p. Unmanned helicopters. J. Aircraft Spacecraft Technol., 1: 241-248.
DOI: 10.3844/jastsp.2017.241.248
Petrescu, R.V., R. Aversa, B. Akash, F. Berto and A. Apicella et al., 2017q. Project HARP. J. Aircraft Spacecraft Technol., 1: 249-257.
DOI: 10.3844/jastsp.2017.249.257
Petrescu, R.V., R. Aversa, B. Akash, F. Berto and A. Apicella et al., 2017r. Presentation of romanian engineers who contributed to the development of global aeronautics-part I. J. Aircraft Spacecraft Technol., 1: 258-271.
DOI: 10.3844/jastsp.2017.258.271
Petrescu, R.V., R. Aversa, B. Akash, F. Berto and A. Apicella et al., 2017s. A first-class ticket to the planet mars, please. J. Aircraft Spacecraft Technol., 1: 272-281. DOI: 10.3844/jastsp.2017.272.281
Petrescu, R.V., R. Aversa, B. Akash, F. Berto and A. Apicella et al., 2017t. Forces of a 3R robot. J. Mechatronics Robotics, 1: 1-14.
DOI: 10.3844/jmrsp.2017.1.14
Petrescu, R.V., R. Aversa, B. Akash, F. Berto and A. Apicella et al., 2017u. Direct geometry and cinematic to the MP-3R systems. J. Mechatronics Robotics, 1: 15-23.
DOI: 10.3844/jmrsp.2017.15.23

Petrescu, R.V., R. Aversa, B. Akash, F. Berto and A. Apicella et al., 2017v. Dynamic elements at MP3R. J. Mechatronics Robotics, 1: 24-37. DOI: 10.3844/jmrsp.2017.24.37
Petrescu, R.V., R. Aversa, B. Akash, F. Berto and A. Apicella et al., 2017w. Geometry and direct kinematics to MP3R with 4×4 operators. J. Mechatronics Robotics, 1: 38-46. DOI: 10.3844/jmrsp.2017.38.46
Petrescu, R.V., R. Aversa, A. Apicella, M.M. Mirsayar and S. Kozaitis et al., 2017x. Current stage in the field of mechanisms with gears and rods. J. Mechatronics Robotics, 1: 47-57. DOI: 10.3844/jmrsp.2017.47.57
Petrescu, R.V., R. Aversa, A. Apicella, M.M. Mirsayar and S. Kozaitis et al., 2017y. Geometry and inverse kinematic at the MP3R mobile systems. J. Mechatronics Robotics, 1: 58-65. DOI: 10.3844/jmrsp.2017.58.65
Petrescu, R.V., R. Aversa, A. Apicella, M.M. Mirsayar and S. Kozaitis et al., 2017z. Synthesis of optimal trajectories with functions control at the level of the kinematic drive couplings. J. Mechatronics Robotics, 1: 66-74. DOI: 10.3844/jmrsp.2017.66.74
Petrescu, R.V., R. Aversa, A. Apicella, M.M. Mirsayar and S. Kozaitis et al., 2017aa. The inverse kinematics of the plane system 2-3 in a mechatronic MP2R system, by a trigonometric method. J. Mechatronics Robotics, 1: 75-87.
DOI: 10.3844/jmrsp.2017.75.87
Petrescu, R.V., R. Aversa, A. Apicella, M.M. Mirsayar and S. Kozaitis et al., 2017ab. Serial, anthropomorphic, spatial, mechatronic systems can be studied more simply in a plan. J. Mechatronics Robotics, 1: 88-97.
DOI: 10.3844/jmrsp.2017.88.97
Petrescu, R.V., R. Aversa, A. Apicella, M.M. Mirsayar and S. Kozaitis et al., 2017ac. Analysis and synthesis of mechanisms with bars and gears used in robots and manipulators. J. Mechatronics Robotics, 1: 98-108. DOI: 10.3844/jmrsp.2017.98.108
Petrescu, R.V., R. Aversa, A. Apicella, M.M. Mirsayar and S. Kozaitis et al., 2017ad. Speeds and accelerations in direct kinematics to the MP3R systems. J. Mechatronics Robotics, 1: 109-117. DOI: 10.3844/jmrsp.2017.109.117

Petrescu, R.V., R. Aversa, A. Apicella, M.M. Mirsayar and S. Kozaitis et al., 2017ae. Geometry and determining the positions of a plan transporter manipulator. J. Mechatronics Robotics, 1: 118-126. DOI: 10.3844/jmrsp.2017.118.126
Reddy, P., K.V. Shihabudheen and J. Jacob, 2012. Precise non linear modeling of flexible link flexible joint manipulator. IReMoS, 5: 1368-1374.
Sevil, H.E. and A. Dogan, 2015. Fault diagnosis in air data sensors for receiver aircraft in aerial refueling. J. Guidance Control Dynam., 38: 1959-1975.

DOI: 10.2514/1.G000527
Sherson, J.F., H. Krauter, RK. Olsson, B. Julsgaard and K. Hammerer et al., 2006. Quantum teleportation between light and matter. Nature, 443: 557-560. DOI: 10.1038/nature05136
Sun, J.Z. and S.M. Joshi, 2009. An indirect adaptive control scheme in the presence of actuator and sensor failures. Proceedings of the AIAA Guidance, Navigation and Control Conference, Aug. 10-13, Chicago, Illinois. DOI: 10.2514/6.2009-5740
Tabaković, S., M. Zeljković, R. Gatalo and A. $Z \square$ ivković, 2013. Program suite for conceptual designing of parallel mechanism-based robots and machine tools. Int. J. Adv. Robot Sys.
DOI: 10.5772/56633
Tang, X., D. Sun and Z. Shao, 2013. The structure and dimensional design of a reconfigurable PKM. IJARS. DOI: 10.5772/54696
Tong, G., J. Gu and W. Xie, 2013. Virtual entity-based rapid prototype for design and simulation of humanoid robots. Int. J. Adv. Robot. Sys.
DOI: 10.5772/55936
Venkataraman, G., 1992. Chandrasekhar and his Limit. 1st Edn., Universities Press, ISBN-10: 817371035X, pp: 89.
Wang, K., M. Luo, T. Mei, J. Zhao and Y. Cao, 2013. Dynamics analysis of a three-DOF planar serialparallel mechanism for active dynamic balancing with respect to a given trajectory. Int. J. Adv. Robotic Sys. DOI: 10.5772/54201
Williams, D.R., 1995. Saturnian satellite fact sheet. NASA.
https://nssdc.gsfc.nasa.gov/planetary/factsheet/satur niansatfact.html
Wen, S., J. Zhu, X. Li, A. Rad and X. Chen, 2012. Endpoint contact force control with quantitative feedback theory for mobile robots. IJARS.
DOI: 10.5772/53742

Appendix, Figure 12 with 15 Tables

Figure 12, Table 1: $\alpha_{0}=35$ [deg], $\beta=0[\mathrm{deg}]$

	35			0						
1	1	1.25	1.6	2	2.5	3.15	4	5	6.3	8
$z_{\text {min }}$	4.8828	5.3325	5.1896	5.3204	5.4386	5.5467	5.6431	5.7198	5.7867	5.8439
i	10	12.5	16	20	25	31.5	40	50	63	80
$z_{\text {min }}$	5.8880									

Figure 12, Table 2: $\alpha_{0}=35[\mathrm{deg}], \beta=10[\mathrm{deg}]$

Figure 12, Table 3: $\alpha_{0}=35[\mathrm{deg}], \beta=20[\mathrm{deg}]$

$\begin{gathered} \alpha_{0} \\ {[\mathrm{deg}]} \end{gathered}$	35		β [deg]	20						
i	1	1.25	1.6	2	2.5	3.15	4	5	6.3	8
$Z_{\text {min }}$	4.2799	4.4022	4.5307	4.6379	4.7351	4.8240	4.9035	4.9667	5.0219	5.0693
i	10	12.5	16	20	25	31.5	40	50	63	80
$Z_{\text {min }}$	5.1058	5.1358	5.1627	5.1824	5.1983	5.2116	5.2226	5.2308	5.2376	5.2432

Figure 12, Table 4: $\alpha_{0}=35$ [deg], $\beta=30[\mathrm{deg}]$

	35			30						
i	1	1.25	1.6	2	2.5	3.15	4	5	6.3	8
$z_{\text {min }}$	3.6198	8.7136	3.8123	3.894	3.9699	4.0388	4.100	4.1495		229
i	10	12.5	16	20	25	31.5	40	50	63	80

Figure 12, Table 5: $\alpha_{0}=35[\mathrm{deg}], \beta=40[\mathrm{deg}]$

Figure 12, Table 6: $\alpha_{0}=20[\mathrm{deg}], \beta=0[\mathrm{deg}]$

Figure 12, Table 7: $\alpha_{0}=20[\mathrm{deg}], \beta=10[\mathrm{deg}]$

	20			10						
	1	1.25	1.6	2	2.5	3.15	4	5	6.3	8
$z_{\text {min } 11.83512 .447113 .075 ~ 13.586 ~ 14.041 ~ 14.450 ~ 14.810 ~ 15.094 ~ 15.339 ~ 15.547 ~}^{1}$										
i 10 12.5 16 20 25 31.5 40 50 63 80										

Figure 12, Table 8: $\alpha_{0}=20[\mathrm{deg}], \beta=20[\mathrm{deg}]$

	20	20					
i	11.251 .6	2	2.53 .15	4	5	6.3	8
	0.44610 .99411 .535	11.977	12.370 12.725	13.03	13.28		676
i	1012.516	20	2531.5	40	50	63	80
	13.81413 .92714 .08						

Figure 12, Table 9: $\alpha_{0}=20[\mathrm{deg}], \beta=30[\mathrm{deg}]$

Figure 12, Table 10: $\alpha_{0}=20$ [deg], $\beta=40$ [deg]

Figure 12, Table 11: $\alpha_{0}=5[\mathrm{deg}], \beta=0[\mathrm{deg}]$

	5			0						
i	1	1.25		2		3.15	4	5	6.3	8
$\mathrm{z}_{\text {min }} 176.52$ 188.86 201.22 211.13 219.81 27..54 234.28 239.55 244.09 247.93										
i 10 12.5 16				$20 \quad 25$		31.5	40		5063	80

Figure 12, Table 12: $\alpha_{0}=5[\mathrm{deg}], \beta=10[\mathrm{deg}]$

[des]	5		[deal	10						
i	1	1.25	1.6	2	2.5	3.15	4	5	6.3	8
$\mathrm{z}_{\text {min }}$	168.66	180.45	192.25	201.72	210.01	217.38	223.83	228.86	233.19	236.86
i	10	12.5	16	20	25	31.5	40	50	63	80
$z_{\text {min }}$	239.65	241.94	243.97	45.45	246.64	247.63	248.45	249.06	249.57	249.98

Figure 12, Table 13: $\alpha_{0}=5[\mathrm{deg}], \beta=20[\mathrm{deg}]$

Figure 12, Table 14: $\alpha_{0}=5[\mathrm{deg}], \beta=30[\mathrm{deg}]$

	5			30						8
i	1	1.25	1.6	2			4	5	6.3	
$z_{\text {min }}$	15.16	16123.15	131.16	7.58	143.22	148	152.			161.47
i	10	12.5	16	20	25	31.5	40	50	63	80

Figure 12, Table 15: $\alpha_{0}=5$ [deg], $\beta=40$ [deg]

