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Abstract: The simple planetary mechanism is geometrically synthesized 

by determining the four tooth numbers of the component wheels. There 

are four main conditions that if not obeyed the mechanism will be 

blocked, will work with interruptions, or will not work at all. (a) The 

first condition in the geometric-kinematic synthesis of a simple 

planetary is the uniform loading of satellites (satellite groups) (or the 

simultaneous engagement condition). (b) The coaxiality condition is the 

second one to be observed, otherwise, the mechanism is inoperative. (c) 

The condition for achieving a required input-output transmission ratio is 

the third major condition, which results from the necessity of 

conceiving the mechanism according to the required operation. (d) The 

fourth imposed condition is that of (good) neighboring (of the satellite 

groups), which is necessary for the larger satellites belonging to two 

groups of neighboring satellites not to be touched, which is why it is 

necessary to introduce the additional condition, neighborhood. 

 

Keywords: Automatic Gearboxes, Dynamic Synthesis, Simple Planetary 

Mechanism, Synthesis of a Planetary Mechanism 

 

Introduction 

Today the planetary mechanisms have spread to the 

machine building industry, especially in robotics, 

mechatronics, automation, aerospace, automobiles, etc. 

becoming more and more important so that a good 

design of them is more than necessary, otherwise there is 

a danger that they do not work properly, operate with 

interruptions, shocks, noise and vibration, beatings, 

blocking, or even break. 

Manual gearboxes are increasingly being replaced by 

automatic or variable transmissions that make a better 

transition from one gear to another or even a permanent 

adaptation of the transmission to the demands of the 

road, so that fuel consumption can drop even by half, the 

noxes are also significantly reduced, so the noise and 

vibrations during the operation will be almost 

eliminated, drivers having the tendency to purchase such 

cars, which will make their life more enjoyable when 

they will be driving. In all these situations mechanisms 

are used which have one or more planetary mechanisms 

in their composition. 
Automatic gearbox and transmission mode 

transmission mode in an automatic gearbox with 

planetary gears. The automatic gearbox (s) under study is 

4HP20 from the ZF (Fig. 1). 

The 4HP20 automatic gearbox has 4 transmission 

ratios (gears) and a maximum torque of 330 Nm. It 

consists of 2 simple planetary mechanisms, a blocking 

hydro transformer (clutch), two clutches, three multidrive 

brakes and an electrohydraulic control module. 
 

 
 
Fig. 1: The automatic gearbox 4HP20 from the ZF 
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The 4HP20 is older generation but the same gearing 

principle applies to 8-speed or 9-speed automatic 

gearboxes. This box was used on a wide range of cars: 

Mercedes Benz, Renault, Peugeot, Fiat, Lancia, etc. 

Currently, manufacturers such as Renault or PSA 

(Peugeot-Citroen) are selling cars that use derivative 

gears on this market in Turkey, Russia, Mexico, China, 

etc. The Dacia Duster with an automatic gearbox, 

marketed on the Russian market, has a gearbox similar to 

4HP20 (see its components in the Fig. 2). 

1. Radiator (cools the transmission oil) 

2. Multidisc clutch 

3. Multidisc brake 

4. Reducer (final gear) 

5. Differential 

6. Hydrotransformer (torque converter) 

7. Multifunctional contact 

8. Ventilation valve 

9. Lectrohydraulic control unit housing 

10. Joja transmission oil 
 

    
 

 
 

Fig. 2: Components of automatic gearbox 4HP20 
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The hydraulic transformer (torque converter) is 

equipped with a clutch controlled by an electric control 

valve. Typically, in gears 2, 3 and 4, depending on the 

operating mode, the transmission computer controls the 

blocking of the hydrostatic to eliminate hydraulic losses. 

The hydraulic circuit is also equipped with a 

cooling radiator. Because of the fact that it passes 

through the clutch discs and brakes, the oil can be 

heated very heavily, reaching temperatures above 

100°C. Under these circumstances, the transmission 

computer controls an electric valve that opens the 

cooling circuit and allows the oil to pass through the 

radiator (see the Automatic transmission 4HP20 - 

cross section in the Fig. 3). 

In the Fig. 3 one can see all the components from the 

cross section of the automatic transmission: 

1. Clutch clutch hydrotransformer (torque converter) 

2. Turbine 

3. Pump 

4. Input shaft 

5. Free wheel 

6. Stator 

7. Oil pump 

8. Toothed gear drive fixed gear 

9. Output shaft speed sensor 

10. Simple planetary mechanism 1 

11. Simple planetary mechanism 2 

12. Input shaft speed sensor 

13. Fixed gear reducer intermediate gear 

14. Toothed gear reducer 

15. Differential crown 

16. Crown feed oil clutch 

 

 
 

Fig. 3: Automatic transmission 4HP20 - cross section 
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Fig. 4: Planetary mechanisms 
 

 
 
Fig. 5: Combining two simple planetary mechanisms, one can get 4 forward and one reverse track 
 C1 - planetary gear crown 1 
 PS1 - planetary harbor plate harbor 1 
 S1 - solar planetary mechanism 1 
 C2 - planetary mechanism crown 2 
 PS2 - planetary gear port 2 satellites 
 S2 - solar planetary mechanism 2 
 

Planetary mechanisms (Fig. 4) are simple, of the 

Simpson type. The ratio of each step is formed by 

planetary mechanisms plus a fixed reducer. To 

understand how gears are formed, we need to detail 

how a simple planetary mechanism works. A 

planetary mechanism consists of 4 elements: 
 
1. Solar 

2. Satellites 

3. Port-satellite platform 

4. The crown 
 

The advantage of a simple planetary mechanism, 

compared to a gear with gears commonly used in 

manual gearboxes, is that it can provide several 

transmission ratios. Practically from a simple planetary 
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mechanism, you can get 4 transmission reports and 

theoretically as many speeds. 

A simple planetary mechanism consists of 3 gears: 

the sun, the satellites and the crown. By blocking an 

element and using the other two as input and output, 

several gears can be obtained. 

If the crown sun is rigid, using a multidisc clutch, the 

entire mechanism will rotate unitarily, the transmission 

ratio, in this case, will be 1,000 (direct socket). 

Obviously, not all transmission reports are directly 

usable. In other words, a single planetary mechanism is 

not enough to achieve the gear shifting of an automatic 

transmission. However, by combining two simple 

planetary mechanisms, you can get 4 forward and one 

reverse track (Fig. 5). 

Frăţilă et al. (2011; Pelecudi, 1967; Antonescu, 2000; 

Comănescu et al., 2010; Aversa et al., 2016a; 2016b; 

2016c; 2016d; 2017a; 2017b; 2017c; 2017d; 2017e;   

Mirsayar et al., 2017; Cao et al., 2013; Dong et al., 2013; 

De Melo et al., 2012; Garcia et al., 2007; Garcia-Murillo 

et al., 2013;    He et al., 2013; Lee, 2013; Lin et al., 2013; 

Liu et al., 2013; Padula and Perdereau, 2013; Perumaal 

and Jawahar, 2013; Petrescu and Petrescu, 1995a; 

1995b; 1997a; 1997b; 1997c; 2000a; 2000b; 2002a; 

2002b; 2003; 2005a; 2005b; 2005c; 2005d; 2005e, 

2016a; 2016b; 2016c; 2016d; 2016e; 2013; 2012a; 

2012b; 2011; Petrescu et al., 2009; 2016a; 2016b; 

2016c; 2016d; 2016e; 2017a; 2017b; 2017c; 2017d; 

2017e; 2017f; 2017g; 2017h; 2017i; 2017j; 2017k; 

2017l; 2017m; 2017n; 2017o; 2017p; 2017q; 2017r; 

2017s; 2017t; 2017u; 2017v; 2017w; 2017x; 2017y; 

2017z; 2017aa; 2017ab; 2017ac; 2017ad; 2017ae;       

Petrescu and Calautit, 2016a; 2016b; Reddy et al., 

2012; Tabaković et al., 2013; Tang et al., 2013;    

Tong et al., 2013; Wang et al., 2013; Wen et al., 

2012; Antonescu and Petrescu, 1985; 1989; 

Antonescu et al., 1985a; 1985b; 1986; 1987; 1988; 

1994; 1997; 2000a; 2000b; 2001;  List  the first 

flights, From Wikipedia; Chen and Patton, 1999; 

Fernandez et al., 2005; Fonod et al., 2015; Lu et al., 

2015; 2016; Murray et al., 2010; Palumbo et al., 

2012; Patre and Joshi, 2011; Sevil and Dogan, 2015; 

Sun and Joshi, 2009; Crickmore, 1997; Donald, 2003; 

Goodall, 2003; Graham, 2002; Jenkins, 2001; Landis 

and Dennis, 2005; Clément, Wikipedia; Cayley, 

Wikipedia; Coandă, Wikipedia; Gunston, 2010;  

Laming, 2000; Norris, 2010; Goddard, 1916; Kaufman, 

1959; Oberth, 1955; Cataldo, 2006; Gruener, 2006;       

Sherson et al., 2006; Williams, 1995; Venkataraman, 

1992; Oppenheimer and Volkoff, 1939; Michell, 1784; 

Droste, 1915;  Finkelstein,  1958;  Gorder, 2015; 

Hewish, 1970). 

Materials and Methods 

The simple planetary mechanism (Fig. 6) is 
geometrically synthesized by determining the four 
tooth numbers of the component wheels. Four 
conditions are required. 

(a) The first condition in the geometric-kinematic 
synthesis of a simple planetary is the uniform loading of 
satellites (satellite groups) (or the simultaneous 
engagement condition). 

In order for the satellite groups to be uniformly 
charged (thus resulting in uniform and minimal wear 
with a quiet, long-running, no noise, vibration, shocks), 
the simultaneous engagement must take place, the 
satellites being symmetrically disposed at equal 
distances. It's obviously the satellite groups; if a single 
group of satellites was used, the loading would be large 
and especially uneven, with dynamic operation almost 
impossible because dynamic balancing could not be 
achieved. For this reason two, three, four, five, etc., 
satellite groups are used. A very good balance not only 
static but also dynamic is achieved, for example, when 
using at least three satellite groups. 

If we calibrate the first group of satellites (vertically - 

Fig. 6) so that the diameter a1a1
'
 is an axis of symmetry, 

in the satellite group the two axes can no longer be 

positioned generally after the direction a2a2

'
 but will be 

disengaged rotated at any angle α) occupying the 

position aa
'
. The disbanded positioning of the satellite 2 

with the a2a segment must still fall into a number of 

steps: a2a = n1.p1; the same phenomenon occurs at wheel 

2': b2b = n2.p2; but also to the center wheel 1: a1c = n3.p1; 

and the center wheel 3: b1d = n4.p2; as the process occurs 

without slipping, the segment a2a on the satellite wheel 2 

must be equal to the segment a2c on the center wheel 1. 

In addition a1a2 = z1.p1/k; the relationship 1 follows: 
 

( )
1 2 1 2 1 2 3 1 1 1

1 3 11 1

1 2

a a a c a c a c a a n p n p

z k n nz p
a a

k

= − = − = ⋅ − ⋅


⇒ = ⋅ − ⋅
=



 (1) 

 
The relationship 2 is also determined: 

 

( )
1 2 1 2 1 2 4 2 2 2

3 4 23 2

1 2

bb bd b d bd b b n p n p

z k n nz p
bb

k

= − = − = ⋅ − ⋅


⇒ = ⋅ − ⋅
=



 (2) 

 
Four relationships can be written immediately 

(system 3), from which the four simultaneous 
engagement conditions can be concluded: z1, z3, z3-z1, z1 
+ z3, all four must be natural numbers, plus multiples of k: 
 

( )

( )

( )

( )

1 3 1 1

3 4 2 2

3 1 1 4 2 3 3

3 1 3 4 1 2 4

z k n n k N

z k n n k N

z z k n n n n k N

z z k n n n n k N

 = ⋅ − = ⋅


= ⋅ − = ⋅


− = ⋅ + − − = ⋅
 + = ⋅ + − − = ⋅

 (3) 
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Fig. 6: Geometric and kinematics synthesis of a simple planetary mechanism 
 

b) Coaxial condition 

For the axes of all wheels to be coaxial, the condition 

O1O2 = O3O2 must be met; which can also be written r1 + 

r2 = r3 + r2'; or ½ (d1 + d2 = d3 + d2'); or ½ (m1z1 + m1z2 = 

m2z3 + m2z2'); if we use the same module at both gears 

(m1 = m2 = m) we obtain the particular form of the 

coaxial condition (4) expressed in two different ways: 
 

1 2 3 2 '

3 1 2 2 '

z z z z

z z z z

+ = +


− = −
 (4) 

 
(c) The condition for achieving a required input-

output transmission, iH3 
It is written in the system (5) the relations already 

known from the planetary cinematics: 
 

( )

1 2 3

3 3 1

3 31 2 3 1 2'

2 313

1 2'

1 2' 2 3 1 2' 2 3 3

3

1 1 1 1

1 11
1 1

1
1 1

H H H

H

H

H

H

z z
i i

i i z z z z

z zi

z z

z z z z z z z z i
i

⋅
= = = = = = − ⋅ − ⋅− −

 ⋅



 
⇒ ⋅ = ⋅ ⋅ − ⇒ ⋅ = ⋅ ⋅ − 

 

 (5) 

 
(d) The condition of (good) neighborhood (of satellite 

groups) 
For the larger satellites belonging to two groups of 

neighboring satellites not to be touched, it is necessary to 

introduce the additional, neighboring condition. In the 

mechanism used (Fig. 6), the larger satellites are 2 

compared to 2', so that the neighborhood condition will 

be checked only at wheels 2 (Fig. 7). 

In Fig. 2, the larger satellites (wheels 2), two 
neighboring groups were forced close to tangency. More 
cannot be. The two outer circles of the wheels 2 will 
come in tangent. The wheels (here and the splitting) of 
the wheels 2 (exaggerated in the figure, precisely for the 
understanding of the phenomenon) are tangent to the 
wheel 1 of the center wheel. 

OB distance is the sum of the rays r1 + r2 (distance 

between axes). 

Angle π/k (half of the angle 2π/k) is known (because 

k is specified before synthesis). 

It can be calculated immediately with sin function 

trigonometric, length TB: 
 

TB = BT = (r1 + r2) .sin (π/k) = m/2. (z1 + z2) 

.sin (π/k) 
 

The outer radius of the wheel 2 is written: ra2 = m/2. 

(z2 +2). 

The neighborhood condition results from the 

inequality of BT> ra2 and is expressed in relations (6): 
 

( ) ( )

( ) ( )

1 2 2

1 2 2

2

1

sin 2
2 2

sin 2

1 sin 2

sin

m m
z z z

k

z z z
k

z
k

z

k

π

π

π

π


⋅ + ⋅ > ⋅ +




 + ⋅ > +



  ⋅ − +   >



 (6) 

3 

ωH 

Z1 
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3 Z3 
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ω3 
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a1
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b1
’ 

2’ 

O2 

b1 
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Fig. 7: Neighborhood condition of a simple planetary mechanism 
 

Results and Discussion 

The computational relations compiled for all four 

conditions are recapitulated in the system (7): 

 

3 1 2 2 '

1 2 ' 3 2 3 1 2 ' 2 3 3

1 1 3 2 3 1 3 3 1 4

2

1

(1 ) ; 1

____________________________________________

; ; ;

____________________________________________

1 sin

H H

z z z z

z z i z z z z C z z C i

z k N z k N z z k N z z k N

z
k

z

π

− = −

⋅ = − ⋅ ⋅ ⇒ ⋅ = ⋅ ⋅ = −

= ⋅ = ⋅ − = ⋅ + = ⋅

 
⋅ − + 
 >

2

sin
k

π















 (7) 

 

Way of working: 

 

• Write the Initial Calculation Relationships (8): 

 

3 1

2 1

1 3

3 1

2 ' 3

1 3

z z
z z

z C z

z z
z C z

z C z

−
= ⋅ − ⋅


− = ⋅ ⋅

 − ⋅

 (8) 

• We give: k and iH3. Calculate immediately: i3H 

and C 

• z1 and z3 are chosen so that both are greater than 

or equal to zmin to automatically observe the 

avoidance condition (zmin = 18), but also the four 

simultaneous engagement conditions 

• Calculate with (8) z2 and z2'. If both are exactly 

integer numbers, check the neighborhood condition 

and if that's OK, stop the process 

 

If z2 and/or z2' are not exactly integer numbers, then 

they are rounded to the nearest natural value, using the 

relation (9) to obtain * *

2 2 '
,z z , with which the required 

transmission ratio *

3H
i  is recalculated. 

 
*

* 2 3

3 * *

2 3 1 2 '

H

z z
i

z z z z

⋅

=

⋅ − ⋅

 (9) 

 

If *

3H
i  it does not exceed 

3H
i  plus or minus about 

six or seven percent then the calculations are OK and 

the synthesis ends; Otherwise, the whole process is 

resumed at the end with another pair of teeth z1, z3. 

The data gathered at the output will be: 

 

O 

 

  

 

T 

 

 

B 

  

r1 

  
OB=r1+r2   

k 
 π 

r2 
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* * *

3 1 3 2 2 '
, , , ,

H
i z z z z  

 

Conclusion 

The simple planetary mechanism is geometrically 

synthesized by determining the four tooth numbers of the 

component wheels.  

There are four main conditions that if not obeyed the 

mechanism will be blocked, will work with interruptions, 

or will not work at all: 

 

a) The first condition in the geometric-kinematic 

synthesis of a simple planetary is the uniform loading 

of satellites (satellite groups) (or the simultaneous 

engagement condition) 

b) The coaxiality condition is the second one to be 

observed, otherwise, the mechanism is inoperative 

c) The condition for achieving a required input-output 

transmission ratio is the third major condition, which 

results from the necessity of conceiving the 

mechanism according to the required operation 

d) The fourth imposed condition is that of (good) 

neighboring (of the satellite groups), which is 

necessary for the larger satellites belonging to two 

groups of neighboring satellites not to be touched, 

which is why it is necessary to introduce the 

additional condition, neighborhood 
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