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Abstract: Organic Light-Emitting Diodes (OLEDs) devices using flexible 

substrates are envisioned for flexible, low-cost and roll-to-roll mass 

production. However, transparent conductive oxides such as indium tin 

oxide (ITO) do not fit the requirements of flexible devices, fabricated 

without vacuum-based technology. Hence, conductive polymer poly(3,4-

ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) has been 

proposed as an alternative approach to transparent conductive electrodes. 

The secondary doping of PEDOT:PSS shows improvement of conductivity 

to reasonable level and due to lower injection barrier devices with polymer 

anode exhibit even better performance. 
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Introduction 

Organic electronics have gained tremendous research 
interest for perspective application in optoelectronic 
devices such as Organic Light-Emitting Diodes (OLEDs), 
or organic solar cells since it has been envisioned for 
flexible, low-cost and roll-to-roll mass production (Katz, 
2004; Sirringhaus, 2005). All these devices are usually 
represented by the sandwich structures and require 
application of transparent conductive layer for one of 
electrodes. However, ‘transparent conductors’ are neither 
optically transparent nor metallically conductive. The 
combination of these two properties in one material 
contradict each other. As a result, the transparent 
conductors are all about the balance in between the 
transparency in visible wavelengths and sufficient 
conductivity (Facchetti and Marks, 2010). 

Chiang et al. (1977) in few decades ago suggested π-
conjugated polymers as a promising candidate for 
organic conductors and as a possible alternative to 
transparent conductive oxides. Even though various 
conductive polymers such as polyacetylene, 
polypyrrole, polythiophene, or polyphenylhave been 
investigated (Malhotra, 2002), the most popular 
material is still Poly(3,4-Ethylenedioxythiophene) 
(PEDOT) because of high conductivity. On the other 
hand, low solubility of PEDOT caused difficulty in thin 
layer fabrication and the mixture of PEDOT with 

Poly(4-Styrenesulfonate) (PSS) have been proposed to 
improve solubility in aqueous solutions. Polymer 
mixture poly(3,4-ethylenedioxythiophene):poly(4-
styrenesulfonate)(PEDOT:PSS) has been patented 
already in 1988 by Bayer AG (Jonas et al., 1988); 
however, commercial applications are not common until 
today. One of the most significant limitations was 
insufficient electrical conductivity ranging from 10

−6
 to 

10
−3

 S/cm (Nardes et al., 2007). The work function of 
about 5.0 eV (Nardes et al., 2008) makes the polymer 
applicable as the hole injection layer even though the 
conductivity is not high. In details, the ITO anode 
surface has been modified by the PEDOT:PSS thin film 
to enhance the charge injection andincrease the overall 
device performance (Mu et al., 2007 & Hong et. Al., 
2008). The need of high conductivity for deice 
applications inspired many research groups to improve 
the conductivity by polymer doping. It has been reported 
that various polyols, amides, sulfoxides, anionic surfactant 
and salts have a capability to increase the conductivity by 
2 or 3 orders of magnitude (Elschner et al., 2010). All 
these additives are usually denoted as “secondary 
dopants” (MacDiarmid and Epstein, 1994), since 
conductive polymer PEDOT is already doped by PSS as 
a counter ion to create a polyelectrolyte complex. It 
should be mentioned here that secondary dopants are not 
present in fabricated PEDOT:PSS films and that they act 
as co-solvents only (Nevrela et al., 2015). 
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In present work we report the properties of OLED 

device with a PEDOT:PSS anode as an alternative to 

ITO. Significantly higher current density and 

electroluminescence light intensity were achieved using 

the PEDOT:PSS anode what illustrates superior charge 

injection in comparison with conventional ITO anode. 

As a result, although the PEDOT:PSS layer has still 

higher sheet resistance than ITO layer, the overall device 

performance achieve higher level and it demonstrates 

ITO-free alternative for OLED fabrication technology. 

Experiment 

Transparent glass has been used as substrate for all 

OLED devices. Indium tin oxide (ITO) anode with 

resistivity of about 10 Ohm/sq was patterned using 

hydrochloric acid. The poly(3,4-

ethylenedioxythiophene):poly(4-styrenesulfonate) 

(PEDOT:PSS) aqueous solution (Clevios PH 1000, 1.1% 

solid content in water with PEDOT:PSS ratio 1:2.5) was 

supplied by Hereaus, Germany. For PEDOT:PSS 

doping, the secondary doping method by sorbitol 

(Sigma-Aldrich) was employed to increase the 

conductivity on the level of 1000 S/cm (Nevrela et al., 

2012). The concentration of secondary dopant in solution 

was 5 wt%. Prior deposition was solution filtered 

through 0.25 micrometer syringe filters to remove 

insoluble particles. Solution was spun using 3000 rpm to 

obtain 100 nm thick layer. PEDOT:PSS layer was 

subsequently heated on hotplate at the temperature of 

120°C to remove residual solvent. Hole transport layer of 

N,N'-di-1-naphthyl-N,N'-diphenyl-1,10-biphenyl-4,40-

diamine (α-NPD, Sigma-Aldrich) and emissive/electron 

transport layer of tris(8-quinolinolato) aluminum (Alq3, 

Sigma-Aldrich) were evaporated in vacuum better than 10
-

5
 Pa to obtain thicknesses of 150 and 50 nm, respectively. 

The evaporation rate was kept constant on 3 nm/min. The 

aluminum (Al) cathode was subsequently evaporated 

through the shadow mask. Figure 1 depicts schematic 

view of fabricated OLED devices. 

 

 
 
Fig. 1: Schematic view of fabricated OLED device with 

PEDOT:PSS anode 

Results and Discussion 

Figure 2 depicts the typical current-voltage and 

electroluminescence properties of OLEDdevices using 

ITO or PEDOT:PSS layers as anodes. The device with 

PEDOT:PSS anode has obviously better performance in 

comparison with ITO-based device. After a threshold 

voltage of about 3 V the device with PEDOT:PSS anode 

always exhibits current of one magnitude higher than the 

device with ITO anode. Note that both devices have been 

fabricated simultaneously; hence, the organic 

semiconductors are identical in the meaning of 

thicknesses and/or defect concentrations. 

Furthermore, the current dependence of luminance 

efficiency, shown in Fig. 3, illustrates device 

improvement in broad range of applied currents. In other 

words, not only the output currents are achieved higher, 

but also the overall device efficiency. This result depicts 

that the balance of electron-hole densities is more 

favorable for device with PEDOT:PSS anode. 
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Fig. 2: Voltage dependencies of current density and 

electroluminescence light intensity of OLED devices 

using ITO or PEDOT:PSS anodes 
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Fig. 3: The current dependence of luminance efficiency of 

OLED devices using ITO or PEDOT:PSS anodes. 
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Conclusion 

Recent progress in the field of nanostructured and 

organic materials found conductive polymers as 

promising candidates for transparent conductive oxide 

replacement. The application of organic conductors 

for transparent electrode in OLED device has specific 

requirements on optical transparency, electrical 

conductivity, charge injection properties, surface 

morphology, as well as environmental stability. Even 

though the secondary doping of PEDOT:PSS was 

applied to improve the conductivity, the sheet 

resistance is still one order of magnitude higher than 

one of ITO layer. On the other hand, the overall 

OLED device performance with PEDOT:PSS anode is 

higher due to smooth charge injection. It demonstrates 

that conductive polymers, namely PEDOT:PSS, 

provide sufficient sheet resistance, high optical 

transparency in visible region and low-cost “wet” 

fabrication technology what make them suitable for 

future flexible OLED applications. 
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