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Abstract: There are several new denoising algorithms that may be useful 

for magnetic resonance imaging. We compared the performance of some of 

the latest denoising algorithms with those that have been developed 

specifically for MRI imagery. We found that the latest approaches show 

impressive performance in terms of mean squared error, but a measure 

based on perceptual quality may be needed to determine the best approach.  
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Introduction 

There have been many recent advances in Magnetic 

Resonance Imaging (MRI) technology that enable faster 

and more detailed scans. With this rate of progress, 

clinicians will soon have the ability to generate even 

more detailed scans to assist them to make more decisive 

diagnoses. With these new advances, images of areas 

such as the lung and cardiac regions will be possible 

which is encouraging due to their important role in 

diagnosing disease. MRI imagery unfortunately contains 

noise that degrades image quality and can hinder 

diagnosis. Therefore, better methods are needed to 

reduce or remove noise from these images. 

 Noise degrades an image by introducing artifacts or 

reducing the effective resolution and there have been 

many methods suggested for removing noise in MRI 

imagery (Mohan et al., 2016). In one method (Yang et al., 

2015), noise is transformed into additive noise, then 

filtered by a conventional Gaussian filter before 

application of the Non-Local Means (NLM) method 

(Buades et al., 2005). Next, an inverse transformation is 

used to reconstruct the final image. The NLM method in 

this approach compares neighborhoods of voxel values 

with many other neighborhoods and a filter is created 

whose coefficients come from a function of the 

similarity of the neighborhoods and the distance between 

them. Another approach based on the NLM method uses 

multiple images from different individuals to 

collaboratively denoise an MRI image (Geng et al., 

2016). This approach reduces the effect of regions that 

are difficult to compare with the standard NLM filter by 

increasing the domain so more regions may be available. 
 In another approach based on the NLM filter 

(Manjon et al., 2014), the application of Principal 

Component Analysis (PCA) decomposition over a set of 

similar patches using a sliding window scheme is 

performed. The resulting filtered image is used as a 

guide image to accurately estimate the voxel similarities 

within a rotationally invariant NLM strategy. This guide 

image significantly improves the overall denoising 

performance. Thresholding is then performed by 

automatically estimating the local noise level from the 

eigenvalues of the PCA decomposition.  

 Another method exploits Markov random fields in 

order to implement a 3D maximum a posteriori estimator 

of the image (Baselice et al., 2017) that follows the 

approach in (Martin-Fernandez et al., 2004) developed 

for diffusion tensor MRI. This approach consists of 

defining a 3D local Gaussian Markov Random Field 

that adapts a model consisting of a hyper parameter 

map to the local behavior of the unknown image by 

analyzing the 3D neighborhood of each voxel. The 

model describes the spatial correlation between each 

pixel and its neighborhood that allows tuning to 

regularize smooth areas while preserving edges and 

small details in an unsupervised way. The smoothing 

effect is automatically tuned by the MRF model in 

order to find the optimal trade-off between noise 

reduction and details preservation. 

Although the Block-Matching 3D (BM3D) method 

has been very successful in denoising, it and its variants 

have not been widely applied to MRI denoising. This 

method exploits redundancy of patterns in an image 

(Dabov et al., 2007). In general, an image is divided into 

small patches and then similar patches are grouped 

together in a 3D stack. By exploiting the correlation 

between the image patches within a group, a spare 

representation can be found and the data effectively 

filtered, originally with a Wiener filter. A recent MRI 
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reconstruction algorithm that decouples iterations 

between denoising using the standard BM3D approach 

without a Wiener filter and reconstruction using an 

optimization formulation, has been developed 

(Eksioglu, 2016). Small advances in the standard 

BM3D method for direct denoising has also been 

reported (Elahi et al., 2014). 
 In addition to some MRI denoising methods, we 

evaluated two recent methods and applied them to 

MRI imagery. We used a noise model for MRI 

imagery and compared methods and a variation of the 

PSNR metric. We used MRI imagery of the brain to 

compare results. In the next section we describe the 

noise model and imagery used followed by the 

denoising algorithms and the results. 

Materials and Methods 

We considered some of the current leading methods 

for denoising both MRI and general imagery and 

compared them against one another. 

NLM 

The NLM filter uses a spatial domain approach that 

relies on similar neighborhoods to determine the value of 

a pixel. The denoised values are based on the mean of the 

values of all points whose neighborhood looks like the 

neighborhood of a particular pixel (Buades et al., 2005). 

The estimated value of a pixel is a weighted average of all 

pixels in an image that can be described as: 

 

( ) ( ) ( )0
, , , ’ ’ x’ ’Z x y w x y x y Z y= Σ  (1)  

 

where the weights w(x,y,x’y’) of the filter depend of the 

similarity of the neighborhoods around the pixels x, y 

and x’,y’ and have previously been described (Buades et al., 

2005). The summation is over only those neighborhoods 

being compared. The variables Z0 and Z represent the 

original and denoised images respectively. 

BM3D 

The BM3D method is a clever way of using self-

similarity in an image to reduce noise. The first step 

groups similar blocks of an image such that the entire 

image is assigned to different blocks. The blocks are 

arranged to essentially form a three-dimensional (3D) 

stack, so the image is reduced to many stack of similar 

blocks. Independently, a 3D transform of each stack is 

performed that exploits the high degree of correlation in 

each stack. The resulting sparse transform can then be 

denoised. The original method used a Wiener filter for 

the actual noise reduction. After the data has been 

denoised, patches are reconstructed and they are returned 

to their original locations. Generally, constant basis 

functions for all stack are used, independent of the data.  

SSC-GSM 

One method that has achieved outstanding results 

modeled sparse coefficients with a Gaussian Scale 

Mixture (GSM) that allowed the generalization of sparse 

coefficients to the specification of a sparse prior     

(Dong et al., 2015). The approach combined this notion 

with similar patches of an image which were 

characterized by the same prior. The basic idea behind 

this GSM-Simultaneous Sparse Coding (GSM-SSC) 

method is that groups of coefficients from similar 

patches are exploited for image restoration with the local 

and nonlocal dependencies.  

In this approach basis vectors represent a signal as 

a linear combination of coefficients with a GSM and a 

scalar multiplier. The optimization problem reduces to 

the joint estimation of a Gaussian vectors and scalar 

multipliers that typically satisfy a l1 norm constraint 

that uses the same multiplier for similar image 

patches. An estimate of the denoised image is used by 

some method, NLM in this case and variables to be 

optimized are done so recursively in an efficient 

manner. 

MRI-LMMSE 

A method was introduced for MRI data using a 

Linear Mean Square Error (LMMSE) (Aja-Fernandez et al., 

2008) for Rician noise. This approach is realized by 

noting that the even-order moments of the Rician 

distribution are simple polynomials as opposed to 

integral expressions in general. Therefore, using the 

square of the signal allows a closed-form solution to be 

realized. One advantage of this approach is that a closed-

form solution is much faster than iterative optimization 

methods. In addition, the extension to an arbitrary 

number of dimensions is straightforward. 

Shrinkage Fields 

Shrinkage Fields were developed because other high-

quality methods for denoising based on minimization do 

not necessarily scale well for large images. Soft-

thresholding functions applied to wavelets have often 

been referred to as shrinkage functions because they 

“pull” a function closer to zero. In a current 

denoising approach (Schmidt and Roth, 2014), shrinkage 

functions are modeled as a combination of radial basis 

function kernels. The significance here is that training 

data is used to determine the model parameters for the 

shrinkage functions rather than have them assigned 

manually. By modeling the shrinkage functions, a single 

quadratic optimization can be used in each iteration of 

the algorithm. A shrinkage field then can be described 

whose parameters are determined by the observed image, 
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model parameters and a point spread function. The 

method is fast because the shrinkage field can be 

described in closed form rather than relying on more 

complicated formulations. A cascade of shrinkage fields 

is referred to in the literature when predictions of 

shrinkage fields are strung together. 

Noise in MRI Imagery 

 In a single coil system, an MRI image data is 

generally complex and the magnitude image is used to 

maximize the SNR. The changing magnetic field from a 

circularly polarized excitation field results in two signals 

that differ in phase by π/2 which form the real and 

imaginary signals. These signals are generally corrupted 

by Additive Gaussian White Noise (AGWN). After 

creating the magnitude image, which is simply the 

square root of the sum of two real and imaginary 

components, the noise probability distribution 

becomes Rician (Gudbjartsson and Patz, 1995). The real 

and imaginary images are described as: 

 

( ) ( ) ( ) ( ) ( )0 1 2r i
Z k Z k N k and Z k N k= + =  (2) 

where, k is the vector containing the image position 

variables, N(k) represents the noise with zero mean and 

standard deviation σ and the magnitude is: 

 

( ) ( ) ( )( )
1/2

2 2

0
.

M i
Z k Z k I k= +  (3) 

 
The BrainWeb (Kwan et al., 1999) database provides 

realistic simulated MRI brain data volumes produced by 
a simulator that can be used to evaluate the performance 
of various image processing method in a setting where 
the truth is known. An anatomical model used to 
simulate MRI data of the brain. It consists of a collection 
of voxel values for various tissue classes. The values 
indicate the percentage of tissue classes in each volume. 
The dimensions are based on 1 mm

3
 and each dataset has 

181×217×181 pixels. We used a normal anatomical 
model of the brain with T1-, T2- and proton-density- 
(PD) weighted imagery using 1 mm slices, 20% level of 
intensity of non-uniformity and 0, 3 and 9% noise. The 
percent noise indicates that the standard deviation is a 
particular percentage of the maximum value of the 
image. Three simulated MRI images of the same slice 
for T1-, T2- and PD weighting are shown in Fig. 1-3a. 
and with 9% noise in Fig. 1-3b. 

 

 
 (a) (b) (c) (d) 
 

 
 (e) (f) (g) 
 
Fig. 1. Denoising results for T1-weighted image with 9% noise (a) original image (b) noisy image (a) BM3D result (d) NLM result 

(e) LMMSE result (f) SSC-GSM result (g) SF result 
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 (a) (b) (c) (d) 
 

 
 (e) (f) (g) 
 
Fig. 2. Denoising results for T2-weighted image with 9% noise (a) original image (b) noisy image (a) BM3D result (d) NLM result 

(e) LMMSE result (f) SSC-GSM result (g) SF result 
 

 
 (a) (b) (c) (d) 

 

 
 (e) (f) (g) 

 
Fig. 3. Denoising results for PD-weighted image with 9% noise (a) original image (b) noisy image (a) BM3D result (d) NLM result 

(e) LMMSE result (f) SSC-GSM result (g) SF result 
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Results 

To compare images we initially used the common 

measure of PSNR which is: 

 

( )2
10 255 /PSNR log MSE=  (4) 

 

where: 

 

( )
2

0
– /MSE Z Z MN= ΣΣ  (5) 

 

with the summations in the horizontal and vertical 

directions over the entire image and M and N are the 

number of pixels in the horizontal and vertical directions, 

respectively. The higher the value of PSNR the lower the 

MSE between the results and original image. 

We showed the PSNR results for the images in Table 

1 for 3 and 9% noise. For a 3% value of noise, the SSC-

GSM performed the best, followed by the BM3D and 

then the SF method, with each of the methods separated 

by about 2 dB. The results of the three methods were 

significantly higher than the results of the NLM and 

LMMSE methods, with the NLM approach 

outperforming the LMMSE method. 

When 9% noise was used, the SSC-GSM method 

performed the best followed by the SF method, but the 

performance of the BM3D dropped significantly. It 

mostly outperformed the NLM method, which clearly 

had better results than the LMSSE method. 

The expression of MSE in Equation 4 is widely 

used. It essentially represents the degree of overlap 

between the input and denoised images. But, if the 

denoised image is shifted or scaled in some manner 

compared to the original, the value of MSE will 

change. To better represent he distribution of energy 

in the denoised image, we normalized its energy to 

that of the original before calculating the MSE. 

Therefore, any energy in the denoised image that is 

different than the original will contribute to the MSE. 

When the PSNR was calculated after normalization, 

we referred to it as the PSNRn.  

The results using the PSNRn measure are shown in 

Table 2. For 3% noise, the overall values were more 

similar than in the PSNR case. The values for the SSC-

GSM and SF methods were lower when the PSNR was 

used, but the NLM and LMSSE values were higher. The 

BM3D performed best, closely followed by the SSC-

GSM method. The NLM and SF methods performed 

similarly, about 2dB less and had values larger than the 

LMSSE method. 

For 9% noise, the overall values were also more alike 

than in the PSNR case. The values for the SS C-GSM 

and SF methods were lower when the PSNR was used, 

but the NLM and LMSSE values they were higher as in 

the case for 3% noise. A notable difference from the 3% 

noise case is that BM3D case had lower values and had 

similar performance to the NLM case. The SSC-GSM 

had the highest values followed by the SF, NLM and 

BM3D methods and then the LMSSE method. 

Although the PSNR and PSNRn provide objective 

measurements, ultimately visual interpretation of 

images is what is of interest. In all cases the BM3D 

results looked somewhat grainy and the NLM results 

looked the smoothest. The LMSSE had characteristic 

somewhere between the two despite having relatively 

low PSNR and PSNRn values. The SSC-GSM and SF 

results appeared similar, but the SSC-GSM method 

retained a few more details and was similar to the 

LMSSE results. 

 
Table 1. PSNR results for the different methods using the images in Fig. 1a-3a 

 3% noise   9% noise 
 ------------------------------------------------------------ --------------------------------------------------------- 
 T1 T2 PD T1 T2 PD 

BM3D 36.71 36.05 35.96 23.83 23.83 22.70 
NLM 27.25 23.81 31.34 21.05 18.93 25.24 
LMMSE 22.72 22.95 28.11 14.01 13.93 19.78 
SSC-GSM 38.70 37.23 38.28 32.61 30.78 31.65 
SF 35.30 34.01 34.33 31.71 29.85 30.83 

 
Table 2. PSNRn results for the different methods using the images in Fig. 1a-3a  

 3% noise   9% noise 
 ------------------------------------------------------------- --------------------------------------------------------- 
 T1 T2 PD T1 T2 PD 

BM3D 36.71 36.05 35.96 23.83 23.83 22.70 
NLM 32.54 29.67 31.87 24.96 23.45 25.29 
LMMSE 29.79 29.06 28.88 21.37 20.72 19.82 
SSC-GSM 35.17 31.93 33.56 29.36 25.76 27.38 
SF 31.54 30.49 31.80 26.56 25.15 26.40 
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Conclusion 

The latest methods such as the SSC-GSM and SF 

approaches performed well both objectively and visually, 

especially at higher noise values when compared to other 

approaches. The LMSSE method performed visually 

very well despite having lower PSNR and PSNR values. 

Overall, it appears that the SSC-GSM method performed 

best by a small amount. A better metric is needed to 

compare the methods for MRI denoising because the 

LMSSE approach visually appeared to work well but had 

low performance values. 
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