
 

 

© 2017 Nabil Nassif, Jasmine Buford and Taher M. Abu-Ledbeh. This open access article is distributed under a Creative 

Commons Attribution (CC-BY) 3.0 license. 

American Journal of Engineering and Applied Sciences 

 

 

 

Original Research Paper 

Developing and Testing Dynamic Models for HVAC Systems 

Using System Identification Approach 
 

Nabil Nassif, Jasmine Buford and Taher M. Abu-Lebdeh 

 
Department of Civil and Architectural Engineering, North Carolina A&T State University, Greensboro, USA 

 
Article history 

Received: 27-02-2017 

Revised: 02-03-2017 

Accepted: 14-03-2017 

 

Corresponding Author: 

Nabil Nassif 

Department of Civil and 

Architectural Engineering, 

North Carolina A&T State 

University, Greensboro, USA 

Email: nnassif@ncat.edu 

Abstract: This paper proposes integrated modeling and optimization 

methods for a chilled water HVAC system using a system identification 

approach. Two multiple input-single output models are developed to find 

the supply air temperature and fan power of the investigated chilled water 

air handling unit AHU. To test the proposed models, actual data are 

collected from existing HVAC systems. Different fan and cooling coil 

model structures with various time delays and orders are tested to find the 

optimal model structure in term of normalized root-mean-square deviation 

or Coefficient Of Variances (COV). The paper also proposes an 

optimization procedure integrated into system identification model to 

automate the process of finding optimal fan and cooling coil model 

structures yielding the best accurate predictions. The testing results show 

that the proposed methods can provide accurate predictions that can used 

for several applications such as control optimization, energy assessment 

and fault detection and diagnosis. 
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Introduction 

Heating, ventilation and air conditioning systems 

are widely used in buildings to provide occupants with 

conditioned air and acceptable indoor air quality. The 

chilled water system is one of the most commonly 

used HVAC systems in the both commercial and 

industrial buildings. These systems are currently used 

to provide thermal comfort for a wide array of 

building types, sizes and in different climates. The 

design of these systems constitutes a large impact on 

the energy usage and operating cost of buildings they 

serve. Buildings stand for a substantial part of the 

total energy consumption in the Unites States and with 

an increase focus on cost reductions and energy 

savings, it is necessary to use intelligent and energy-

saving models (ASHRAE, 2015; EIA). The 

development of building energy savings methods and 

models becomes apparently more necessary for a 

sustainable future. Those models can be integrated 

into the building automation system to perform many 

intelligent functions such as building energy 

assessment, control strategies optimization, fault 

detection and diagnosis (Kusiak and Xu, 2012; Nassif, 

2014; Wang and Jin, 2000; Buford and Nassif, 2016; 

Nassif, 2008; Hani, 2009). Today a majority of 

commercial buildings are equipped with BAS that 

have the ability to collect large amounts of data; 

however, these buildings still do not operate optimally 

due to the lack of embedded computational means. 

Thus, there is a need to develop new modeling 

technique to improve whole system efficiency. 

Modeling using system identification is a technique 

used in many studies (Afram and Janabi-Sharifi, 

2015). However, this paper proposes a new integrated 

approach combining system identification modeling 

with model structure optimization. Two multiple 

input-single output models are developed to find the 

supply air temperature and fan power of a typical 

chilled water air handling unit AHU a typical VAV 

system. The models use time-series data that are 

usually available from any typical building 

automation system BAS. The system identification 

approaches (SD) with different modeling techniques 

and model structures are investigated. The 

optimization procedure is integrated into the system 

identification models to find the optimal model 

parameters yielding the least prediction errors. A 
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genetic algorithm is used to solve the optimization 

problem. The GA, as a heuristic approach, is suit for 

solving complex problems with large search spaces 

(Goldberg, 1989; Deb, 2001; Mossolly et al., 2009).  

Methodology  

The research proposed in this study is conducted 

using the following methodology (1) data collection 

and preprocessing, (2) model development, (3) model 

structure selection, (4) model parameter estimation, 

(5) model optimization and validation. The data used 

in this study is collected from an existing building’s 

chilled water system. After a sufficient amount of data 

has been collected, the data is divided into two 

training and testing sets. Utilizing the System 

Identification (SI) process and the collected data, 

various model structures along with different time 

delays and orders, are investigated to determine the 

best structure yielding satisfactory accuracy in terms 

of Mean Square errors or Deviation (MSD), Root 

Mean Square errors or Deviation (RMSD) and 

normalized root-mean-square deviation or Coefficient 

Of Variances (COV). The selected model structures 

are tested for optimality by using an exhaustive 

parameter combination. After each model is tested, 

the results are then evaluated to determine the most 

optimal model structure and architecture. The models 

produced from the parametric study are then evaluated 

and validated by performing an optimization on the 

testing data set. An objective function and decision 

variables are created along with a set of constraints. 

Figure 1 illustrates the process to formulate various 

System Identification (SI) models that can be 

implemented in the building automation system. 

Data Collection and Preprocessing 

An existing building located in Greensboro, NC is 

selected for this study. The building is 88,000 ft
2
, three-

story and multi-use classroom conditioned by typical 

VAV systems. The HVAC system consists of six air 

handling units, two for each floor. There are two chillers 

and two boilers to provide chilled and hot water to those 

units, respectively. Figure 2 shows the air handling unit 

including supply and return fans, discharge, 

recirculation and outside air dampers and cooling and 

heating coils. The building is equipped with a BAS that 

collects performance data from those units. In this 

study, two data-based models are investigated (1) 

cooling coil model and (2) fan model. As shown in Fig. 

3, the cooling coil model inputs are chilled water 

cooling coil valve position, chilled water supply 

temperature, mixed air temperature, supply or 

discharge air flow rate and humidity ratio. The relative 

ratio is neglected as this is typically unavailable from 

most existing HVAC systems. The cooling coil model 

output is the supply air temperature. The fan model 

inputs are supply air flow and fan speed and model 

output is fan power. 

 

 
 
Fig. 1. A schematic diagram of the process used to formulate various System Identification (SI) models and analysis the data 

collected from BAS 
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Fig. 2. A schematic of the investigated air handling unit AHU 

 

 
 

Fig. 3. The inputs and output for the cooling coil and fan models 

 

Through BAS, all necessary input and output model 

data are trended at 5-minute intervals from October 2014 

to February 2015 (a span of 5 months). In total 28,767 

sample points were collected from the system, 

representing around 100 h of system run time. The data 

recorded from the system covers a temperature range as 

high as 68°F and as low as 50°F for the supply air 

temperature. The supply air temperature reached as high 

as 68°F when the building was no longer occupied due to 

the time of day. This temperature ranged from 53°F to 

60°F during schedule occupancy. It is important to note 

that the BAS continuously records measurements, even if 

the system is turned off. These points are removed, 

because they are repetitive and won’t improve the learning 

capabilities of the identification models. Once all the null 

data points are removed, the total sample data size is 

reduced to close to 26,789 points. 

Model Development 

Four models are investigated in this study (1) 

Autoregressive Exogenous model (ARX), (2) 

Autoregressive Moving Average Exogenous model 

(ARMAX), (3) State Space model (SS) and (4) Nonlinear 

Autoregressive Exogenous model (NLARX). All these 

models are presented in discrete time. The discrete time is 

used for modeling, because it is desired to describe the 

experimental measurements at fixed time intervals. 

Autoregressive Exogenous (ARX) 

The autoregressive Exogenous (ARX) model is one 

of the most common polynomial model structures. The 

ARX model specifies that the output of the system 

depends linearly on its own previous values. 

Autoregressive models are models are remarkably 

flexible at handling wide ranges of different time series 

patterns. The ARX model structure is define as: 
 

( )
( ) ( ) ( )

( )

1j

n
Bj z uj t nk e t

y t
A z

=
− +

=
∑

 (1)  

 
where, A and B are polynomials and u(t), y(t) and e(t) are 

the input, output and system disturbance, respectively. 

The equation features the variable nk which adjusts the 

sample delay period.  
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Autoregressive Moving Average Exogenous 

(ARMAX) 

The autoregressive moving average model with 

exogenous inputs (ARMAX) extends the ARX structure 

by providing more flexibility for modeling the noise 

disturbance by introducing a C parameter. The ARMAX 

is a forecasting model in which both auto regression 

analysis and moving average methods are applied to the 

observed time series data. 

 

( )
( ) ( ) ( ) ( )

( )

1j

n
Bj z uj t nk C z e t

y t
A z

=
− +

=
∑

 (2) 

 

where, A, B and C are polynomials and u(t), y(t) and e(t) 

are the input, output and system disturbance, 

respectively. The nk is the number of input samples that 

occur before the input affects the output.  

State Space (SS) 

State Space (SS) models are common representations 

of dynamic systems. These models describe the same 

type of linear difference relationship between the inputs 

and outputs of a system as in an ARX model, but they 

are rearranged so that only one delay is used in the 

expressions. The order of a state space model relates to 

the number of delayed inputs and outputs used in the 

linear difference equation. The discrete-time SS model is 

given by the following equations: 

 

( ) ( ) ( ) ( )1x t Ax t Bu t Ke t+ = + +  (3) 

 

( ) ( ) ( )y t Cx t Du t= +  (4) 

where, A, B, C, D and K are the state space matrices, u(t) 

is the model input, e(t) is the disturbance and x(t) is the 

vector of state variables. The matrix K determines the 

noise properties. 

Nonlinear Autoregressive Exogenous (NLARX) 

The nonlinear autoregressive with exogenous inputs 

(NLARX) is an extension of the linear autoregressive 

exogenous model. The NLARX model can be 

mathematically represented as follows: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 , 2 , 3 ,..., , 1 , 2 ,..
p

y t f y t y t y t u t u t u t= − − − − −  (5) 

 

where, y(t-1), y(t-2),…,u(t), u(t-1),…, u(t-2) are delayed 

input (u) and output (y) variables, called regressors and f 

is a nonlinear function. 

Optimization 

Agenetic algorithm GA is utilized to find the 

optimal model structure yielding the minimum error 

between the simulated and actual model output data 

for the testing data set. The objective function of GA 

is to estimate the Mean Square errors or Deviation 

(MSD), Root Mean Square errors or Deviation 

(RMSD) and normalized root-mean-square deviation 

or Coefficient Of Variances (COV), for all model 

types. The time delay and model order are the optimal 

variables. The optimization constraints are set to 

cover the upper and lower limits of design variables, 

such as the maximum and minimum model order and 

time delay. Figure 4 shows a flow chart of the genetic 

algorithm process used to optimize the investigated 

system. 

 

 
 

Fig. 4. A flow chart of the genetic algorithm procedure used for the model parameters optimization 
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Fig. 5. Flow chart of objective function calculations (MSD, RMSD, or COV) for a sample S of data 

 

As shown in Fig. 4, the genetic algorithm GA 

modifies a population of individual solutions. It 

selects individuals at random, at each time step, from 

the current population to be parents and then it uses to 

produce the children for the next generation. Over 

successive generations, the population evolves toward 

the optimal solution. The genetic algorithm starts with 

a random generation of the initial solution or initial 

population and ends with the optimal solutions 

(optimal variables). The model orders and time delays 

as problem variables represent an individual solution 

in the population. The objective function of the first 

generation (MSD, RMSD or COV) is calculated as 

shown in Fig. 5. The second generation is obtained 

using operations on individuals such as selection, 

crossover and mutation, in which individuals with 

higher performance have a greater chance to survive. 

The performance (fitness) of each new individual is 

again assessed. The process is then repeated until the 

maximum number of generations is reached. 

Results 

A parametric study is performed with various model 

time delay and orders. The parametric study provides 

better understand the relationship between the model 

parameters. It is also help to validate the optimization 

method. The data collected from BAS are divided into 

two sets: Training data set and testing data set. The 

training data set covers the period from November 1st 

to December 31th and the testing data set covers the 

period from January 1st to February 1st all at interval 

of five minutes. The model types descripted before 

(ARX, ARMAX, SS, NLARX) are evaluated with 

different model orders and time delays. The purpose of 

this evaluation is to get the best model structure. The 

input delays vary from 0 to 5 and the orders varies from 

1 to 5. The resulted COVs for cooling coil model are 

illustrated in Fig. 6 and 7 for training and testing data 

sets, respectively. A total of 60 different model 

structures are evaluated for ARX and ARMAX (30 

structure each). Only 10 different model structures are 

evaluated for NLARX and 26 structures for SS due to 

the amount of regressors available to vary. As shown in 

Fig. 6, the cooling coil model produces more accurate 

results in terms of the COV for ARX and ARMAX 

with elevated model order for the training set. 

However, this does not hold true for testing data set. 

There are optimal model order and time delay values 

that provide least COV. As shown in Fig. 7, the least 

COVs for testing data set and for ARX, ARMAX, SS, 

NLARX are 2.04, 2.02, 2.03 and 2.033%, respectively. 
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This parametric study shows that the cooling coil 

ARMAX model with a time delay 2 and model order of 

4 holds the best results in term of COV value of 2.02% 

for the testing data set. 

Figure 8 shows the actual data and simulated data 

obtained from the best cooling coil structure model 

(ARMAX model with a time delay 2 and model order of 

4). The data for training and testing periods are depicted. 

 

 

 
Fig. 6. Resulted COVs for training data set with different cooling coil model time delays and orders 

 

 

 
Fig. 7. Resulted COVs for testing data set with different cooling coil model time delays and orders 
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Fig. 8. The actual data and best structure cooling coil model outputs (ARMAX model with a time delay 2 and model order of 4) 

 
Table 1. Resulted optimal COVs for testing data set for cooling coil and fan models 

 Cooling Coil Model   Fan Model 

 ------------------------------------------------------------ ----------------------------------------------------------- 

Type of model MIN COV Time delay Order MIN COV Time delay Order 

ARX 2.04 2 4 3.34 1 3  

ARMAX 2.02 2 4 3.26 1 3 

SS 2.030 0 5 3.27 0 2 

NLARX 2.033 1 1 3.28 1 1 

 

The proposed optimization process shown in Fig. 4 

and 5 are used to find the optimal solution (best model 

structure). The GA runs to find the optimal variables (the 

combination of model order and time delay) that produce 

the minimum RMSD, MSD, or COV for testing data set. 

In this study, the COV is utilized. The GA parameters 

are set to a maximum of 100 generations and a 

population size of 50. The optimal results are then 

compared with the results obtained with the parametric 

study. The optimization algorithm GA runs for each 

model types (ARX, ARMAX, NLARX and SS). The 

optimization results (minimum coefficient of variance 

COV) for cooling coil are summarized in Table 1. The 

optimal time delay and model order values obtained by 

GA are similar with those obtained by the parametric 

study. The optimization algorithm find that the cooling 

coil ARMAX with a time delay of 2 and an order of 4 

provides the least COV of 2.02%. Similar scenario is 

applied for the fan model. The COV for the fan model is 

calculated by comparing the model output with the 

actual data (fan power). The fan model output and inputs 

are illustrated in Fig. 1. The optimal results COVs for the 

fan model are also shown in Table 1. The optimal fan 

model with time delay of 1 and model order of 3 

provides accurate prediction in term of COV of 3.26. 

Conclusion  

This paper discussed integrated modeling and 

optimization methods for a chilled water air handling 

unit using system identification approaches. Two 

multiple input-single output models were developed to 

find the supply air temperature and fan power of a 

typical chilled water air handling unit AHU using the 

time-series data that are usually available from a 

building automation system BAS. The system 

identification approaches (SD) with different modeling 

techniques and model structures were examined to find 

the best model types and structures yielding the best 

accurate predictions. An optimization procedure using 

GA was integrated into the model for better accurate 

predictions. Data from existing systems were collected to 

test and evaluate the proposed methods using the statistic 

index of Coefficient Of Variances (COV). Four model 

types (ARX, ARMAX, SS and NLARX) were examined 

and their structures were optimized by determining the 

optimal model time delays and orders. The test results 

showed that the autoregressive moving average 

exogenous cooling coil model with order of 4 and a time 

delay of 2 and autoregressive moving average exogenous 

fan model with time delay of 1 and model order of 3 
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provide most accurate predictions. The same results were 

obtained by the optimization process GA. The resulted 

COVs for cooling coil model are 2.04, 2.02, 2.03 and 

2.033% and for fan model are 3.34, 3.26, 3.27 and 

3.28% for ARX, ARMAX, SS, NLARX, respectively. 

The results validate that the developed identification 

models can provide an accurate prediction of the cooling 

coil and fan performance. This proposed integrated 

modeling and optimization method can be used for several 

applications required accurate system performance 

predictions such as energy assessment, energy saving 

estimation and fault detection and diagnosis. 
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