

© 2017 Talal Talib Jameel. This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0

license.

American Journal of Engineering and Applied Sciences

Investigations

A Conceptualization of Distributed Computation for Machine

Learning: The Voting Algorithm

Talal Talib Jameel

Department of Dentistry, Al Yarmouk University College, Baghdad, Iraq

Article history

Received: 22-12-2016

Revised: 18-01-2017

Accepted: 17-02-2017

Email: talal.alhabeeb@gmail.com

Abstract: This paper describes a voting algorithm that can be used to

find the most optimal solution to clustering problems in machine

learning. As part of the family of algorithms known as Condorcet

methods, the voting algorithm is used to choose a particular candidate,

even in the absence of a definitive majority. The algorithm proceeds in

two steps: Renormalization and reconciliation. In the renormalization

step all probability measure are reset so that the ensemble probability is

always unity. In the reconciliation step a best choice is made based on

the renormalized data. The result showed an excellent performance due

to the use of linear time computations.

Keywords: Machine Learning, Cordorcet Method, Voting Algorithms,

Clustering

Introduction

This paper examined the methods for parallelizing

certain types of machine learning computations, using

distributed computation architectures to split a large

computation into a set of smaller computations. The

goal is to provide a means for these smaller

computations to be run in parallel while minimizing

the amount of intercommunication that needs to be

performs between these subcomputations.

Additional goals include the ability for these

subcomputations to be order-independent and locality-

independent. To be order independent means that the

results of performing the set of computations should

not depend on the order in which they are performed.

Thus a set of computations [{a b}{c d}] should

produce the same result as [{c d}{a b}]. To be

locality-independent means that it should not matter

which node or CPU executes a given set of

computations (Pingali et al., 2003; Chen et al., 2004).

The final goal of this work is for the result of

combining the subcomputions into a single result

should produce only consistent results. We do not

guarantee that the distributed computation will

compute the same result as a serial computation

would. This latter restriction arises from the fact that

most machine learning algorithms involve random

data (Witten and Frank, 2005; Snoek et al., 2012;

Aha et al., 1991), so that a computation may not be

reproducible. Thus, the only guarantee that we can

offer is the result should be internally consistent: No

axioms of the algorithm are violated by the final

algorithm.

However, we do want to guarantee that the results are

globally reproducible, in the sense that if the first

algorithm converges then the final algorithm converges;

if either algorithm diverges then both diverge; and finally

that if both converge then the Euclidean distance

between the two sets of weights is small. For the

purposes of this paper we define “small” to mean that the

Euclidean distance between the weights is less than the

absolute value of any weight itself.

Here, we focused on classification algorithms. The

goal of classification algorithms is to divide a set of

data points P into categories (usually called clusters)

that contain points with the same or similar set of

properties (Hsu et al., 2003). For example, clusters

can be composed of the subset of points from the set P

that are all within a certain Euclidean distance of a

certain point (the “centroid”). An example clustering

result is shown in Fig. 1. There are hundreds of

classification algorithms, so for the purposes of this

document we will specifically consider three

algorithms: Fixed Width Clustering (FWC)

(Barbara and Jajodia, 2002), K-Means Clustering

(KMC) (Bradley and Fayyad, 1998) and Fuzzy C-

Means Clustering (FCMC) (Bezdek et al., 1984).

Talal Talib Jameel / American Journal of Engineering and Applied Sciences 2017, 10 (1): 151.155

DOI: 10.3844/ajeassp.2017.151.155

152

Fig. 1. An example of clustering

We define the membership matrix M to be the set

of probability values such that M(I,J) is the

probability that point I is a member of cluster J

(Krishnapuram and Keller, 1993; Jain et al., 1999;

Banerjee et al., 2005). For some algorithms (FWC,

KMC) the elements of M are binary: Either a point

belongs (1) or does not belong (0). We refer to this

type of algorithm as univalent. Other algorithms, such

as FCMC, allow the probability values to be any real

number in the range [0,1] (Bensaid et al., 1996;

Graves and Pedrycz, 2010).

We refer to such algorithms as polyvalent. In either

type of algorithm it must be the case that the

probability of any point belonging to some cluster (or

to belong probabilistically to more than one cluster) is

1.0. Thus the sum of the membership probabilities for

each point must sum to 1,0. The estimated number of

clusters based on the classification processes were 3

(Fig. 1).

Since each point corresponds to a row of M, we have

a requirement, which we refer to as the normalization

requirement, that rowsum(J, M(I,J)) = 1.0. One of the

difficulties is with distributed computations that only add

entries to a subset of M is that when M is completely

populated it may be the case that rowsum(J, M(I,J)) !=

1.0. This leads to part 1 of the voting algorithm, the

renormalization step:

Renormalization Step

If V(I) = rowsum(J, M(I,J)) != 1.0, then divide each

element of row I by V(I).

While renormalization is necessary, it is not

sufficient. To see why this is the case, consider a

single point p whose membership is being computed

relative to two sets of clusters C1 and C2. When both

computations are done p will have a set of

membership probabilities {p1 … px} for C1 (where

|C1| = x) and a second set of membership probabilities

{q1 … qy} for C2 (where |C2| = y).

In the univalent case a point x can only be assigned

to one cluster, so if one of the pj probabilities is 1 and

also one of the qk probabilities is 1, then we have an

inconsistency. Let us refer to these two clusters as c1'

and c2'. Since x cannot belong to both c1' and c2', we

must set one of these probabilities to zero and leave

the other probability as 1. To do this we employ the

second part of the voting algorithm, the reconciliation

step (univalent):

Reconciliation Step (u)

If a point appears to belong to more than one

cluster then recalculate the metric distance of that

point to each of the clusters and choose the cluster to

which it is closest. Set this probability to be 1 and all

other probabilities to be zero, in row x of the

membership matrix.

For polyvalent algorithms reconciliation is more

complex. In such algorithms we wish to identify the

primary cluster to which a point belongs. Typically

this cluster will have a probability membership value

of at least 0.5.

Talal Talib Jameel / American Journal of Engineering and Applied Sciences 2017, 10 (1): 151.155

DOI: 10.3844/ajeassp.2017.151.155

153

However, if we fill the membership matrix and then

renormalize, it may be the case that none of the

probability values is greater than one half. To address

this we use the reconciliation rule for polyvalent

algorithm, which is used in conjunction with

renormalization.

Reconciliation Rule (p)

Let E1 be the largest probability value and E2 be

the second largest value of a given point (row) in the

membership matrix. Suppose that after

renormalization it is the case that both E1<0.5 and

E2<0.5. Then we adjust the value of E1 to be 0.5 and

adjust the value of E2 to be E2 + (0.5-E1). This

operations preserves normalization so a second

renormalization pass is not required.

Given these rules it is straightforward to describe

the general distributed algorithm. First becomes the

membership matrix M into a set of non-overlapping

regions M1 … Mw. Second, given that there are N

compute nodes, distribute the regions as evenly as

possible among the N nodes. Run each node to

completion and allow it to fill in the corresponding

entries in the membership matrix. Once M is fully

populated then run renormalization + reconciliation(u)

for univalent algorithms and renormalization +

reconciliation(p) for polyvalent algorithms.

The voting algorithm described above is part of a

class algorithms known collectively as the “Condorcet

method” (Black et al., 1958). The Condorcet method

is a voting algorithm that will always elect the

candidate that is the most preferred with respect to

pairwise comparisons. In the worst cast, the total

number of such comparisons that need to be

performed is ½N(N-1), which is quadratic in the

number of candidates. The winner of the election is

referred to as the Condorcet winner.

A voting algorithm that always elects the Condorcet

winner is described as a system that satisfies

the Condorcet criterion. It is straightforward to verify

that the voting protocol described at the beginning of

this document satisfies the Condorcet criterion. In

addition, our voting algorithm is purely linear in the

number of candidates, thus significantly improving

performance over the default (brute force) algorithm.

In systems that do not satisfy the Condorcet criteria it

is possible that circular ambiguities arise as a result of

the voting algorithm. That is, the result of an election can

be intransitive even though all individual voters

expressed a transitive preference. In a Condorcet election

it is impossible for the preferences of a single voter to be

cyclical, because a voter must rank all candidates in

order and can only rank each candidate once, but the

paradox of voting means that it is still possible for a

circular ambiguity to emerge. A straightforward

inspection of the reconciliation steps shows that our

algorithm can never enter a limit cycle.

In Condorcet methods, as in most electoral systems,

there is also the possibility of an ordinary tie. This

occurs when two or more candidates tie with each other

but defeat every other candidate. As in other systems this

can be resolved by a random method, as our

reconciliation step uses. In our algorithm the

reconciliation step serves as a tie-breaker method and

insures there is at most one selection (candidate) with a

maximal score. A mechanism for resolving an ambiguity

is known as ambiguity resolution or Condorcet

completion method.

Results and Discussion

The performance results of the combined solution is

shown in Fig. 2. From the figure it can be concluded that

voting algorithm provide a relatively less time to process

the cases of a dataset. This can be reasoned to the use of

the history record of redundant modules to compute the

final output. On the other hand, the FCMC was found to

consume longer time followed by FWC and KMC

respectively. As such, it can be said that our proposed

solution provide an effective way to process and classify

cases in large dataset.

Moreover, the performance of the proposed

solution with regard to the number of iterations was

also investigated. Figure 3 shows the comparison

result of voting algorithm with FWC, FCMC and

KMC based on the number of iterations. From the

figure, it can be said that the proposed algorithm

provided a stable performance results when the

number of iterations is increased. However, FCMC

was found to be the least performed algorithm

followed by KMC and FWC respectively. This can be

reasoned to that the proposed algorithm defined the

parameters that need to be appropriately recognized

when processing cases.

Future Work

Our form of voting algorithm insures that a

maximal clustering selection is made in linear time. It

is free from limit cycles and has an unambiguous

procedure for breaking ties. Further, the algorithm we

have defined is completely independent of the

underlying machine learning algorithm that is used.

However, the algorithm as currently described tends

to favor clusters that form earlier (in terms of

iterations). In the future, it would be desirable to find

a variant of the reconciliation step that does not have

this bias.

Talal Talib Jameel / American Journal of Engineering and Applied Sciences 2017, 10 (1): 151.155

DOI: 10.3844/ajeassp.2017.151.155

154

Fig. 2. A comparison of voting algorithm with FWC, FCMC and KMC based on the time for processing cases

Fig. 3. A comparison of voting algorithm with FWC, FCMC and KMC based on the number of iterations

Conclusion

This study described the main aspects for applying

discriminative machine learning named voting

algorithm in sequential models. The process involve

developing a sequence of operations in order to rerank

the n-best outputs based on the Condorcet method. The

main idea behind this work consists of utilizing global

features as well as local features to help provide

efficient classification performance of large data. Here,

it was assumed that most machine learning for

distributed computing may lack of ranking large dataset

due to the need for alleviate the impact of the label bias

problem, that get penalized due to the label bias

problem. The prospective of renormalization and

reconciliation were proposed in this study as a way for

associating parses as a special form of sequential model

without experiencing any reduction in data generality.

At the beginning of this work we sought a method that

will be easy to use, efficient and that would preserve

Talal Talib Jameel / American Journal of Engineering and Applied Sciences 2017, 10 (1): 151.155

DOI: 10.3844/ajeassp.2017.151.155

155

normalization. All of these goals have been achieved.

Our form of Condorcet voting algorithm satisfies the

Condorcet criterion, does not have circular ambiguities

and breaks ties in a single iteration, as has linear

performance. Our voting algorithm is also completely

decouple from the underlying machine learning

algorithm that produces the elements in the membership

matrix, so it can be applied uniformly to any such

algorithm without requiring any customization.

Acknowledgement

Thanks to the reviewers for their attention to detail

and many valuable suggestions.

Funding Information

This research received no specific grant from any

funding agency.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of

the other authors have read and approved the manuscript

and no ethical issues involved.

References

Aha, D.W., D. Kibler and M.K. Albert, 1991. Instance-

based learning algorithms. Mach. Learn., 6: 37-66.

DOI: 10.1007/BF00153759

Banerjee, A., C. Krumpelman, J. Ghosh, S. Basu and

R.J. Mooney, 2005. Model-based overlapping

clustering. Proceedings of the 11th ACM SIGKDD

International Conference on Knowledge Discovery

in Data Mining, Aug. 21-24, ACM, USA, pp:

532-537. DOI: 10.1145/1081870.1081932

Barbara, D. and S. Jajodia, 2002. Applications of Data

Mining in Computer Security. 1st Edn., Springer

Science and Business Media,

 ISBN-10: 1402070543, pp: 252.

Bensaid, A.M., L.O. Hall, J.C. Bezdek, L.P. Clarke and

M.L. Silbiger et al., 1996. Validity-guided

(re)clustering with applications to image

segmentation. IEEE Trans. Fuzzy Syst., 4: 112-123.

DOI: 10.1109/91.493905

Bezdek, J.C., R. Ehrlich and W. Full, 1984. FCM: The

fuzzy c-means clustering algorithm. Comput.

Geosci., 10: 191-203.

 DOI: 10.1016/0098-3004(84)90020-7

Black, D., R.A. Newing, I. McLean, A. McMillan and

B.L. Monroe, 1958. The Theory of Committees and

Elections. 1st Edn., Springer, Boston,

 ISBN-10: 0898381894, pp: 241.

Bradley, P.S. and U.M. Fayyad, 1998. Refining initial

points for k-means clustering. Proceedings of the

15th International Conference on Machine Learning,

Jul. 24-27, Morgan Kaufmann Publishers Inc. San

Francisco, CA, USA., pp: 91-99.

Chen, G., O. Ozturk and M. Kandemir, 2004. An ILP-

based approach to locality optimization. Proceedings

of the 17th International Workshop on Languages

and Compilers for Parallel Computing, Sept. 22-24,

Springer, West Lafayette, IN, USA, pp: 149-163.

DOI: 10.1007/11532378_12

Graves, D. and W. Pedrycz, 2010. Kernel-based fuzzy

clustering and fuzzy clustering: A comparative

experimental study. Fuzzy Sets Syst., 161: 522-543.

DOI: 10.1016/j.fss.2009.10.021

Hsu, C.W., C.C. Chang and C.J. Lin, 2003. A practical

guide to support vector classification.

Jain, A.K., M.N. Murty and P.J. Flynn, 1999. Data

clustering: A review. ACM Comput. Surveys, 31:

264-323. DOI: 10.1145/331499.331504

Krishnapuram, R. and J.M. Keller, 1993. A possibilistic

approach to clustering. IEEE Trans. Fuzzy Syst., 1:

98-110. DOI: 10.1109/91.227387

Pingali, V.K., S.A. McKee, W.C. Hsieh and J.B. Carter,

2003. Restructuring computations for temporal data

cache locality. Int. J. Parallel Programm., 31: 305-338.

DOI: 10.1023/A:1024556711058

Snoek, J., H. Larochelle and R.P. Adams, 2012. Practical

Bayesian Optimization of Machine Learning

Algorithms. In: Advances in Neural Information

Processing Systems, pp: 2951-2959.

Witten, I.H. and E. Frank, 2005. Data Mining: Practical

Machine Learning Tools and Techniques. 2nd Edn.,

Morgan Kaufmann, IS San Francisco,

 ISBN-10: 008047702X, pp: 560.

