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Abstract: This paper describes a voting algorithm that can be used to 

find the most optimal solution to clustering problems in machine 

learning. As part of the family of algorithms known as Condorcet 

methods, the voting algorithm is used to choose a particular candidate, 

even in the absence of a definitive majority. The algorithm proceeds in 

two steps: Renormalization and reconciliation. In the renormalization 

step all probability measure are reset so that the ensemble probability is 

always unity. In the reconciliation step a best choice is made based on 

the renormalized data. The result showed an excellent performance due 

to the use of linear time computations. 
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Introduction 

This paper examined the methods for parallelizing 

certain types of machine learning computations, using 

distributed computation architectures to split a large 

computation into a set of smaller computations. The 

goal is to provide a means for these smaller 

computations to be run in parallel while minimizing 

the amount of intercommunication that needs to be 

performs between these subcomputations. 

Additional goals include the ability for these 

subcomputations to be order-independent and locality-

independent. To be order independent means that the 

results of performing the set of computations should 

not depend on the order in which they are performed. 

Thus a set of computations [{a b}{c d}] should 

produce the same result as [{c d}{a b}]. To be 

locality-independent means that it should not matter 

which node or CPU executes a given set of 

computations (Pingali et al., 2003; Chen et al., 2004). 

The final goal of this work is for the result of 

combining the subcomputions into a single result 

should produce only consistent results. We do not 

guarantee that the distributed computation will 

compute the same result as a serial computation 

would. This latter restriction arises from the fact that 

most machine learning algorithms involve random 

data (Witten and Frank, 2005; Snoek et al., 2012;   

Aha et al., 1991), so that a computation may not be 

reproducible. Thus, the only guarantee that we can 

offer is the result should be internally consistent: No 

axioms of the algorithm are violated by the final 

algorithm. 

However, we do want to guarantee that the results are 

globally reproducible, in the sense that if the first 

algorithm converges then the final algorithm converges; 

if either algorithm diverges then both diverge; and finally 

that if both converge then the Euclidean distance 

between the two sets of weights is small. For the 

purposes of this paper we define “small” to mean that the 

Euclidean distance between the weights is less than the 

absolute value of any weight itself. 

Here, we focused on classification algorithms. The 

goal of classification algorithms is to divide a set of 

data points P into categories (usually called clusters) 

that contain points with the same or similar set of 

properties (Hsu et al., 2003). For example, clusters 

can be composed of the subset of points from the set P 

that are all within a certain Euclidean distance of a 

certain point (the “centroid”). An example clustering 

result is shown in Fig. 1. There are hundreds of 

classification algorithms, so for the purposes of this 

document we will specifically consider three 

algorithms: Fixed Width Clustering (FWC)     

(Barbara and Jajodia, 2002), K-Means Clustering 

(KMC) (Bradley and Fayyad, 1998) and Fuzzy C-

Means Clustering (FCMC) (Bezdek et al., 1984). 
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Fig. 1. An example of clustering 

 

We define the membership matrix M to be the set 

of probability values such that M(I,J) is the 

probability that point I is a member of cluster J 

(Krishnapuram and Keller, 1993; Jain et al., 1999; 

Banerjee et al., 2005). For some algorithms (FWC, 

KMC) the elements of M are binary: Either a point 

belongs (1) or does not belong (0). We refer to this 

type of algorithm as univalent. Other algorithms, such 

as FCMC, allow the probability values to be any real 

number in the range [0,1] (Bensaid et al., 1996; 

Graves and Pedrycz, 2010). 

We refer to such algorithms as polyvalent. In either 

type of algorithm it must be the case that the 

probability of any point belonging to some cluster (or 

to belong probabilistically to more than one cluster) is 

1.0. Thus the sum of the membership probabilities for 

each point must sum to 1,0. The estimated number of 

clusters based on the classification processes were 3 

(Fig. 1). 

Since each point corresponds to a row of M, we have 

a requirement, which we refer to as the normalization 

requirement, that rowsum(J, M(I,J)) = 1.0. One of the 

difficulties is with distributed computations that only add 

entries to a subset of M is that when M is completely 

populated it may be the case that rowsum(J, M(I,J)) != 

1.0. This leads to part 1 of the voting algorithm, the 

renormalization step: 

Renormalization Step 

If V(I) = rowsum(J, M(I,J)) != 1.0, then divide each 

element of row I by V(I). 

While renormalization is necessary, it is not 

sufficient. To see why this is the case, consider a 

single point p whose membership is being computed 

relative to two sets of clusters C1 and C2. When both 

computations are done p will have a set of 

membership probabilities {p1 … px} for C1 (where 

|C1| = x) and a second set of membership probabilities 

{q1 … qy} for C2 (where |C2| = y). 

In the univalent case a point x can only be assigned 

to one cluster, so if one of the pj probabilities is 1 and 

also one of the qk probabilities is 1, then we have an 

inconsistency. Let us refer to these two clusters as c1' 

and c2'. Since x cannot belong to both c1' and c2', we 

must set one of these probabilities to zero and leave 

the other probability as 1. To do this we employ the 

second part of the voting algorithm, the reconciliation 

step (univalent): 

Reconciliation Step (u) 

If a point appears to belong to more than one 

cluster then recalculate the metric distance of that 

point to each of the clusters and choose the cluster to 

which it is closest. Set this probability to be 1 and all 

other probabilities to be zero, in row x of the 

membership matrix. 

For polyvalent algorithms reconciliation is more 

complex. In such algorithms we wish to identify the 

primary cluster to which a point belongs. Typically 

this cluster will have a probability membership value 

of at least 0.5. 
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However, if we fill the membership matrix and then 

renormalize, it may be the case that none of the 

probability values is greater than one half. To address 

this we use the reconciliation rule for polyvalent 

algorithm, which is used in conjunction with 

renormalization. 

Reconciliation Rule (p) 

Let E1 be the largest probability value and E2 be 

the second largest value of a given point (row) in the 

membership matrix. Suppose that after 

renormalization it is the case that both E1<0.5 and 

E2<0.5. Then we adjust the value of E1 to be 0.5 and 

adjust the value of E2 to be E2 + (0.5-E1). This 

operations preserves normalization so a second 

renormalization pass is not required. 

Given these rules it is straightforward to describe 

the general distributed algorithm. First becomes the 

membership matrix M into a set of non-overlapping 

regions M1 … Mw. Second, given that there are N 

compute nodes, distribute the regions as evenly as 

possible among the N nodes. Run each node to 

completion and allow it to fill in the corresponding 

entries in the membership matrix. Once M is fully 

populated then run renormalization + reconciliation(u) 

for univalent algorithms and renormalization + 

reconciliation(p) for polyvalent algorithms. 

The voting algorithm described above is part of a 

class algorithms known collectively as the “Condorcet 

method” (Black et al., 1958). The Condorcet method 

is a voting algorithm that will always elect the 

candidate that is the most preferred with respect to 

pairwise comparisons. In the worst cast, the total 

number of such comparisons that need to be 

performed is ½N(N-1), which is quadratic in the 

number of candidates. The winner of the election is 

referred to as the Condorcet winner. 

A voting algorithm that always elects the Condorcet 

winner is described as a system that satisfies 

the Condorcet criterion. It is straightforward to verify 

that the voting protocol described at the beginning of 

this document satisfies the Condorcet criterion. In 

addition, our voting algorithm is purely linear in the 

number of candidates, thus significantly improving 

performance over the default (brute force) algorithm. 

In systems that do not satisfy the Condorcet criteria it 

is possible that circular ambiguities arise as a result of 

the voting algorithm. That is, the result of an election can 

be intransitive even though all individual voters 

expressed a transitive preference. In a Condorcet election 

it is impossible for the preferences of a single voter to be 

cyclical, because a voter must rank all candidates in 

order and can only rank each candidate once, but the 

paradox of voting means that it is still possible for a 

circular ambiguity to emerge. A straightforward 

inspection of the reconciliation steps shows that our 

algorithm can never enter a limit cycle. 

In Condorcet methods, as in most electoral systems, 

there is also the possibility of an ordinary tie. This 

occurs when two or more candidates tie with each other 

but defeat every other candidate. As in other systems this 

can be resolved by a random method, as our 

reconciliation step uses. In our algorithm the 

reconciliation step serves as a tie-breaker method and 

insures there is at most one selection (candidate) with a 

maximal score. A mechanism for resolving an ambiguity 

is known as ambiguity resolution or Condorcet 

completion method. 

Results and Discussion  

The performance results of the combined solution is 

shown in Fig. 2. From the figure it can be concluded that 

voting algorithm provide a relatively less time to process 

the cases of a dataset. This can be reasoned to the use of 

the history record of redundant modules to compute the 

final output. On the other hand, the FCMC was found to 

consume longer time followed by FWC and KMC 

respectively. As such, it can be said that our proposed 

solution provide an effective way to process and classify 

cases in large dataset. 

Moreover, the performance of the proposed 

solution with regard to the number of iterations was 

also investigated. Figure 3 shows the comparison 

result of voting algorithm with FWC, FCMC and 

KMC based on the number of iterations. From the 

figure, it can be said that the proposed algorithm 

provided a stable performance results when the 

number of iterations is increased. However, FCMC 

was found to be the least performed algorithm 

followed by KMC and FWC respectively. This can be 

reasoned to that the proposed algorithm defined the 

parameters that need to be appropriately recognized 

when processing cases. 

Future Work 

Our form of voting algorithm insures that a 

maximal clustering selection is made in linear time. It 

is free from limit cycles and has an unambiguous 

procedure for breaking ties. Further, the algorithm we 

have defined is completely independent of the 

underlying machine learning algorithm that is used. 

However, the algorithm as currently described tends 

to favor clusters that form earlier (in terms of 

iterations). In the future, it would be desirable to find 

a variant of the reconciliation step that does not have 

this bias.  
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Fig. 2. A comparison of voting algorithm with FWC, FCMC and KMC based on the time for processing cases 

 

 
 

Fig. 3. A comparison of voting algorithm with FWC, FCMC and KMC based on the number of iterations 

 

Conclusion 

This study described the main aspects for applying 

discriminative machine learning named voting 

algorithm in sequential models. The process involve 

developing a sequence of operations in order to rerank 

the n-best outputs based on the Condorcet method. The 

main idea behind this work consists of utilizing global 

features as well as local features to help provide 

efficient classification performance of large data. Here, 

it was assumed that most machine learning for 

distributed computing may lack of ranking large dataset 

due to the need for alleviate the impact of the label bias 

problem, that get penalized due to the label bias 

problem. The prospective of renormalization and 

reconciliation were proposed in this study as a way for 

associating parses as a special form of sequential model 

without experiencing any reduction in data generality. 

At the beginning of this work we sought a method that 

will be easy to use, efficient and that would preserve 
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normalization. All of these goals have been achieved. 

Our form of Condorcet voting algorithm satisfies the 

Condorcet criterion, does not have circular ambiguities 

and breaks ties in a single iteration, as has linear 

performance. Our voting algorithm is also completely 

decouple from the underlying machine learning 

algorithm that produces the elements in the membership 

matrix, so it can be applied uniformly to any such 

algorithm without requiring any customization. 
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