

© 2016 Nader Jafari, Abeer Alsadoon, Chandana Prasad Withana, Azam Beg and Amr Elchouemi. This open access article is

distributed under a Creative Commons Attribution (CC-BY) 3.0 license.

American Journal of Engineering and Applied Sciences

Original Research Paper

Designing a Comprehensive Security Framework for

Smartphones and Mobile Devices

1
Nader Jafari,

1
Abeer Alsadoon,

1
Chandana Prasad Withana,

2
Azam Beg and

3
Amr Elchouemi

1School of Computing and Mathematics, Charles Sturt University, Sydney, Australia
2Collage of Information Technology, UAE University, Al Ain, United Arab Emirates
3Walden University, USA

Article history

Received: 04-09-2016

Revised: 26-09-2016

Accepted: 26-09-2016

Corresponding Author:

Chandana Prasad Withana

School of Computing and

Mathematics, Charles Sturt

University, Sydney, Australia
Email: cwithana@studygroup.com

Abstract: This work investigates issues and challenges of cyber security,

specifically malware targeting mobile devices. Recent advances in

technology have provided high CPU power, large storage, broad bandwidth

and integrated peripheral devices such as Bluetooth, Wi-Fi, 3G/4G to

mobile devices, making them popular computing and communication

devices. Mobile malware has been targeting mobile devices more than ever

and seems to be shifted from their traditional host, the personal computers,

to more vulnerable victims. In this study, we mainly focus on malware for

Android-based mobile devices. We analyze and discuss related malware

and recognize its trends and challenges. We also present a comprehensive

security solution that addresses the security from malware threats.

Keywords: Cyber-Security, Mobile Malware, Comprehensive Security

Framework, Smartphones, Mobile Device Security

Introduction

The latest breakthroughs in smartphone technology

have provided us an “all in one” convenience that the

thought of living without them is unimaginable.

Unfortunately, the combination of computer technology

and presence of old phone systems have attracted

hackers and malware developers. A powerful processor,

high-speed memory, large storage, high-bandwidth and

more importantly the personal and private data make the

smartphone a primary focus for most malware. The

number of mobile malware has dramatically increased

during recent years and will continue to grow, targeting

the common vulnerabilities in mobile devices such as

Android root exploit.

Among popular mobile devices android platform

seems to have inherited the reputation of Microsoft in

PC world, of being most vulnerable due to the users’

liberty in installing applications (apps) from outside the

Google app store. In addition, rooting capability that is

performed by users in order to bypass permission

restrictions, adds another layer of vulnerability to

Android devices. In contrast, Apple platform is

considered more secure due to restrictions and

limitations that Apple imposes regarding app

installation, making it more difficult for malware

distribution through iOS devices. However, the very

same restriction drives users to jailbreak their devices to

enable them to install desired apps such as Adobe Flash

Player, which in return puts the device in danger of

malware attacks.

Recognizing the prevalent growth of Android

malware, in this study, we investigate the mobile

security issues, associated vulnerabilities and potential

threats to mobile devices. We also propose a

comprehensive security solution to address most of these

threats. This paper is arranged as follows. The literature

review is explained in section II. Section III outlines the

theoretical background followed by the proposed

security framework in Section III. The Section IV

provides the experimental results followed by the

conclusion in Section V.

Related Work

The Android-based devices have dominated the

smartphone market with over 78% market share

(IDC.com, 2013). Android operating system structurally

consists of Linux-based kernel with libraries and APIs

and application frameworks running on top of each

other. The last layer is application, which runs in Dalvic

Java-based virtual machine. This structure helps Android

devices to handle multitasking effectively. However

android generally does not close applications when the

user/architecture is done with them. While this can help

prevent excessive interactions by mobile users, it is also

Nader Jafari et al. / American Journal of Engineering and Applied Sciences 2016, 9 (3): 724.734

DOI: 10.3844/ajeassp.2016.724.734

725

considered as a security flaw (Gold, 2011). Thus, it is

possible for malware to run silently in the background

with high priority for a duration that may last for days,

depending on the lifetime of the device power cycle.

Android is also popular among app developers
because of its low restrictions and limitations. However,
this freedom does not come without a price. Payne
(2013) pointed out that lower threshold allows
developers to use features that are vulnerable to
traditional attacks, such as stack buffer overflows,
memory corruptions, heap overflows and race
conditions. Based on his suggestions, developers should
perform code scanning for any vulnerability and also
develop their apps with Address Space Layout
Randomization (ASLR) that randomizes where various
types of information are kept in the memory.

Moreover, according to (Flegel et al., 2013) Android

developers often misuse coding idiom in Android

platforms due to copying-and-pasting of vulnerable

pieces of code. As a result, malicious apps are able to

figure out the ordering of system information to perform

their attack; they are also able to escalate the privileges

or result in Denial of Service (DoS) by crashing an app

or the complete OS. The researchers advise developers to

avoid using code from untrusted source and when they

have to reuse code only from the trusted sources such as

Google API’s, customization must be performed.

Another popular branch of mobile technology that

has been used widely is Near-Field Communication

(NFC). The study of (Madlmayr et al., 2008) pointed out

that NFC allows users to handle their device as e-wallet

that is in fact a good prey for hackers. NFC allows

transformation of data over 10 cm distance. It uses RFID

technology and its enabled mobile device to be used as

contactless credit card or bus ticket. Being contactless,

an attacker can use an antenna to intercept the NFC

signals without being detected. As a prevention method,

developers are advised to make sure that sensitive data

are not being sent through insecure channels and using

HTTPS and TLS instead of simple HTTP.

Apple’s iOS is considered to be more secure (than

Android) because it prohibits the users from installing

third party apps and from places other than Apple app

store. However, according to (Hoog, 2008) and

(Spaulding et al., 2002), this restriction drives users who

find themselves in need of installing particular apps such

as Adobe FlashPlayer for iOS, to jailbreak their device,

which makes their device vulnerable to malicious

attacks. Jailbroken devices are susceptible to malware

attacks since they do not have access to security patches

and there is no restriction enforcement on third party

apps. The only advice that researchers have for this

situation is to simply not jailbreak the devices.

(Mansfield-Devine, 2008) has described the same

problem in Android OS devices where inconsistency

between new OS and old hardware paves a way for

malware infection. Android’s new OS cannot be

installed on older devices, which leaves older devices

susceptible to new threats. Therefore, users tend to root

their devices to enable the installation of new OS,

usually accompanied with Re-ROMing. ROMing is

performed by many users in order to unadorn Android

OS, however, these ROM’s usually originate from

untrusted sources and could be infected with malware.

One of the advantages that makes Android the most

popular platform is its capability to install third party

applications. It allows the user to install apps from

sources other than legitimate ones such as Google Play

store. These apps are not certified or scanned by Google

Play and could include malicious codes and intended

vulnerabilities. Arabo and Pranggono (2008) have

suggested a security framework solution to provide

security for mobile devices against threats specifically,

malware. Their multi-layer integrated security solution

consists of four parts: End-User, Network Operators,

Market Stores and Apps Developers.

In the End-User section, Arabo and Pranggono

(2008) outline the necessity for users to install security

controls such as anti-viruses and firewalls. The anti-virus

security controls provide the users some protection

against known malware based on a malware signature

database. Market Stores need to make sure that apps

uploaded to the stores are not infected with malware or

any kind of malicious codes or activities (Arabo and

Pranggono, 2008). In this framework, mobile network

providers are responsible for preserving mobile network

security by scanning incoming and outgoing SMS/MMS

for any malicious propagation by Mobile Network

Operators. Developers as a last part of the framework are

advised to reduce the built-in access permission in their

application and also control access to functions such as

(CALL_PHONE) and (SEND_SMS) in Android devices

and always ask for user’s concession to prevent

malicious use such as event listener. They should also

perform control permissions technique to fight against

“repackaging attack” by including only required and

essential data that is required for applications to operate

properly. Repackaging is a common technique that

Android malware developers use to download

legitimate apps from internet, inject some malicious

code in them and upload them back onto download

websites (Arabo and Pranggono, 2008).
Although app stores nowadays perform intensive

malware scanning before developers are able to upload
their app for sale on store, malware creators have
developed techniques to circumvent these security
controls, specifically for Google Store. Two widely used
techniques are logic bombs and checks for simulation
environment (Ho et al., 2014). To fight against these,
some researchers suggest behavioural approaches such
as Crowdroid proposed by (Burguera et al., 2011);
Practical Root Exploit Containment (PREC) (Ho et al.,

Nader Jafari et al. / American Journal of Engineering and Applied Sciences 2016, 9 (3): 724.734

DOI: 10.3844/ajeassp.2016.724.734

726

2014) and A Defence Framework Against Malware and
Vulnerability Exploits was proposed by (Zhang et al.,
2014). Amongst those, PREC appears to be more robust
and one of its greatest advantages is that it imposes less
than 3% overhead on the mobile device in comparison to
other methods with 15-30% overhead.

PREC scans and monitors apps that are being

downloaded from app stores. Its job is to detect and

report any abnormal and suspicious activities by apps

such as attempting to root user devices without their

consent. Other suspicious activities can be sending

SMS/MMS, email, or making calls to premium accounts.

PREC monitors apps from the moment that they are

uploaded to the App Stores. This behavioural approach

acts intermediately between the end-user and store app

components as an integrated security solution.

PREC targets and dynamically identifies system

calls from high-risk components specifically third

native libraries that are being used for root exploit

attack. The benign apps use less than 10% of third

native libraries, hence the false positives and the false

negatives will be very low. The procedure can be

divided into two sections:

• First, it utilizes a “classified system-call monitoring”

layout that can recognize system calls according to

their origins. This allows system calls from risky

components such as third party native libraries to be

identified (for instance native libraries that are not

part of the Android system but were added by

downloading from Internet using applications). It

performs its anomaly check only on system calls

that were created from third party native code

• Second, it uses a “delay-based fine-grained

containment” structure that performs the

anomalous system calls from a pool of available

segregate threats in order to slow them down and

prevent the threat

However, PREC has some disadvantages as well,

for instance, it cannot protect user devices if they

download an app from third party stores simply

because PREC has no observation on them. Moreover,

it only targets and observes system calls generated

from the third party native code. Thereby, it is

theoretically possible that root exploits attack can be

generated from the Java code.

In general, a user is a weak link of the any cyber

security chain. The common users do not have technical

skills required to protect their devices and lack

awareness from device manufactures making the matter

more complicated. Therefore, there is a need for a

comprehensive security framework that provides a first

layer of defence for user mobile devices and a second

layer that scans apps across app stores both when

uploaded by developers and downloaded by users. The

second layer security continues to monitor app’s

behavior through the user device to ensure that the app is

not performing any malicious activities.

Theoretical Background

Smart Device Security Threats

In computer security concepts, the user is always

considered as a weak link of the chain. The assumption

is that everything that comes out of a box is secure

enough by default. According to Arabo and Pranggono

(2008), the primary challenge with mobile security

devices is their ubiquity and lack of awareness of threats

associated with these devices. Devices insecure default

settings with relaxed security features put both the

device and the user in danger of malware infection that

ultimately results in the invasion of user’s privacy and

loss of personal sensitive data or corporate information.
With the decrease in size of mobile devices and

increase in capacity in terms of screen size, processing

power and storage size they are now suitable to be used

for working remotely. Moreover, the mobile devices

are now integrated into business more than ever and

CIOs are struggling to put in place effective policies to

counter-measure possible threats (Courtney, 2014). The

widespread concept of Bring Your Own Device

(BYOD) is making businesses extremely nervous as

they do not have control over corporate information

that employees process within those devices. That puts

corporate data in danger of information leak since most

of these devices do not enjoy proper security control

either because of users’ lack of awareness or the very

nature of the mobile device’s platform, specifically

Android devices. Moreover, according to (Kaspersky,

2013), the number of stolen mobile devices has

increased dramatically and employees are slow in

reporting the stolen devices.

Android platform is vulnerable to a variety of attacks,

mostly due to its OS layers structure and the fact that it

owns the majority of market share. Such attacks can

cause several privacy and security risks for users such as

phone calls tracking, extraction of SMS/MMS, loss of

privacy and exposure of information and overbilling due

to call to premium accounts. The vectors of such attacks

can be Bluetooth, USB connection, Wi-Fi, 3G and 4G

and overall Internet connection (Hunt, 2013). Apple iOS

proved to be more secure by restricting users installing

apps only from legitimate app stores, iTune and similar.

However, that does not prevent the devices to be

vulnerable to attacks as many users are unhappy with

restriction and jailbreak their device to have freedom of

choice. That puts device in danger of a variety of threats

including malware.

Nader Jafari et al. / American Journal of Engineering and Applied Sciences 2016, 9 (3): 724.734

DOI: 10.3844/ajeassp.2016.724.734

727

Wi-Fi is the most used method of connection for a

variety of Internet access such as E-mail, online chat,

free calling and text messaging through providers

such as WhatsApp, Skype and Viber. WLANs that

utilize Wi-Fi standard technology have evolved over

the years and now benefit from the new security

connection protocols such as WPA2 in conjunction

with Advanced Encryption Standard (AES) instead of

the weaker WPE, which only used 56 bit keys for

encryption. However, improvement of a number of

powerful brute-force and dictionary attacks on the

Message Digest 5 (MD5) and similar encryption

methods has kept the security in a shadow.

The so-called Internet of Things (IoT) that comprises

a variety of structures and technologies such as NFC,

Ultra Wide Band (UWB, etc. is rapidly integrated and

implemented in mobile devices for the users’ convenience.

For instance, Apple has recently implemented NFC in their

new iPhone 6, which helps users pay from their

smartphone on the go. While this could be a decent

replacement for smart cards, the encryption method used

in NFC is much weaker as compared to the smart cards;

an attacker with a special device in proximity can

intercept the communication signal.

Smart Device Malware

In recent years, we have witnessed great advances in

mobile device technology that has resulted in

tremendous growth in their sales and adaption. The

mobility, convenience and the affordable prices are

characteristics that accelerated their adaptation and

outsold personal computers. However, as anything else

in this world, there is a drawback associated with this

popularity-a growing outbreak of mobile malware.

Among all other devices android is considered as less

secure and more prone to malware attack. Based on

Kaspersky’s recent report, 10 million Android malicious

apps were detected between 2010 and 2013 and 4

million of them belong to 2013, something that

Kaspersky calls “3 infection attempts per user.”

As previously mentioned, mobile devices,

specifically smartphones, pose multiple communication

interfaces such as G3/G4, Wi-Fi, Bluetooth, USB and

others to surf Internet, send/receive emails and visit

social media websites (Ghallali et al., 2013), The

malware uses these peripheral devices to infect and

propagate from one device to another. For instance, one

popular channel that malware uses to spread is through

SMS/MMS that is considered as an email for pc viruses.

Other effective ways of malware propagation are

repackaging, tricking users to install malicious app

and update attack (Jiang and Zhou, 2013).

Repackaging is one of the most popular technique

used by malware developers to download the app from

app store, unpack it, inject malicious code in it and

upload it back on download websites that appear as

benign app to the end user.

Luring the users to install malicious apps is another

technique that malware developers have used widely.

This technique usually uses social media, SMS and

online chats to present malicious apps as something

interesting to users. Once the app has been installed by

the user, the malicious software propagates through

peripheral devices, such as Wi-Fi, Bluetooth, 3G/4G

and whatever is available for it to spread. An

appropriate example to this is a recent Android and iOS

malware called Xsser that spreads through WhatsApp

application asking users to install the app with the

message read: “Check out this Android app designed

by Code4HK for the coordination of OCCUPY

CENTRAL!” The malware targeted Hong Kong

protestors and movement known as Occupy Central

(Borbrov, 2014). The attacker(s) impersonated as a

hacker group that’s helping the Occupy Central

movement and tricked protestors to install malicious

app that steals user credentials, contact numbers, phone

books, SMSs/MMSs and many more.

Comprehensive Security Framework Design

Potential Security Framework Model

Considering all cyber-security threats and especially

the malware discussed earlier (Section 2), the need for a

comprehensive solution is evident. As pointed out by

Arabo and Pranggono (2008), the main cyber-security

concern with Android devices is user liberty to install

applications (apps) from any sources. As explained

previously, this feature provides the user a high

convenience while it poses great security issues for users

and their devices. As mobile malware become more

intelligent, the need for more robust security solution is

highly required. As with increase in malware distribution

from Google play store, Google added an extra security

layer that scans apps for any malicious codes and

activities before being introduced to the end user (Arabo

and Pranggono, 2008). However, that still doesn’t stop

malware from spreading as malware creators developed

techniques to circumvent these security controls and

specifically Google store. Two widely used techniques

are logic bombs and check for simulation environment

(Ho et al., 2014). In addition, users’ desires to install

third party apps that are not supervised by Google play

app’s store security measures, poses another security

issue that needs to be considered.

This paper proposes a security framework solution

that aims to cover most aspects of mobile device security

that may be neglected by other security solutions, as

illustrated in Fig. 1.

The proposed framework provides security for users

and can be divided into three sections.

Nader Jafari et al. / American Journal of Engineering and Applied Sciences 2016, 9 (3): 724.734

DOI: 10.3844/ajeassp.2016.724.734

728

Fig. 1. Comprehensive security solution for mobile and smart devices

Section A

The first section of the model represents the security

feature that is embedded in the device’s OS and has one

main subsection, Device OS Developers.

Device OS Developers

Device OS developers, such as Android OS

Developers and iOS developers should integrate some

form of lightweight security such as Lightweight

Security Control (LSC) as proposed in this research. The

idea of LSC is similar to how Microsoft implements

primitive security features in its latest OSs such as

Windows 7 and Windows 8. Microsoft defines its anti-

Malware, Windows Defender, as a first line of defence

against malware. The Defender was originally an anti-

spyware that then turned into antivirus (Microsoft). It is

light and does not have features that most antiviruses

possess, but as Microsoft defined it, it is the first line of

defence specifically against viruses that Microsoft as a

platform developer is aware of.
The LSC should include following features:

• Lightweight firewall performs very basic packet

filtering, port opening and closing and similar tasks

• Lightweight signature-based anti-virus protects the

device against OSs’ vulnerabilities by scanning the

device for malware that exploits those weaknesses

such as root exploit malware in Android devices.

This anti-virus does not have the comprehensive

malware’s signature database that most mobile anti-

viruses possess, thus it is very light and only fights

against malware that exploits devices’

vulnerabilities

• Social engineering defender alerts users against any

social engineering attacks, for instance, when the

user wants to click or tap on links within spam

emails or emails from unknown sources that are not

in users contact list. Moreover, the defender warns

the users when they receive SMS/MMS from

unknown senders

LSC should be configured in a way that when users

first start up their devices, it walks them through a set of

short security settings. Alternatively, users can choose to

set their overall security settings based on predefined

settings. These predefined settings are:

• Low: Where the device is configured with very

loosen security measures

• Medium: The device is configured with the medium

range security measures

• High: The device is highly restricted and limited and

users are warned for any security violation actions

from users that LSC may recognize

The Medium predefined security is what is

recommended by LSC. Users also have the choice to

turn the LSC off or on for any reasons. LSC consists

of two major parts, i.e., malware protection and

Security Watchdog and consists of two subsections as

listed in Fig. 2.

Nader Jafari et al. / American Journal of Engineering and Applied Sciences 2016, 9 (3): 724.734

DOI: 10.3844/ajeassp.2016.724.734

729

Fig. 2. LSC breakdown structure

The following explains the two sections in more detail:

Malware Protection

Malware Scanner

Scans system regularly for malware that targets OS
vulnerabilities

B. OS update and patches

Updates OS and installs patches mostly in the
background

Security Watchdog

A. Anti-Social Engineering

Alerts users regarding social engineering attacks by
containing links inside SMS/MMS or email messages
that have become one of the main channels for malware
propagation on mobile devices.

B. Firewall

Provides security settings that walk the users through
or suggests pre-configured security settings for user
convenience.

To improve functionality, the LSC’s malware protection

feature (section 1) implementation is compulsory and there

is no option available for the user to disable the feature.

However to give user some liberty, the security watchdog

feature (section II) is not compulsory and the user can

disable the feature if required.

Section B:

This section of model mainly concerns those
securities protecting users’ privacy and credentials while
they are performing regular Internet activities, such as
Internet-surfing, performing banking transactions and
reading emails on their devices.

This section consists of four security components.

End-User

Users are expected to install security controls, such as

anti-viruses and firewalls.

As mentioned in section 3, anti-malware code is

limited to a signature technique due to resource

limitation of mobile devices, such as battery and

bandwidth. Yet some believe that even signature-based

technique is resource-intensive and hence unsuitable

solution to apply in smartphones (Burguera et al., 2011;

Zhang et al., 2014). However, the new generation anti-

viruses are lighter, less resource hungry and consume

less bandwidth. In addition, some anti-viruses store their

databases on cloud, which is a clever method to consume

even less bandwidth.
In addition, to test and to examine the anti-viruses’

effectiveness and robustness, a set of malware with
different functionality and payloads was selected. The
list of malware that was used for testing is presented
in Table 1.

App Market or Stores

App stores need to constantly scan their app database

for any app’s malicious activities. The two most popular

app stores, i.e., iTunes and Google Play, already contain

scanning apps for any abnormal behaviour prior to be

presented to the end-user for purchase and download.

However, they should also take a further step to scan

apps to make sure user’s privacy is not violated by the

app developers.

Mobile Network Providers

Mobile network providers should keep track of
SMS’s/MMS’s that are used for communication between
botnets and botnet master (Arabo and Pranggono, 2008).

Nader Jafari et al. / American Journal of Engineering and Applied Sciences 2016, 9 (3): 724.734

DOI: 10.3844/ajeassp.2016.724.734

730

Table 1. Malware list

Malware Name Payload functionality Level of risk

Httpmon Contains Trojan horse Medium-High

Angry BIRD Rio unlocker Trojan Plankton., Medium-High

Android.AVPass (Root exploit Malware) Contains Trojan horse High

CABAHHA (Android.Badnews) Trojan Plankton Medium-High

Cut the rope unlock Trojan Plankton Medium-High

Superuser Root exploit malware High

App Developers

In addition of what has already been mentioned in

section 2, app developers also encourage writing their

apps with Address Space Layout Randomization

(ASLR) that randomizes where various types of

information are kept in memory (Payne, 2013). This

randomization protects apps from buffer overflows,

memory corruptions, heap overflows and race

conditions attacks. Moreover android app developers

sometimes reuse code from trusted sources such as

Google API’s to save time, thus, when they have to do

so customization must be performed to protect against

known threats such as buffer overflow. Google

suggests changing certain parts of codes specifically

when using a significant portion of the Google In-App

Billing and License Verification instance code (Flegel

et al., 2013).

Section C

The most critical level of this model is carried out

by PREC (Ho et al., 2014). When the app is first

submitted by the developer to the app market, it is

being scanned by the malware detection system

running in a quarantine emulator environment. If it is

recognized as malicious it would be rejected,

otherwise, the app’s “normal profile behavior” is

saved and forwarded to PREC services that could be

residing on cloud. Once the app is downloaded by the

user and starts functioning, PREC retrieves the app’s

profile and keeps an eye on that app for any root

exploit activity and contains it, if necessary.

Experimental Results and Discussions

This section provides discussion and the

experimental results of previously mentioned

methods, graphs and tables. Figure 1 illustrates the

results based on antivirus capability in detecting

malware in percentage. This study shows that the

average percentage of malware detection of all five

anti-viruses is 83.2%. The malware test environment

was Android SDK emulator with API 19.0 using

Goldfish 3.4 OS, which is a stable and common

virtual platform used for Android app development

and testing. The steps required for preparing this

infrastructure are:

Step 1: Building the host environment (Linux OS); this

step is completed by installing and configuring Kali

Linux OS on VMware Player virtual machine

along with all required update and packages.

Step 2: Building Android development environment in

Linux to host Mobile virtual device. It has

been done by installing and configuring

Android ADT bundle development package

android Goldfish source code and all other

necessarily packages such as Android NDK

and repo in Linux virtual machine.

Step 3: Testing the environment (virtual device) to make

sure it works properly. Running an emulator

(Android virtual environment or goldfish) and

testing all its functionalities to make sure it has

been built properly.

Moreover, the effectiveness of five top anti-viruses in

the market at the time of this research, were tested by

injecting six types of Android malwares that were

installed on Android virtual device (goldfish 3.4). Figure

3 the malwares differ in their payloads, potential risks,

persistency, malicious behaviors and functionalities, for

instance root exploit malware and Trojan Malware. They

were acquired form contagiominidump.blogspot.com.au

(2014) and www.worldguide.pt (2014).

Figure 3 shows the effectiveness of five best mobile

antiviruses in market.

The results of the following graphs are generated

using PowerTutor tool that utilizes PowerBooter.

PowerBooter is an automated power model construction

technique, which uses voltage sensors and battery

discharge behaviour utility to monitor power

consumption, which for 10-sec intervals, it is accurate

to within 0.8% on average with at most 2.5% error

(Zhang et al., 2010). The explicitly monitors the power

consumption based on usage of LCD, CPU and Wi-Fi

components, which requires no external measurement

equipment. The purpose of this step is to evaluate mobile

devices’ battery consumption used by antiviruses during

scanning and normal operation. This step differs from

previous, because testing were conducted on actual

android device (Samsung Galaxy SII i9100 with Android

OS 4.1.2 with 16 GB memory storage) and reason is

simply because Power Tutor needs battery sensors to

produce accurate outputs. Note that SD-card scan is not

included in these tests.

Nader Jafari et al. / American Journal of Engineering and Applied Sciences 2016, 9 (3): 724.734

DOI: 10.3844/ajeassp.2016.724.734

731

Fig. 3. Anti-viruses malware detection efficiencies

Fig. 4. Percentage of power consumption in background

Fig. 5. Percentage of power consumption during manual scanning

This procedure has two steps:

• Step one: Injecting or installing malicious apps in

goldfish and then installing anti-virus from different

vendors (the vendors’ names are mentioned in

antivirus table) to determine the level of security

that antivirus provides for user. This includes the

antivirus ability to detect malware automatically

without user intervention, scanning for virus on user

demand, covering vulnerabilities and other security

measures such as locking SIM, scanning SMS/MMS

and monitoring Internet data flow

• Step two: Determine the malware residence in

captured memory after being injected in and also for

malware persistency after being removed by Anti-

virus, using Lime tool to capture the memory and

Volatility tool to examine the dumped memory. For

more information, please Fig. 7

Nader Jafari et al. / American Journal of Engineering and Applied Sciences 2016, 9 (3): 724.734

DOI: 10.3844/ajeassp.2016.724.734

732

Fig. 6. Percentage of power consumption during automatic scanning

Fig. 7. The figure illustrates the presence of httpmon malware with PID (process ID) 998, UID (User ID) 10047 and GID (Group ID)

10047 in the device memory that was captured using Lime tool and examined with Volatilities tools. The figure also shows

that antivirus Kaspersky (PID 998 and PID 1047) was installed at time memory was captured, which indicates the antivirus

failure to identify and remove the malware

Figure 4 shows the percentage of power

consumption of anti-Malware during ideal activities.

The tests were conducted using actual device

Samsung Galaxy SII i1900 with Android OS 4.2.1 as

a test bed.

Figure 5 illustrates the power consumption during

manual scanning; this involves power consumption of

two important components, the CPU and the LCD.

Finally, Figure 6 presents power consumption during

automatic scan which follows a regular schedule of anti-

malware. Note that during this scan the major power

consumer is CPU, since the LCD is usually turned off.

As illustrated above, Figures 4-6 illustrate the power

consumption performance by chosen antiviruses under

three different circumstances. The purpose of this step is

to study the power consumption efficiency of mobile

Nader Jafari et al. / American Journal of Engineering and Applied Sciences 2016, 9 (3): 724.734

DOI: 10.3844/ajeassp.2016.724.734

733

antiviruses. The five selected anti-malware were the

most popular at time when this research conducted. The

conditions that antiviruses were examined based on are:

• Idle time: Measuring the amount of the battery’s

juice each antivirus uses during normal and

background operation in 10 min time interval using

PowerTutor tool

• Manual scan: Measuring the battery consumption

during heavy battery (scanning for virus) drain by

antivirus. The time interval used here is calculated

based on actual time that each antivirus takes to scan

plus 4 sec for error tolerance. The results are

calculated based on the average of 10 test repeats to

reduce errors (Table 1 the power consumption

Table). The two hardware battery’s consumption

that accounted here are LCD and CPU. Note that the

test assumes that user perform manual scan, which

involves consumption of both LCD and CPU

battery’s power drain

• Automatic scan: This step is calculated based on

situation that antivirus runs scan automatically. It is

assumed that since user has no intervention, LCD

power consumption is 0 and only CPU’s that

consumes power

Conclusion

The cyber-security threats, specifically malware are

spread from their traditional hosts desktop computers to

smartphones and mobile devices as these devices are

more vulnerable and they contain more personal

information. Although, the purpose of mobile malware is

perhaps different from their traditional cousin

(computer’s malware) the concept and functionalities of

mobile malware has not changed significantly. This

paper has discussed current issues with existing mobile

security controls and also proposed a comprehensive

model of security solution framework that would address

mobile security issues and more specifically Malware.
This work is a part of ongoing research to design

and implement a comprehensive security framework

model for mobile devices. For the future work, we

plan to develop, implement and evaluate the LSC

(described in section A) of the proposed model for the

Android devices.

Funding Information

The authors have no support or funding to report.

Author’s Contributions

Nader Jafari: Investigate issues and challenges of

cyber security and presented a comprehensive security

solution that addresses the security from malware threats.

Abeer Alsadoon: Supervised/worked closely with

Nader Jafari during the analysis, design and

experiment phases.

Chandana Prasad Withana: Worked on the setup

of the experiments, and gave important suggestions on

design of experiments.

Azam Beg: Made important revisions to most

sections of the paper.

Amr Elchouemi: Give the final review and approval

for the manuscript to be submitted.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of

the other authors have read and approved the manuscript

and no ethical issues involved.

References

Arabo, A. and B. Pranggono, 2008. Mobile malware and

smart device security: Trends, challenges and

solutions. Proceedings of the 19th International

Conference on Control Systems and Computer

Science, May 29-31, IEEE Xplore Press, pp: 526-531.

DOI: 10.1109/CSCS.2013.27

Borbrov, O., 2014. Lacoon discovers Xsser mRAT, the

first advanced Chinese iOS Trojan. Check Point

Software Technologies Ltd.
Burguera, I., U. Zurutuza and S. Nadjm-Tehrani, 2011.

Crowdroid: Behavior-Based Malware Detection
System for Android. Proceedings of the 1st ACM
Workshop on Security and Privacy in Smartphones
and Mobile Devices, Oct. 17-21, Chicago, IL, USA,
pp: 15-26. DOI: 10.1145/2046614.2046619

Courtney, M., 2014. Protecting the mobile enterprise.

Eng. Technol., 9: 72-76. DOI: 10.1049/et.2014.0409
Flegel, U., E. Markatos and W. Robertson, 2013.

Detection of intrusions and malware and
vulnerability assessment.

Ghallali, M., A.E. Mir, B.E. Quahidi, B. Bounabat and
N.E. Hami et al., 2013. Mobile security: Designing
a new framework limiting malware spread in the
mobile cloud computing. J. Theoretical Applied
Inform. Technol., 57: 354-366.

Gold, S., 2011. Android inscesuity. Network Security,

10: 5-16.
Ho, T., D. Dean, X. Gu and W. Enck, 2014. PREC:

Practical root exploit containment for android devices.
Proceedings of the 4th ACM Conference on Data and
Application Security and Privacy, Mar. 03-05,
San Antonio, TX, USA, pp: 187-198.

 DOI: 10.1145/2557547.2557563
Hoog, A., 2008. The battle beyond Malware: Combating

the wrong enemy? Evolving threats and new attack
surfaces demand mobile security strategies keep
pace. Inform. Security.

Nader Jafari et al. / American Journal of Engineering and Applied Sciences 2016, 9 (3): 724.734

DOI: 10.3844/ajeassp.2016.724.734

734

Hunt, R., 2013. Security testing in android networks: A

practical case study. Proceedings of the 19th IEEE

International Conference on Networks, Dec. 11-13,

IEEE Xplore Press, pp: 1-6.

 DOI: 10.1109/ICON.2013.6781950

IDC.com, 2014. Android and iOS Continue to Dominate

the Worldwide Smartphone Market with Android

Shipments Just Shy of 800 Million in 2013.

Business Wire.

Jiang, X. and Y. Zhou, 2013. Android Malware. 1st

Edn., Springer Science and Business Media, New

York, ISBN-10: 1461473942, pp: 44.

Kaspersky, 2013. Mobile malware evolution: 3 infection

attempts per user in 2013. Kaspersky Lab.

Madlmayr, G., J. Langer and C. Kantner, 2008. NFC

Devices: Security and privacy. Proceedings of the

3rd International Conference on Availability,

Reliability and Security, Mar. 4-7, IEEE Xplore

Press, 642-647. DOI: 10.1109/ARES.2008.105

Mansfield-Devine, S., 2008. Android architecture:

Attacking the weak points. Network Security, 10:

5-12. DOI: 10.1016/S1353-4858(12)70092-2

Payne, J., 2013. Secure Mobile Application

Development. IT Professional, 3: 6-9.

 DOI: 10.1109/MITP.2013.46

Spaulding, J., A. Krauss and A. Srinivasan, 2002.

Exploring an open WiFi detection vulnerability as

a malware attack vector on iOS devices.

Proceedings of the 7th International Conference on

Malicious and Unwanted Software, Oct. 16-18,

IEEE Xplore Press, pp: 87-93.

 DOI: 10.1109/MALWARE.2012.6461013

Zhang, L., B. Tiwana, R.P. Dick, Z. Qian, Z.M. Mao and

Z. Wang, 2010. Accurate online power estimation

and automatic battery behavior based power model

generation for smartphones. Proceedings of the 8th

IEEE/ACM/IFIP International Conference on

Hardware/Software Codesign and System Synthesis,

Oct. 28-28, Scottsdale, AZ, USA, pp: 105-114.

 DOI: 10.1145/1878961.1878982

Zhang, M., A. Raghunathan and N.K.A. Jha, 2014. A

defense framework against malware and

vulnerability exploits. Int. J. Inform. Security, 13:

439-452. DOI: 10.1007/s10207-014-0233-1

