

 © 2016 Xiaoyong Yuan, Long Wang, Tiancheng Liu and Yue Zhang. This open access article is distributed under a

Creative Commons Attribution (CC-BY) 3.0 license.

American Journal of Engineering and Applied Sciences

Original Research Paper

A Methodology for Continuous Evaluation of Cloud

Resiliency

1
Xiaoyong Yuan,

2
Long Wang,

4
Tiancheng Liu and

3
Yue Zhang

1School of Software and Microelectronics, Peking University, Beijing, China
2IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA
3Aliyun Computing Co., LTD, Alibaba Group, Beijing, China
4China Research Laboratory, IBM Corporation, Beijing, China

Article history

Received: 23-10-2015

Revised: 14-01-2016

Accepted: 25-01-2016

Corresponding Author:

Long Wang

IBM Thomas J. Watson Research

Center, Yorktown Heights, NY,

USA

Email: wanglo@us.ibm.com

Abstract: With the growth of cloud computing, resiliency of cloud is critical

for enterprises’ business. However, the continuous-changing of cloud makes

evaluation of cloud resiliency more difficult. In this study, we design a

methodology for automatic and continuous evaluation of cloud resiliency

and implement it in a tool called CRGauge. The Continuous Evaluation

Model methodology leverages fault injection techniques to inject faults and

an open-source library to set up synthetic workloads for the test campaign.

Our experiment results on OpenStack cloud platform show that resiliency of

OpenStack is needed to be improved especially in heavy workloads.

Keywords: Cloud Resiliency, OpenStack, Continuous Evaluation, Fault

Injection

Introduction

Cloud environments play a critical role in delivering
IT services to end users because cloud offers high
resource utilization, fast convenient resource
provisioning and deprovisioning, continuous
management, maintenance and upgrade of machines
transparent to end users and low overhead of the
management. Resiliency of cloud environments is
essential for the high availability of IT services and is
a major concern of enterprises. For example,
Instagram and Vine suffer from about 1 h downtime
on Amazon’s EC2 cloud last year (Whittaker, 2013)
and a great number of outages on Amazon EC2 are
reported in (Von Eicken, 2011). According to a survey
in (NNT, 2009), 73% of CIOs and CFOs wouldn't put
their financial and accounting applications in the
cloud and 57% wouldn’t place any business critical
applications in the cloud.

Resiliency measurement is prerequisite for
understanding and enhancement of cloud system
resiliency. Traditionally fault injection is applied to
measure system resiliency. It usually takes several weeks
to set up fault injection experiments for a system.
Moreover, a resiliency expert is required for the fault
injection setup. As cloud systems undergo continuous
changes and new code/new features are rapidly applied
to cloud systems, this manual setup of fault injection is
not fit for the dynamic nature of cloud systems.

This paper proposes a methodology that automatically

measures cloud system resiliency to enable continuous

evaluation of cloud resiliency. To our best knowledge,

there is no prior work in the literature that tries to address

the continuous evaluation of resiliency of constant-

changing cloud systems. DS-Bench is a relevant testing

environment for cloud resiliency. However, it hasn’t

capability of continuous evaluation for cloud system

(Banzai et al., 2010; Fujita et al., 2012). Besides manual

setup of fault injection campaigns, prior arts mainly focus

on benchmarking and measurement of system

performance and dependability, e.g., SPEC (SPEC),

TPCB (TPCB), DS-Bench and CloudBench (Silva et al.,

2013). These benchmarks or measures lack the ability of

facing changes according to the benchmark metrics

defined in (Vieira et al., 2012).
Our methodology, Continuous Evaluation Model for

Cloud Resiliency (CEM), devises basic modules which
are required for continuous measurement of Cloud
system resiliency. Figure 1 shows the architecture of the
CEM methodology.

The deployment module, fault injection module and

resiliency computation module are essential parts for

continuous evaluation of cloud resiliency. The deployment

module leverages capabilities of the target cloud system to

set up workloads, deploy the fault injection engine for

certain types and scenarios of faults/failures, prepare the

resiliency-computation models and do other configurations.

Xiaoyong Yuan et al. / American Journal of Engineering and Applied Sciences 2016, 9 (2): 264.273

DOI: 10.3844/ajeassp.2016.264.273

265

Fig. 1. Overview of the CEM Methodology

The fault injection module conducts fault injection

experiments for all the scenarios specified by the

deployment module. The outputs and results of the

fault injection module are fed into the resiliency

computation module, which consists of a number of

models, to compute the cloud system resiliency for

different scenarios. Then the computed resiliency data

are presented to the users of the cloud and workload.

This whole cycle of deployment, fault injection and

resiliency computation phases repeats again and again

for the continuous evaluation of cloud system

resiliency. The control module supervises the three

modules during the repeated cycles.

We implemented the CEM methodology in a tool

called CRGauge. This tool is cloud-system independent

and can be applied to different cloud systems when

cloud-specific adaptors are available. Moreover,

CRGauge treats the target cloud system as a black box,

i.e., it does not interact with operational details and is

evaluated only by cloud operations’ outputs. For

assessment of our CEM methodology and CRGauge

tool, we then applied the CRGauge to the OpenStack

(OpenStack) cloud platform and performed

continuous evaluation of the OpenStack resiliency.

OpenStack is a popular open-source cloud management

system. OpenStack evolves very fast and a large

number of experienced developers contribute to the

OpenStack codebase and features. So it is critical to be

able to evaluate the resiliency of OpenStack system in

an automated and continuous fashion.

In summary, this paper has the following

contributions:

• Proposal of the CEM methodology for addressing

the problem of automated continuous evaluation of

Cloud system resiliency. This problem is very

important to Cloud systems which, unlike traditional

computing systems, undergo rapid and continuous

changes all the time

• Design and development of the CRGauge tool that is

a practical implementation of the CEM

methodology. The CRGauge tool is designed to be

independent of cloud systems and treats target cloud

systems as black box

• Demonstration of the effectiveness and

practicability of the CRGauge tool in evaluating the

OpenStack cloud system’s resiliency. The

experiement results show that resiliency of

OpenStack cloud system becomes worse when

facing heavy workloads

Rest of the paper is organized as follows. Section

II presents an overview of the CEM methodology. The

CRGauge tool implements the methodology.

Discussions of individual components in CRGauge are

given in SECTION III. Demonstration of the

methodology and the tool on evaluation of OpenStack

is presented in section IV. Finally, section V

concludes the paper. Due to the page limitation,

related work is discussed throughout the paper rather

than in a separate section.

Continuous Evaluation of Cloud Resiliency

Continuous evaluation of resiliency is critical for

cloud platforms and cloud services, because cloud

platform is a dynamical environment with constant

changes and new features or fixes are rapidly applied to

the cloud environment.

Figure 1 illustrates the basic components of the

Continuous Evaluation Model for Cloud Resiliency

(CEM).

Xiaoyong Yuan et al. / American Journal of Engineering and Applied Sciences 2016, 9 (2): 264.273

DOI: 10.3844/ajeassp.2016.264.273

266

Deployment Module

Evaluation of cloud resiliency is performed by

injecting different types of errors in various scenarios.

In order to enable the evaluation in a continuous

fashion, it is essential to automatically deploy the test

environment, which includes the target cloud systems

or services, workloads and setup of fault injection

experiments. If the target cloud systems, services or

workloads are under design, development or test

phase, the deployment can be performed on them

directly. If they are in the production phase, the

production systems, services, or workloads must be

cloned into a test environment by leveraging cloud

capabilities, before the fault injection software and

resiliency test campaigns are set up in the test

environment. Thanks to the virtualization capability

and automated management widely supported by a

cloud platform, the cloning is not a big challenge.

The deployment module is designed to drive the

deployment automation. The module reads the

deployment specification and invokes tools like

Puppet (Puppet), Chef (Chef) or developed scripts to

conduct the deployment. APIs of the target cloud

platform are invoked for certain cloud operations

during the deployment, e.g., cloning of VMs. We use

an Apache project called Libcloud (Libcloud) as an

adaptor between the deployment module and the

cloud-specific APIs so that the deployment module is

portable across different cloud platforms (OpenStack,

CloudStack (CloudStack), etc.).

Besides deployment of the test system, the

deployment module also sets up test workloads

according to the deployment specification. The test

workload can be the real workload fed to the test system

(the workload is fed to the production system at the

same time) or synthetic workload generated by certain

tools, e.g. CloudBench (Silva et al., 2013), CloudStone

(Sobel et al., 2008). Whether to use the real workload or

synthetic workload, together with the characteristics of

the synthetic workload if it is used, is recorded in the

deployment specification.

Setup of the fault injection is another task of the

deployment module and is also documented in the

deployment specification. This involves installation of

the fault injection software into the test system,

configuration of the fault injection software for injecting

different types of faults at different locations and

occasions and setup of the fault injection life cycle (e.g.,

creation of the VM images for the prior-fault injection

states so that fault injection experiments are applied to

the same initial state).

Fault Injection Module

Fault injection experiments are launched after the

test environment and the fault injection softwares are

deployed. As there are a number of fault injection

tools in the literature and industry, we can use an

existing fault injection tool.

Resiliency Computation Module

After fault injection, the resiliency computation
module collects fault injection results and other relevant
data and computes the resiliency of cloud systems and
individual cloud services based on the collected data.
Basically speaking, resiliency is measured by availability
which is computed as:

MeanTimeToFailure

Availability
MeanTimeToFailure MeanTimeToRecovery

=

+

So resiliency computation takes into account not only

the failure behavior obtained from fault injection, but
also recovery behavior for different types of failures. So
resiliency computation requires specified resiliency
models. An example resiliency model, for a VM, a
Cloud component, or a Cloud service, is given in Fig. 2
and is represented as a state transition diagram.

Fig. 2. An example resiliency model

Xiaoyong Yuan et al. / American Journal of Engineering and Applied Sciences 2016, 9 (2): 264.273

DOI: 10.3844/ajeassp.2016.264.273

267

In this example model, a failure occurrence can be

detected either automatically or manually. When a

failure is detected by the monitoring capability of the

cloud platform, this automatic failure detection has low

latency. When a failure is not detected by any

monitoring capability and is finally detected by a user,

e.g., from customers’ complaints or reports, this

manual detection has much longer latency. In different

scenarios, the detection latency is different. For

instance, administration team who are 24 h available

can get notification of the failure from the user much

sooner than that who only works 8 h a day. Usually an

automatic recovery follows the automatic failure

detection, as shown in Fig. 2. When the automatic

recovery fails or the failure is detected manually,

manual recovery will take over the recovery. The

resiliency of the system is computed as the probability

of the system being in the Normal State.

The parameters of the resiliency models for

different failures should be available for the resiliency

computation. Certain parameters, e.g., detection

latency of automatic detection mechanisms and time

spent in automatic recovery, can be measured by tools

such as our implementation of the CEM methodology

described below. Other parameters, e.g., probability of

automatic recovery failures, average latency of

manual detection and average manual recovery time,

may be obtained from statistic data or user knowledge

and expertise.

Control Module

For continuous evaluation of cloud resiliency, the

whole evaluation cycle of “deployment-fault

injection-resiliency computation” must be driven

continuously and automatically. Control Module

decides when to inject faults and when to stop tests

and collect data according to the configuration set by

the Deployment Module. The Control Module would

clean up the cloud environment after a test cycle. The

Control Module schedules the whole evaluation,

including schedule of next evaluation and relaunching

of the next evaluation process.

CRGauge: Cloud Resiliency Gauge

Based on the methodology for continuous

evaluation of cloud resiliency above, we designed and

developed a tool called CRGauge. Figure 3 illustrates

the architecture of the CRGauge tool. CRGauge is a

software package implemented in Python which is

customizable, extendable and portable. The CRGauge

tool is typically deployed in a machine outside of the

target system.

Deployment Module

The deployment module consists of three

components: Loader, Deployer and Generator, as

shown in Fig. 3.

Loader reads in the specification file of the resiliency

test campaign. The specification file is in XML format

and contains fault type, injection target, injection time,

workloads (request types, distribution parameters, arrival

rate for each type of requests, etc.), timeout setting and

other relevant information. Environment settings, which

indicates cloud type, access to the target system and total

time of the resiliency test campaign, are also included in

the specification. The Loader parses the XML file and

sends the parsed data to the Deployer.

A resiliency test campaign is defined as an XML file.

Figure 4 illustrates an XML file that specifies an

example of resiliency evaluation. This campaign is

called “nova-apitest”, where Controller1 Node will be

injected with several nova-api crash faults. Nova-api is

executed as one of processes in the component Nova, so

we kill the process to simulate faults. The faults are

planned to be generated five times per test, timeline of

which is Poisson distributed. In the evaluation, we built

up a cloud system by reusing three nodes production

system and cloning a Compute2 Node in the production

phase as a fresh compute node. After log in the target

system, an evaluation is conducted by CRGauge. The

evaluation contains 5 test cycles, each cycle lasting 360

seconds. Some workloads would be generated in the

tests, including booting instances and terminating

instances. Instances are booted at a randomly generated

timeline which satisfies a uniform distribution to mimic

a real world workload.

The Deployer component provisions the test system

if the target system is in the test phase, conducts the

required configurations and installs the fault injection

tools in the test system. The configuration and

installation operations require access into the test system.

Authentication information such as the user and

password is used by the Deployer to log in the VMs and

execute commands during the operations. When a

production system is cloned into the test system, silo

VLANs are created for the test system so that the host

names and IP addresses of the VMs can be preserved in

the test system. This feature is needed for successful

execution of certain software and workloads of the

production system on the test system.

Certain parameters for the resiliency test campaign,

including duration and frequency, are defined in the

XML. Duration denotes the maximum time of a single

test campaign so that if there is system hang or

application hang incurred by the fault injection, the

experiment is forced to end and next experiment starts.

Frequency denotes how many experiments to be

conducted in a resiliency test campaign.

Xiaoyong Yuan et al. / American Journal of Engineering and Applied Sciences 2016, 9 (2): 264.273

DOI: 10.3844/ajeassp.2016.264.273

268

Deployer first confirms the information transferred

from Loader and defines the cloud name (e.g.,

OpenStack, CloudStack or other clouds) in the <cloud>

section, so as to switch to the certain cloud API in

Libcloud. In the second step, if the target system is a

production one, Deployer could just log in the system by

authentication information according to the <host>

section. Otherwise, Deployer would clone VMs from

other systems or deploy a new system by automation

software or build-from-spec. The cloned VMs would be

set as an attribute (cloned = “True”) in the <host>

section. Their former names are listed in the subsection

<formername>. The automation software would be

executed following the commands documented in

<automation> section. Each software may have their

own commands and the configuration file should be

created before evaluation. For example, Cookbooks must

be configured in Chef for deploying a cloud system.

After deployment, the timer is started and notify

Controller to begin evaluation.

Fig. 3. CRGauge architecture

Fig. 4. Example XML file of a scenario

Xiaoyong Yuan et al. / American Journal of Engineering and Applied Sciences 2016, 9 (2): 264.273

DOI: 10.3844/ajeassp.2016.264.273

269

Generator creates a workload with requests during

the resiliency test campaign. This component either

feeds real requests to the test cloud environment if the

records of real requests are available, or generates a

synthetic suite of requests for the test campaign.

These requests invoke the APIs of the test cloud

environment for initiating different cloud operations.

There are three different user categories: Basic users,

advanced users and administrators. Basic users

typically provision virtual machines and deploy their

applications on the VMs; advanced users have more

control on their VMs like establishing several isolated

and private networks; administrators are responsible

for management of VMs, e.g., resize and live

migration. Example requests issued by different user

categories are listed in Table 1.

The generated synthetic suite of requests is a

combination of different categories of requests to mimic

the real workload. The Generator allows users of the

CRGauge tool to define probability distributions for

different cloud operations, which enables flexible

customization of the workloads.

Fault Injection Module

Fault injector tools inject various types of faults into

the target system. The specification of the faults to be

injected is exemplified by the <injector> section in Fig.

4. Attributes of fault injection include: name, the type of

fault; host_name, the identity of the machine to be fault-

injected; distribution or timeline, specification of fault

injection occasion or trigger; and other attributes specific

to individual fault types (e.g., process, target process of

the fault injection and etc.).

Distribution and timeline are two ways of specifying

the time fault injection triggered in the evaluation.

Distribution specifies a certain distribution (Poisson

Distribution, Uniform Distribution, etc.) and the time

series of the fault injection occasions will be randomly

generated by the Controller according to the distribution

type and the parameter settings associated with the

distribution. Timeline directly specifies the time series of

the fault injection occasions.

In the example given in Fig. 4, a “service_crash”

type of fault is specified to be injected into the process

nova-api running at the machine Controller1 during a

test campaign. The fault injection module maintains a

number of injectors for various types of faults. These

injectors understand how to interpret the specified

attributes for the corresponding fault types and how to

perform the injection accordingly. The target of fault

injection can be a VM, an application in the VM,

hardware underlying VMs and cloud stack software.

In this example, the fault injector will crash the Nova-

api process, a component of the OpenStack cloud

software, at probabilistic occasions with the specified

Poisson distribution.

Particularly, as CRGauge deals with cloud resiliency,

the focused types of faults in the fault injection module

are those related to cloud stack software. Table 2 lists a

couple of typical failure classes of cloud management

software. Brief descriptions of the failure classes are

given below.

Network Disconnection is one common type of

hardware failure that causes unavailability of cloud

management capabilities. For example, in OpenStack all

of VM's network traffic goes through a network node

and VM's network is managed by a controller node. A

failure of the network node or the controller node brings

network disconnection and simulates network

disconnection.

Server Crash shuts down a running VM and tests the

dependency between the VM and the cloud system.

Cloud Management Component Failure is a failure

of cloud management components. These components

are responsible for provisioning and managing virtual

machines.

Table 1. Request description

User category Typical operations

Basic user Launch and manage instances

 Attach IP

 Attach volume

Advanced user Upload and manage images

 Configure access and security for instances

 Create and manage networks

 Create and manage volumes

Administrator Manage projects and users

 Create and manage roles

 Manage instances

 Manage volumes and volume types

 Create and manage images

 Manage flavors

 Check cloud quota and usage

 Create and manage aggregates

Xiaoyong Yuan et al. / American Journal of Engineering and Applied Sciences 2016, 9 (2): 264.273

DOI: 10.3844/ajeassp.2016.264.273

270

Table 2. Failure description

Failure class Failure Target

Network Disconnection management network

 Storage network

 Virtual network

Server Failure server crash

Cloud Management service crash

Component Failure

Fabric Component Failure communication failure (e.g., Message Queue)

 database failure

High Availability Service HAProxy crash

Failure Pacemaker crash

 Coresync crash

Fabric Component Failure is a failure of a cloud

system’s communication, database and relevant

middleware. Most cloud management system is

loosely coupled and leverages third-party software

tools that provide certain capabilities. For instance, an

OpenStack deployment may have different

implementations of AMQP and uses RabbitMQ, Qpid,

or ZeroMQ as the message broker for the AMQP

implementations. The objective of the CRGauge is to

study the resiliency of the cloud operations against

failures of these cloud fabric components.

High Availability Service Failure is a failure of the

cloud system's high-availability capabilities or

components. Many cloud systems are equipped with

high-availability capabilities or components for

improving resiliency of the delivered cloud services.

For example, Keepalived (Keepalived) or Pacemaker

(Pacemaker) is popularly utilized in OpenStack

deployments for fault tolerance and high availability.

HAProxy (HAProxy) prevents both stateless services

and stateful services of OpenStack, including database

and AMQP services, from single point of failure. Faults

are injected into these services to assess the impact of

introducing them into the target cloud system.

The CRGauge tool is designed and implemented to

support extendibility. When a new type of fault is to

be supported by CRGauge, what needs to be done is

just write one Python script within the CRGauge

framework. The Python script will interpret the

parameter settings relevant to the fault type and

conduct the corresponding fault injection.

Resiliency Computation Module

Collector measures several metrics of cloud

systems and detects failures in the test. It detects

cloud failures through cloud software heartbeats and

request based heartbeats. Components of cloud

software always have a built-in heartbeat mechanism

to check the aliveness of its service. For instance,

OpenStack will check itself whether nova services and

neutron agents are alive or not. Collector collects the

heartbeat status from cloud software and determines

cloud service aliveness. Another way to detect cloud

failures is based on request heartbeat provided by

Generator. As mentioned above, we set a timeout for

each request in Generator. For requests generated in the

test, Collector will check the correctness of the response

and the response time. If the result is not correct or the

processing of the request does not complete within

timeout, the service is considered as unavailable.

Besides measuring failure behavior, Collector also

performs the measurements of the recovery behavior in

the target Cloud. Multiple types of recovery are

conducted in the test and the corresponding recovery

time values are recorded by the Collector.

Components in Resiliency Computation Module

calculate the resiliency, or availability, based on a

specific resiliency model. Collector transfers the

measurement data to Analyzer, where user-specified

resiliency models are used to compute the availability

values for individual Cloud operations and/or the entire

Cloud system. Certain parameters of the resiliency

models are given in addition to the state transition

diagrams of the target Cloud components’ resiliency (as

exemplified in Fig. 2), including probability distributions

of different types of failures and recovery time values for

certain types of failures that are difficult to measure

programmatically (e.g., when an error is only detected by

relevant stuff, three-shift daily work schedule and one-

shift-only work schedule result in different recovery time).
With the combination of the measurement data and

user-provided resiliency models and parameters, Analyzer

calculates the resiliency of cloud resiliency (individual

Cloud operations and/or the entire Cloud system).

Controller Module

Controller is designed to plan and control all

workflows in the CRGauge. After a cycle of evaluation,

Cleaner cleans up cloud and rolls back to original

environment and Controller starts the next round of test.

CRGauge is designed to test cloud resiliency

automatically, so it is necessary to clean up the test

legacy and reset the target system to the original

environment after a test. To eliminate the vestige from

Xiaoyong Yuan et al. / American Journal of Engineering and Applied Sciences 2016, 9 (2): 264.273

DOI: 10.3844/ajeassp.2016.264.273

271

Generator and Fault Injector, Cleaner leverages the

cloud APIs and restores to the prior-experiment state.

Cleaner will also reboot cloud services and operating

system to eliminate the effect of Fault Injector. Snapshot

would be leveraged by Cleaner if the target cloud system

is composed by virtual machines.

Experimental Study and Analysis

Experimental Setup

We evaluate cloud resiliency on RHEL 6.5 operating

systems. In the test, VMs are all provisioned from an

Ubuntu Server 12.04 image. We deploy an OpenStack

cloud (Havana Release) with High Availability

configurations according to “OpenStack High

Availability Guide”. The target cloud is consisted of part

of OpenStack components, including Keystone (Identity

service), Nova (Compute), Glance (Image service) and

Neutron (Networking services). These components are

deployed into two controller nodes, both of which can be

backup for the other and one compute node. The

compute node provides virtualization capability by KVM

hypervisor. In controller nodes, we deploy HAProxy and

Pacemaker services as well, in order to protect following

OpenStack and fabric processes: Keystone, Nova-api,

Nova-scheduler, Novaconductor, Glance-api, Glance-

registry, Neutron-server, Neutron-dhcp, Neutron-

metadata and Qpid. Stateless services are active-active,

load-balanced by HAProxy and HAProxy itself is active-

passive, load-balanced by VIP. Pacemaker monitors

OpenStack stateful services and brings the backup of

these services online as necessary (Haas, 2014).

Fig. 5. Experimental results with light workload

Fig. 6. Experimental results with heavy workload

Xiaoyong Yuan et al. / American Journal of Engineering and Applied Sciences 2016, 9 (2): 264.273

DOI: 10.3844/ajeassp.2016.264.273

272

Table 3. Experiment configuration for light and heavy workloads

 Duration Injected Boot Create Create List Shutdown Soft reboot Terminate

Scenario (seconds) fault instance flavor keypair instance instance instance instance

Light 1200 1 6 5 5 5 1 1 1

Heavy 1200 10 25 10 10 20 1 1 1

Timeout 600 30 25 30 120 200 200

We define two typical scenarios to imitate light and

heavy workloads. Total test duration is 1200 seconds.

For light workload, cloud requests contains boot 6 VMs,

terminate 1 VM, shutdown 1 VM, soft reboot 1 VM,

create 5 keypairs, create 5 flavors and list cloud

resources 5 times. For heavy workloads, cloud requests

are similar to the light ones except the number of

injections and requests. We inject following faults in the

target cloud: Keystone crash, qpid failure, nova-api

crash, nova-scheduler crash, glanceapi crash, glance-

registry crash and neutron server crash. Table 3

illustrates the detailed information for these two

scenarios. The third row shows the timeout setting for

corresponding requests, by which we can determine

whether a request performs well.

Result and Analysis

We tested resiliency on the target cloud system. The

downtimes during the tests under light and heavy

workloads are listed in Fig. 5 and 6.

In the light workload tests, most of requests pass

the test in the case of fault injection. “Boot Instance”

and “Terminate Instance” are two requests, where

injections cause downtime in the cloud system

according to the result. On one hand, almost all of the

injections lead to incapability of provisioning VMs

except nova-scheduler and neutronserver crashes. The

target cloud suffers most badly when keystone and

nova-api crashes, because they cause the longest

downtime. On the other hand, only keystone and nova-

api crashes result in downtime for terminating instance.

These evidences may suggest keystone and novaapi are

two vulnerable services in the target cloud.

In the tests with heavy workload, only “Create

Flavor”, “Create Keypair” and “Terminate Instance”

are not affected by fault injection. There exists more

or less downtime when generating other requests.

“Boot Instance” suffers worst among requests. We

notice even baseline can cause a downtime during

provisioning VMs, which means the target system

sometime can't afford the heavy workload even

without fault injection. Keystone crash can result in

longest downtime, which means keystone crash has

the greatest impact on cloud resiliency. Comparing

two workloads, we can discover that the target cloud

system performs less resiliently in heavy workloads

than that does in light workloads. The target cloud

system also can't withstand too many faults

occurrence. We can conclude that “Boot Instance” is

the most request that can't pass the test and keystone

is the most vulnerable service in the target cloud.

Conclusion

In this study, we design the CEM methodology to

continuously evaluate cloud resiliency. CRGauge tool is

implemented based on the CEM methodology. In our

experiments, we detect the resiliency problems in

OpenStack cloud system, especially in the heavy workload.

Because CRGauge is inherently capable of extend to more

complex and practical scenarios, we will evaluate cloud

resiliency with these scenarios in the future.

Acknowledgement

We thank Yanqi Wang for her discussions about the

OpenStack resiliency, which is quite valuable for our

understanding of OpenStack and experiment setup.

Author’s Contributions

Xiaoyong Yuan: Developed the CRGauge tool,

conducted systematic fault injection experiments, and

performed analysis of experiment results. He wrote

many sections of the paper.

Long Wang: Analyzed the problem of continuous

evaluation of cloud resiliency, and architected the CEM

methodology and the CRGauge tool. He worked closely

with Xiaoyong Yuan during the development of the tool

and the experiments (e.g., design of experiments,

adjustment of experiments based on results). He wrote

many sections of the paper.

Tiancheng Liu: Studied the problem of continuous

evaluation of cloud resiliency and co-architected the

CRGauge tool. He worked closely with Xiaoyong Yuan

during the development of the tool and the experiments

(design of experiments, adjustment of experiments based

on results). He made important revisions to most

sections of the paper.

Yue Zhang: worked on the setup of the experiments,

and gave important suggestions on design of experiments.

He also revised the experiment part of the paper.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of

Xiaoyong Yuan et al. / American Journal of Engineering and Applied Sciences 2016, 9 (2): 264.273

DOI: 10.3844/ajeassp.2016.264.273

273

the other authors have read and approved the manuscript

and no ethical issues involved.

References

Apache Libcloud, https://libcloud.apache.org/

Banzai, T., H. Koizumi, R. Kanbayashi, T. Imada and T.

Hanawa et al., 2010. D-cloud: Design of a software

testing environment for reliable distributed systems

using cloud computing technology. Proceedings of the

10th IEEE/ACM International Conference on Cluster,

Cloud and Grid Computing, May 17-20, IEEE Xplore

Press, Melbourne, Australia, pp: 631-636.

 DOI: 10.1109/CCGRID.2010.72

Chef, https://www.chef.io/chef/

CloudStack, https://cloudstack.apache.org/

Fujita, H., Y. Matsuno, T. Hanawa, M. Sato and S. Kato

et al., 2012. DS-bench toolset: Tools for

dependability benchmarking with simulation and

assurance. Proceedings of the 42nd Annual

IEEE/IFIP International Conference on Dependable

Systems and Networks, Jun. 25-28, IEEE Xplore

Press, Boston, MA., pp: 1-8.

 DOI: 10.1109/DSN.2012.6263915

Haas, F., 2014. OpenStack High Availability Guide.

HAProxy, www.haproxy.org

Keepalived, http://www.keepalived.org

NNT, 2009. Cloud or fog? The business realities of

cloud computing for UK enterprises. NTT Comm.

OpenStack. www.openstack.org

PaceMaker. http://clusterlabs.org

Puppet. https://puppetlabs.com/

Silva, M., M.R. Hines, D. Gallo, Q. Liu and K.D. Ryu

et al., 2013. CloudBench: Experiment automation

for cloud environments. Proceedings of the IEEE

International Conference on Cloud Engineering,

Mar. 25-27, IEEE Xplore Press, Redwood City,

CA., pp: 302-311. DOI: 10.1109/IC2E.2013.33

Sobel, W., S. Subramanyam, A. Sucharitakul, J. Nguyen

and H. Wong et al., 2008. Cloudstone: Multi-

platform, multi-language benchmark and

measurement tools for web 2.0. Proc. of CCA.

SPEC. Standard Performance Evaluation Coporation

(SPEC). https://www.spec.org/

TPCB. TPC Benchmarks,

http://www.tpc.org/information/benchmarks.asp

Vieira, M., H. Madeira, K. Sachs and S. Kounev, 2012.

Resilience Benchmarking. In: Resilience

Assessment and Evaluation of Computing Systems,

Wolter, K., A. Avritzer, M. Vieira and A. van

Moorsel (Eds.), Springer, ISBN-10: 3642290329,

pp: 283-301.

Von Eicken, T., 2011. Amazon EC2 outage: Summary

and lessons learned. RightScale, Inc.

Whittaker, Z., 2013. Amazon Web Services suffers

outage, takes down Vine, Instagram, others with it.

CBS Interactive.

