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Abstract: The most important part for machine tool system is spindle 

system. The structural properties of spindle will affect to the productivity of 

machining process and the work pieces quality. Thus it is necessary and 

very important to know its spindle dynamic behaviors for avoiding forced 

vibration due to resonance. The Finite Element Method (FEM) has been 

adopted for obtaining spindle dynamic behaviors. FEM model and analysis 

of dynamic behaviors for the spindle system are similar to those developed 

in rotor-dynamic. The main purpose of this study, we implemented an 

ANSYS Parametric Design Language (APDL) program based on finite 

element method for obtaining full analysis of rotor dynamic in order to 

investigate the spindle dynamic behaviors. The programs efficiently 

performed the full analysis by determining the Campbell diagrams, critical 

speeds and response of imbalance due to mass unbalance at the cutting tool. 

Results show that the critical speeds were calculated previously are far 

enough from the spindle speeds operating range, then the spindle would not 

experience resonance and the maximum response of imbalance occurs on 

operating speed is also in acceptable limit. ANSYS Parametric Design 

Language (APDL) can be used by spindle designer as tools in order to 

increase the product quality, reducing cost and time consuming in the 

design and development stages. 

 

Keywords: ANSYS Parametric Design Language (APDL), Campbell 

Diagram, Critical Speeds, Imbalance Response, Spindle System 

 

Introduction 

The most important components for machine tool 

system is the system of spindle. The dynamic properties 

of spindle directly affect to the machining productivity 

and quality of the product. In the design and 

development stages, then it is very necessary and 

important to know the behaviors of spindle dynamics for 

avoiding resonance of critical speeds due to machining 

operations. To obtain dynamic analysis of spindle system 

analytically in the early design stage, the Finite Element 

Method (FEM) has been frequently adopted for 

modeling of spindle dynamic behaviors. Basically, the 

FEM model and dynamic analysis for the spindle 

systems of machine tools is similiar to those developed 

in rotordynamic. However, the spindle shafts used in 

machine tools usually have smaller shaft diameters and 

bearings and possess disk-like in turbomachine 

components. Thus in this study, we attempt to review 

some researches relating to the field of rotordynamics. 

Lin et al. (2013) in their paper stated that the most 

popular approch for modeling the spindle dynamic 

behavior is the Finite Element Model (FEM), because of 

its capability to manage complex geometry and 

boundary condition and the calculation approaches save 

time and money while solving the finite element system 

equation. Lin (2014) developed a Genetic Algorithm 

(GA) optimization approach to search the optimal 

location of bearings on the motorized spindle shaft. The 

goal is to maximize its First-Mode Natural Frequency 

(FMNF). In order to achieve the results, a spindle-

bearing system dynamic model is formulated using 

Finite Element Method (FEM) that was developed in the 

rotordynamics. Nelson and McVaugh (1976; Nelson, 

1980) applied the theory of Timoshenko's beam to build 

matrix of systems in order to analyze the rotor systems 

dynamics including the influences of gyroscopic 

moments, rotational inertia, axial load and shear 

deformation. Zorzi and Nelson (1977) presented the 

influences of damping on the rotating systems dynamics. 
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Cao and Altintas (2004) proposed a general method that 

can be used for modeling the spindle-bearing system. 

The spindle and spindle housing are considered as 

element of Timoshenko’s beam including the effects of 

gyroscopic moment and centrifugal force. The stiffness 

matrix of the bearing, the contact angle, preload and 

deflection of spindle and spindle housing are all coupled 

using finite element model of the spindle assembly. 

Erturk et al. (2006) proposed method of analytical about 

using receptance coupling and modification of structural 

in the modeling of spindle-holder-tool assembly. These 

component assemblies are considered as multi-segment 

model of Timoshenko's beam and Euler-Bernoulli's 

beam and they compared its results with those 

formulation method. They found that the accuracy of 

Euler-Bernoulli model may give the low accuracy results 

at higher frequencies. Chatelet et al. (2005) presented a 

modeling approach of analysis modal method to 

calculate the rotor system dynamics (the frequencies of 

natural and mode shapes) of turbo-machinery. Two 

methods were compared using the model approaches 

based on finite element model of three-dimensional and 

one-dimensional. The results show that low accuracy 

was obtained when the dynamic behavior of system was 

formulated using one-dimensional beam. Whalley and 

Abdul-Ameer (2009), by using simple harmonic 

response methods, they used contoured shaft profiles in 

order to obtain the natural frequencies and critical speeds 

of rotor shaft systems. Taplak and Parlak (2012) used the 

Dynrot program based on finite element method for 

performing the rotordynamics analysis of gas turbine 

with certain mechanical and geometrical properties. This 

program was used to obtain Campbell diagram, 

determining critical speeds and investigating imbalance 

response of the rotor due to mass unbalance of 

compressor. Jalali et al. (2014) investigated full analysis 

of rotordynamics on high speed turbine-impeller system 

using finite element model of ANSYS program and one-

dimensional beam and experiment of modal testing as 

performed by (Taplak and Parlak, 2012), the diagram of 

Campbell, critical frequencies and imbalance response 

analysis due to mass unbalance were obtained using the 

two models of ANSYS and one-dimensional finite 

element. Based on the comparing results of theoretical 

and experiment show that the good accuracy of the 

behavior of such systems can be achieved using two of 

these models. Villa et al. (2008) have been investigated 

the behavior of non linear flexible unbalanced rotor 

which supported by roller bearings. In this case, the 

method of harmonic balance was used to find a periodic 

response of this non-linear system. In frequency form, 

stability of the system was identified based on a 

perturbation applied method. They stated that the method 

of harmonic balance with the AFT application can be 

used to obtain harmonic solutions. Bai et al. (2012) 

investigated the dynamic behaviors of a hydroturbine 

main shaft system by using program named ANSYS. 

They developed ANSYS Parametric Design Language to 

generate the geometry model of 3D, analysis of modal 

and obtaining critical speed at the spin speed. By using 

ANSYS Parametric Design Language, critical speed 

determination and analysis of imbalance response for a 

multi segmen rotor have been presented by Gurudatt et al. 

(2010; Jagannath, 2012). They showed the advantage of 

using this method is that with typing one of input script 

as example shaft diameter, rotor segmen length, loads 

experienced by the rotor, command of ”ANTYPE, 

MODAL” and ”HARMIC” command, all of these 

commands can be read as variable input and execution 

command of the program. These scripts are executed by 

ANSYS Programming Design Language. Results of 

these programming language are validated with results of 

theoretical and measurement, which are good agreement 

of the acceptable limits. 

The main purpose of this study is implementation of 

an ANSYS Parametric Design Language (APDL) 

program based on finite element method for obtaining 

full analysis of rotor dynamic in order to investigate the 

spindle dynamic behaviors. The programs efficiently 

performed the full analysis by determining the Campbell 

diagrams, critical speeds and response of imbalance due 

to mass unbalance at the cutting tool. The imbalance 

response is carried out to verify the critical speeds 

obtained from the modal analysis and practically 

investigating its behavior. In this study, a grinding 

spindle system with certain mechanical and geometrical 

properties was used as the analysis model. The results 

show that the critical speeds were calculated previously 

are far enough from the spindle speeds operating range, 

then the spindle would not experience resonance and the 

maximum response of imbalance occurs on operating 

speed is also in acceptable limit. 

Theoretical Formulation 

In this study, a Leadwell STD V-30 spindle system of 

grinding machine tool is shown in Fig. 1. The spindle is 

designed to operate at up 8,000 rev/min with a 5.6 kW 

motor connected to the shaft with a pulley-belt system. 

In this model, cutting tool, tool-holder, spindle shaft 

and bearings were included. All components of cutting 

tool, holder, spindle-bearings assembly are modeled as 

elements of discrete disk and bearings and the multi-

segment beams with elasticity and distributed mass. 

Based on procedure of the finite element discretization 

in many literatures (Lalanne and Ferraris, 1998; 

Friswell et al., 2001; Yamamoto and Ishida, 2001), the 

detail of equations will not be derived here and only the 

equation of motions are shown below. 
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Fig. 1. Cross section geometry of spindle system 

 

Equation of Element Motion 

Spindle shaft is considered as a timoshenko’s beam 

and having a constant geometrical cross section. The 

finite element used has two nodal points and having four 

degree of freedom which are two rotations and two 

translations at each nodal point of the element. Each 

shaft element has a translational mass matrix (Me
T
), a 

rotational mass matrix (Me
R
), a stiffness matrix (Ke), a 

gyroscopic matrix (Ge) and a force vector matrix (Fe). 

The motion equation in a global coodinate, for one 

element which rotates at a constant operating speed Ω 

can be expressed as: 

 

( )T R

e e e e e e ee
M M q G q K q F

•• •

+ −Ω + =  (1) 

 

Here, qe is the nodal displacement vector, 

containing the eight degrees-of-freedom for one of 

shaft element (two rotations and two translations in 

each node). By combining the individual matrices of 

each shaft element, one can obtain the global matrices 

that represent the whole shaft, thus resulting to the 

following equation of motion: 
 

( )T R

G G G GGM M q G q K q F
•• •

+ −Ω + =  (2) 

 
Here, (MG

T
) is a matrix of global translational mass, 

(MG
R
) is a matrix of global rotational mass, (KG) is a 

matrix of global stiffness, (GG) is a matrix of global 

gyroscopic, (FG) is a global force vector matrix acting on 

the shaft element and (q) is the displacement vector 

containing all 4(ne + 1) degrees of freedom of the shaft 

elements that represent the physical shaft (ne is the 

number of shaft elements). 

Mass element is considered as a rigid disk. The rigid 

disk is placed at a certain nodal point of finite element. 

Here, qd  is matrix of the nodal displacement vector of 

the disk center mass. For assuming a constant operating 

speed Ω then the equation can be expressed as: 

 

( )T R

d d d d dd
M M q G q F

•• •

+ −Ω =  (3) 

 

Where: 

(Md
T
) = Translational disk matrix 

(Md
R
) = Rotational disk matrix 

(Gd) = Gyroscopic disk matrix 

 

Coefficients of stiffness and damping represent the 

dynamic characteristics of bearing. The motion equation 

for dynamic characteristics of the bearings on shaft 

element can be written as: 

 

br br br br br
C q K q F

•

+ =  (4) 

 

Here, (Kbr) and (Cbr) are called matrices the bearing 

stiffness and the damping matrices and (Fbr) is called a 

bearing force matrix. 
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Equation of Global System and Analysis of 

Eigenvalue  

Based on the element Equation 2, 3 and 4 then a 

certain global element equation can be established and 

other global equations also can be generated for the other 

elements. These elements are constructed to form the 

general equation, which represents behavior of the whole 

system. Then here, the motion equation of the damped 

system for coordinate of global is expressed as: 
 

G G G G
M q C q K q F

•• •

+ + =  (5) 

 
Here, CG = Cbr - ΩGe - ΩGd, KG = Ke + Kbr . 

In order to obtain the natural frequency of system, 

then eigenvalue must be solved and expressed by 

Equation 5, the system equation can be written in state 

space vector form: 
 

 0
s s

A x B x
•

+ =  (6) 

 
where, the matrices of As, Bs and displacement x consist 

of element matrices given as: 
 

0
, ,

0 0

G G G

s s

M C K qA B x
I I q

•    
 = = =   −       

 

 

For assuming harmonic solution x= x0e
λt

 of Equation 

6, the solution of an eigen-value problem is: 
 

0( ) 0s sA B xλ + =  (7) 

 
For the nontrivial solution, the determinant of 

Equation 7 equal to zero: 
 

0aI Cλ + =  (8) 

 
where, Ca = As

-1
Bs and λ is an eigen-value. The eigen-

values are usually as the complex number and 
conjugate roots: 
 

j j jiλ α ω= ±  (9) 

 
Here, αj and ωj are factor of growth and the damped 

natural frequencies of j
th

 mode, respectively. 

Response of Imbalance 

The forces of mass unbalance (F) which is shown in 

Equation 5 can be expressed as: 
 

2 i t

u
F F e Ω= Ω  (10) 

 
The steady state response of mass unbalance is 

considered to be as the form: 

i t

u
P P e Ω=  (11) 

 
Substituting Equation 10 and 11 into (5), the equation 

can be expressed as: 
 

2 2( )
u u

K M i C p F−Ω + Ω = Ω  (12) 

 

By solving equation (12), the response of steady state 

can be obtained. 

ANSYS Parametric Design Language (APDL) 

In this study, a practical APDL macro scripting 

language has been developed to generate all the required 

results, containing amplitude plots and frequencies plots 

at all the nodes of the model, with minimal effort of the 

user. The algorithm incorporated in the macro is as: 

 

• Setup the model. Impose boundary conditions and 

apply excitation force 

• Performing the analysis of modal for obtaining the 

natural frequencies and the critical speeds. Set 

solution using ”ANTYPE,MODAL” command. 

Retrieve mode frequency and critical speed 

frequency using ‘*GET’ command and store in 

using ‘*VFILL’ command 

• Perform harmonic analysis for obtaining imbalance 

response and provides validation for the frequency 

found by modal analysis through harmonic analysis. 

Set solution using ”HARMIC” command and set the 

range of excitation frequencies to increment from 0 

to maximum operating speed in number of step 

(using ” NSUBST” command) 

• Solve for unbalance response. Plot results to get 

unbalance response at nodal point ‘n’ 

• Increment parameter ‘n’ by 1. If n > 18 (since the 

spindle-bearing system model here contains 18 

nodal points), if ok then go to next step. Otherwise, 

go back to step 3 

• End of program 

 

The Model of Finite Element 

Table 1 shows the mechanical properties and 

geometric of the element. In this study, the spindle shaft is 

modeled into 17 beam elements with nodal points at each 

end of the elements. Two-mass the cutting tool and 

pulley-belt components can be considered as 1 and 3 

elements of rigid disk, respectively. These elements of 

rigid disk are located at the nodal points number 1, 14, 15 

and 16. The parameters of the mass element are tabulated 

in Table 2. In addition the two set of bearings, located at 

the nodal points 5 and 12. These bearings are modeled as 

symmetric isotropic bearings and stiff elastic constrains. 

Table 3 show model of bearing elements. A schematic of 

spindle's finite element model is shown in Fig. 2. 
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Fig. 2. Finite element model of spindle system 

 

 
 

Fig. 3. 3D finite element of spindle shaft generated by APDL program 

 
Table 1. Mechanical properties and geometrical of the shaft element 

Element numbers 1 2 3 4 5 6 7 8 9 

Diameter Do (mm) 88 88 70 70 70 70 64.5 64.5 64.5 

Length L (mm) 20.5 20.5 43.75 43.75 43.75 43.75 34 34 34 

ρ (kg/m3) 7800 7800 7800 7800 7800 7800 7800 7800 7800 

E (GPa) 210 210 210 210 210 210 210 210 210 

Element numbers 10 11 12 13 14 15 16 17 18 

Diameter Do (mm) 60 60 60 60 54.5 54.5 50.4 50.4 - 

Length L (mm) 18.25 18.25 18.25 18.25 63.5 63.5 21 21 - 

ρ (kg/m3) 7800 7800 7800 7800 7800 7800 7800 7800 - 

E (GPa) 210 210 210 210 210 210 210 210 - 

 
Table 2. Model properties of disk element 

Mass numbers 1 2 3 4 

Nodal numbers 1 14 15 16 

m (kg) 15.866 2.415 2.415 2.415 

Jp (kg.m2) 0.486 0.005 0.005 0.005 

Jt (kg.m2) 0.247 0.003 0.003 0.003 

Table 3. Model properties of the bearing element 

Bearing numbers 1 2 

Nodal numbers 5 12 
Kyy (N/m) 1.911×108 2.476×108 
Cyy (N.m/s) 191.10×102 247.60×102 
Kzz (kg.m2) 1.911×108 2.476×108 
Czz (N.m/s) 191.10×102 247.60×102 
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As can be shown from Fig. 3, a three dimensional 

geometric model of the spindle shaft is established using 

the APDL (ANSYS Parametric Design Language) 

program. The spindle shaft is considered as the elements 

of BEAM188 with an internal node and the function of 

quadratic shape to increase the element accuracy. The 

characteristic of BEAM188 has two nodal points and 

having twelve degree of freedom at each element, the 

motions are translation in the x, y and z axis direction 

and rotation about x, y and z axis. The element of 

MASS21 is used for modeling of disk element (mass of 

rigid disk) and element of COMBIN14 is used for 

modeling the symmetry bearings. The nodal points, 

elements, material properties, real constants, boundary 

conditions and other physical system-defining features 

that constitute the model have been created by using 

APDL commands such as RO, PEX, PGXY, MP, ET, 

MAT, K, N, LSTR, R, RMORE, LATT, LESIZE and E. 

The effect of shear cannot be ignored in the spindle 

shaft. The constraints are applied to the element motions 

of displacement in the x axis direction and rotation about 

x axis, thus the spindle shaft would not experience any 

displacements of translation and twist motion about the x 

axis direction. Parameters for the material and element 

properties of this spindle shaft model are the same as in 

beam finite element model. 
By QRDAMP method, a modal analysis on spindle 

shaft system was performed to obtain speeds of the 
critical whirl and value of Campbell frequencies. In a 
stationary frame, “Coriolis Effect” can be included in 
the rotating structure by activating the CORIOLIS 
command. The intersection between natural frequencies 
and spin speeds (speeds of the critical whirl) for 
gradient 1x is determined. Harmonic analysis also 
performed with SYNCHRO command to determine 
amplitude response values. 

Results 

In this study, the spindle dynamic behaviors at 

operating speed, the Campbell diagram, critical speed 

and imbalance response were obtained. Analyzes of 

the numeric simulation were performed with 

considering the speed ranges from 0 to 27000 rpm. 

Table 4 shows the damped natural frequencies of the 

spindle assembly (at operating speed 8000 rpm) 

obtained by the APDL FE model. Figure 6 shows the 

Campbell diagrams obtained by the Finite Element 

(FE) model constructed in APDL program. In Fig. 4 

and 5, mode shapes of the natural frequencies were 

determined at operating speed (8000 rpm). 

As can be seen from Table 5, These critical speeds 

are obtained from the APDL finite element models 

which intersecting the frequency modes with spin speed 

line. There are three Backward Whirls (BW) and two   

Forward Whirls (FW) modes were considered. 

 
 
Fig. 4. Mode shape of 1st forward whirl 
 

 
 
Fig. 5. Mode shape of 2nd forward whirl 
 

 
 
Fig. 6. Campbell diagram from APDL model 
 
They are 1st backward whirl, 1st forward whirl, 2nd 
backward whirl, 2nd forward whirl and 3rd backward 
whirl, respectively critical speeds. We also obtained 
the deflection of mode shapes relating with these five 
critical speeds. The shape of deflection at critical speed 
relating to 1st backward whirl, 1st forward whirl, 2nd 
backward whirl, 2nd forward whirl and 3rd backward 
whirl are shown in Fig. 7-11. 

Analysis of Imbalance response is carried out for 
investigating the behaviors of spindle dynamic which 
provides validation for the frequency found by modal 
analysis through harmonic analysis. An unbalance of 
9.981×10

−5
 kg.m for center mass of the cutting tool is 

considered in APDL model. The nodal solutions of 
imbalance responses have been obtained using the 
APDL FE model which are tabulated in Table 6. 



Khairul Jauhari et al. / American Journal of Engineering and Applied Sciences 2016, 9 (2): 213.221 

DOI: 10.3844/ajeassp.2016.213.221 

 

219 

 
 
Fig. 7. Deflection shape relating to 1st BW 
 

 
 
Fig. 8. Deflection shape relating to 1st FW 
 

 
 
Fig. 9. Deflection shape relating to 2nd BW 
 

 
 
Fig. 10. Deflection shape relating to 2nd FW 
 

As can be seen from the table, the maximum 

amplitudes occur near at the 1st forward whirling and 

2nd forward whirling critical speeds points which were 

calculated in the Table 5. It’s mean that if the system has 

damping, the system will resonance when it approaches 

at these critical points. It is looked at the Table 7, the 

maximum amplitudes are not coincide 195.9 Hz and 

350.3 Hz which were calculated previously in modal 

analysis. The percentage difference between both model 

analysis are in very good agreement and the maximum 

difference is about 0.56%. 

 
 
Fig. 11. Deflection shape relating to 3rd BW 

 

 
 
Fig. 12. Imbalance response of spindle system (APDL model) 
 

 
 
Fig. 13. Mode shape of critical speed for 1st forward whirl 

 

 
 
Fig. 14. Stress contour of critical speed for 1st forward whirl 
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Fig. 15. Mode shape of critical speed for 2nd forward whirl 
 

 
 
Fig. 16. Stress contour of critical speed for 2nd forward whirl 
 
Table 4. Natural frequencies at operating speed (at 8000rpm) 

Nat. Frequencies APDL model (Hz) 

1st mode of backward  137.518 

2nd mode of forward 186.467 

3rd mode of backward  321.266 

4th mode of forward 338.133 

5th mode of backward  514.517 

6th mode of forward 683.315 
 
Table 5. Critical speeds at speed range 

Critical speed APDL model (Rpm) 

1st backward whirl 8215.225 

1st forward whirl 11751.541 

2nd backward whirl 18610.909 

2nd forward whirl 21017.776 

3rd backward whirl 26033.467 
 
Table 6. Nodal solution of imbalance response 

 APDL Maximum  

Node model (Hz) Amplitude (m) 

Node 1 (Disk 1) 197 0.364×10−4 

Node 5 (Bearing set 1) 197 0.146×10−4 

Node 1 (Disk 1) 351 5.510×10−6 

Node 12 (Bearing set 2) 351 4.370×10−6 
 

Based on this imbalance response analysis, it is 
easy to understand that the critical speed of the 
spindle is the speed corresponding to the intersection 
of the natural frequency (Hz) equal to spindle spin’s 
(rpm)   line   with   only   the   forward   whirl   mode. 

Table 7. Nodal solution of imbalance response 

 Modal Harmonic 

Critical speed analysis (Hz) analysis 

1st forward whirling 195.9 197 

2nd forward whirling 350.3 351 

 

Figure 12 shows the response of mass imbalance that 

was evaluated at nodal points 1,5 and 12, which stated 

disk 1 (cutting tool), bearing set 1 and bearing set 2, 

respectively. Figure 13 and 15 show the mode shapes at 

two first critical speeds and Fig. 14 and 16 show the 

stress contour for two first critical speeds. 

Conclusion 

A program named ANSYS Parametric Design 

Language (APDL) which based on finite element 

method has been implemented to investigate full analysis 

of spindle dynamic and evaluating the results. A 

grinding spindle system with certain mechanical 

properties and geometrical is modeled as beam APDL 

model technique. The deflection shapes of the spindle at 

operating speeds, the Campbell diagrams, critical speeds 

and imbalance response are obtained. Based on this 

imbalance response analysis that the critical speeds of 

the spindle are the 1st forward whirling and 2nd forward 

whirling, which the speed corresponding to the 

intersection of the natural frequency (Hz) equal to 

spindle spin’s (rpm) line with only the forward whirl 

mode. These critical speeds are still far from the 

operating speed range of the spindle, thus, the spindle 

would not experience resonance and the maximum 

imbalance response at operating speed is still with 

acceptable limit. Thus, APDL program can be used by 

spindle designer as tools in order to increase the product 

quality, reducing cost and time consuming in the design 

and development stages. 
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