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ABSTRACT 

A finite element-finite difference numerical model is developed for predicting non-uniform temperature 
development in hydrating concrete with respect to time and space. The results obtained from this model can 
be used by structural and construction engineers to predict critical thermal stresses induced due to 
differential temperatures between the core and the surface of the concrete at early ages and between the 
zero-stress temperatures and the minimum equilibrating ambient temperatures that the concrete experiences 
during its service life. The prediction of zero-stress temperatures also enables to quantify the extent of built-
in curl developed in concrete structures. The finite element is used to space discretization while the finite 
difference is used to obtain transient solutions of the model. The numerical formulations are then 
programmed in Matlab. The numerical results were compared with experimental results found in literature 
and demonstrated very good agreement. 
 
Keywords: Concrete, Concrete Admixtures, Finite Difference Method, Finite Element Method, Heat 

Transfer, Hydration, Zero-Stress Temperatures 

1. INTRODUCTION 

 Non-uniform temperature caused by the hydration of 
cement, coupled with low conductivity of concrete can 
induce non-linear thermal gradients in the interior and 
exterior surfaces of concrete. This behavior is followed by 
non-uniform dimensional changes that will result in internal 
stresses (Branco et al., 1992). When such internal stresses 
exceed the concrete strength, which is relatively low at early 
ages, cracking may occur. The resulting cracks strongly 
affect the long term concrete performance as concrete will 
have to survive the early-age problems in order to guarantee 
a good long-term performance.  
 Cracking of concrete may also occur due to long-
term critical thermal stresses, which are induced by the 
difference between the zero-stress temperature and the 
minimum concrete temperature that the concrete will be 
exposed to during its service life. Hence, proper 
determination of zero-stress temperatures also helps for a 
better design of reinforcement associated with thermal 
stresses and prediction of the extent of built-in curl.  
 The effects of non-uniform and zero-stress 
temperatures are highly pronounced on massive concrete 

structures such as dams, foundation slabs, concrete 
pavements and bridge decks. In these structures, 
temperature developments around the core follow nearly 
adiabatic scenarioswhile around the surfaces are highly 
influenced by the environmental conditions.   

 NCHRP (2003) considers only monthly ambient 

temperature and cement content to compute the average 

zero stress temperature in the concrete cross-section.  It also 

uses a constant with default value of-10°F for the permanent 

curl/warp effective temperature difference, which is the 

zero-stress temperature gradient.  Lui and Fwa (2003) 

presented non-linear temperature development across 

concrete cross section is best described by a quadratic 

equation with unknown coefficients that can be derived 

from measured temperature data at top, middle and bottom 

of the concrete. Schindler et al. (2004) extensively 

researched on concrete temperature predictions and 

presented that the maximum concrete temperatures and the 

zero-stress temperatures appear to be similarly impacted by 

a change in the input variables affecting temperature 

development in hydrating concrete.  
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Fig. 1. Factors affecting temperature prediction models along with the long-term and short-term critical temperature difference 

(Modified from Schindler et al., 2004) 
 
 They also showed that the zero-stress temperatures are 
about 94 and 92% of the corresponding maximum 
temperatures under normal and hot weather concreting, 
respectively. 

In this study, a finite element-finite difference 
temperature development prediction model is developed 
that accounts for the cement composition, the 
supplementary cementitious materials, the amount of 
cement, the fineness of cement, the water-cement ratio, the 
concrete placing temperature, the presence of mineral and 
chemical admixtures, the ambient air temperature, the wind 
speed, solar radiation, solar irradiation, concrete geometry, 
concrete size, types, lengths and area of the underlying and 
overlying materials. The finite element-finite difference 
numerical model is used to determine the temperature 
distributions in space and time. The zero-stress temperatures 
are determined from the corresponding maximum 
temperatures developed during the early ages. The 
numerical formulations are programmed using Matlab. The 
program results were then compared with experimental 
results published by Ballim (2004). 

1.1. Mathematical Model for Temperature 

Prediction  

 Figure 1 summarizes the parameters involving in 

the temperature prediction models along with the critical 

long-term and short-term temperature differences.  

 Figure 1 Factors affecting temperature prediction 

models along with the long-term and short-term 

critical temperature difference (Modified from 

Schindler et al., 2004). 

 The Fourier equation governing the heat 

generation and temperature distribution for two 

dimensional elements with isotropic solid 

environment is expressed by (Aurich et al., 2009; 

Wang and Tian, 2005) Equation 1: 
 

T T T
k k Q cx y Px x y y t

  
  

   

•∂ ∂ ∂ ∂ ∂
+ + = ρ

∂ ∂ ∂ ∂ ∂
 (1) 

 
where, Q

•

  is the rate of the internal heat generated by 

cement hydration per unit volume, Tis the concrete 

temperature, kx and ky are the concrete thermal 

conductivity in the x- and y-directions, ρ is the density of 

the concrete and cp is the specific heat of the concrete. 

Thermal conductivity, specific heat and density of 

concrete have relatively constant values during and after 

the cement hydration but they are highly dependent on 

the type of aggregate used (Faria et al., 2006).  
 Initial values, boundary conditions and rate of heat 
generation are to be determined before solving the 
governing equation numerically. 
 Concrete placement temperatures are considered as 
initial temperatures and given by Equation 2: 
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T(x,y,0) T (x, y)=  (2)  

 
where, T0 (x, y) is the initial or placement temperature in 
the concrete region. 
 Mathematically, the concrete boundaries should 
satisfy either Drichlet or Cauchy boundary conditions. 
 Drichlet, prescribed surface temperature, boundary 
conditions are given by Equation 3: 
 

P
T(x,y, t) T (x,y, t)=   (3) 

 
 Cauchy, heat flux, boundary conditionsare given by 

Equation 4: 
  

A S

T
q k h(T T )

n

∂
= = −

∂
 (4) 

 
where, TP is the known value of the nodal points of the 

temperatures of the boundaries; q is flowing heat from 

surface or to the surface and its value is zero at insulated 

boundaries; h is the equivalent over all heat loss or gain 

coefficient including conduction, convection, radiation 

and irradiation; TS is the unknown temperatures at the 

boundary nodal points; TA is the ambient temperature; 

and n is the normal vector to the boundary. 

 Heat transfer between concrete and its surroundings 

takes place by thermal conduction, convection, radiation 

and irradiation. Thermal conduction is defined as heat 

transport in a material by transfer of heat between portions 

of the material that are in direct contact with each other. 

Conduction involves the exchange of heat between the 

concrete and underlying or overlying materials. The overall 

equivalent two dimensional conduction heat transfer 

coefficient for multiple layers of underlying and overlying 

materials is given by Equation 5: 
 

1
n

i

cond

1 i

L
h

k A

−

 
=  
 
∑  (5) 

 
where, A is the unit area through which heat transfer is 
occurring and for each i

th
 layer, Li is the thickness and ki 

is the conduction coefficient.   
 The convective heat transfer can be expressed in 

terms of the Newton’s cooling law Equation 6: 
 

C S A
q h (T T )= −  (6) 

 
where, q is the convective heat flux per unit area, hC is 
the convection coefficient, TS and TA are the surface and 

the air temperatures, respectively.  
 The rate of heat flow from a horizontal surface is 
controlled by the magnitude of the temperature 

difference, the speed of the air flow and also the surface 
texture of the member. Based on the wind speed w (m/s), 
the convection coefficient, hC (kJ/m

2
/h/°C), can be 

estimated using the following Equation 7: 

 

0.78

For w  5 m / s,  20 14w;

For w  5 m / s,  25.6w

≤ = +

> =

 (7) 

 

 The amount of solar radiation that reaches to the 
concrete surface can be estimated from the structure’s 
geographical location, orientation, altitude, atmospheric 
conditions, time of the day and day of the year. Total 
radiation absorbed by the concrete surface can be 
determined from (Isgor and Razaqpur, 2004) Equation 8: 

 

r n
q I= α  (8) 

 

where, α is the absorptivity of concrete, which varies 

between 0.5 and 1.0 and depends on the color and the 

texture of the surface and In is the direct solar radiation 

intensity which can be approximated using Equation 9: 
 

( )
cos

n N Z
I C G e

τ
−

β
=  (9) 

 
where, CN is the clearness number, which depends on the 

geographic location of the structure and can be obtained 

from meteorological map. The quantity β is the solar 

zenith angle, defined as the angle between the solar 

radiation and the normal to the horizontal plane at the 

location of the structure and is a function of the time of 

the day. GZ and τ are parameters quantifying the effect of 

the Julian day on the amount of radiation. 

 Irradiation, also known as re-radiation, from the 

concrete surface can be obtained by using Stefan-

Boltzman law Equation 10: 
 

4 4

irr S A
q (T T )= εσ −  (10) 

 
where, ε is the emissivity of concrete, which is equal to 

the ratio of emission from a gray concrete surface to that 

from perfect radiator at the same temperature, (usually 

within the range of 0.85-0.95 and σ is the Stefan-

Boltzmann constant (~5.67*10-8 W m
-2
 K

-4
).  

 The non-linearity problem of the thermal irradiation 

heat transfer through the boundary can be bypassed by 

converting the non-linear irradiation heat transfer into 

the quasi-linear “irradiant convection” through a single 

convection irradiation coefficient given by (Faria et al., 

2006) Equation 11 and 12: 
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Fig. 2. Adabatictemeperaturerise for the eight types of concrete 

 
Table 1. Composition of the eight types of concretes (kg/m3) 

(Fairbairn et al., 2003) 

Type of B1 B2 B3 W, G1 G2 
concrete (cement) (fly ash) (Slag) Water (fineagg) (coarseagg) 

1 139   170 165 626 1318 
2 338 57   190 664 1057 
3 299 50   187 700 1068 
4 336     185 745 1090 
5 335     160 603 1197 
6 323     178 852 1084 
7 127   237 163 655 1165 
8 239   280 171 621 1303 

 

Cirr C irr
h h h= +  (11) 

 
Where: 
  

irr A A

irr A

h [4.8 0.075(T 278.15),forT

278.15K,andh 4.8 ,forT 278.15K

= ε + −

≥ = ε ≥
 (12) 

 
 Because the heat transfer at the boundaries of a 
concrete can occur due to all convection, conduction and 
irradiation simultaneously, the overall heat transfer 
coefficient that includes all these mechanisms can be 
computed as Equation 13:  
 

1

Cirr cond

1 1
h

h h

−

 
= + 
 

 (13) 

 
 Modeling of the ambient temperature that captures 
its diurnal variations is one of the challenges in 

developing the mathematical model for prediction of 
temperature development in concrete. At design stage of 
a construction project, it is unlikely that reliable and 
continuous ambient temperature values are available for 
the area in which the construction is to take place. 
However, daily ambient maximum and minimum 
temperatures are usually available from the local 
meteorological office. Hence, an approximate model that 
varies sinusoidally about the mean temperature was 
assumed to predict the ambient temperature as shown 
below (Ballim, 2004) Equation 14:  

 

max min d m max min

A

T T 2 (t t ) T T
T sin

2 24 2

− π + +     
= +     
     

 (14) 

 

where, td is the clock time of day at which the prediction 

is being made (0 to 24 h); tm is the time at which the 

minimum overnight temperature occurs; Tmax and Tmin 

are the maximum and minimum temperatures for the day 

under considerations, respectively.  

 In this study, adiabatic hydration model is used to 

simulate the heat of hydration generated during 

hardening of fresh concrete. When concrete is placed in 

adiabatic condition, the heat of hydration is completely 

converted into temperature and the adiabatic 

temperature rise of concrete is given by (Jafaar et al., 

2007) Equation 15:  
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Table 2. Thermo-chemo-mechanical parameters for the eight types of concretes (Fairbairn et al., 2003) 

Type of concrete  Cp (J.kg/K) k (W/m.K)  α (10−6)  fc, ∞ (MPa) E
∞ (MPa) ε

∞

sh(10−6) 
1 1017 2.65 13.02 29.9 21.7 23.46 
2 1109 2.64 10.78 28.9 30.6 21.09 
3 1134 2.64 10.37 24.8 25.9 11.37 
4 1084 2.64 10.62 30.2 26.0 24.17 
5 1059 2.64 12.03 27.3 22.4 17.30 
6 1092 2.24 9.93 23.9 23.2 10.05 
7 1063 2.26 12.58 25.4 24.0 12.79 
8 1050 2.49 12.09 25.2 17.1 12.32 

 
t

ad t
T K (1 e )α

= −  (15) 

 
where, Kt maximum temperature rise of the concrete 
under an adiabatic condition is, α is a parameter 
accounting for the rate of heat generation and is the time 
(h). The cumulative heat generated per volume due to 
hydration up to time t is given by (Aurich et al., 2009): 
 

P ad
Q c T= ρ  (16) 

 
 The expression for the rate of heat of hydration can 
be obtained by deriving Equation 16 with respect to 
time as Equation 17: 
 

t

P t
Q c K e
•

−α

= ρ α  (17) 

 
 Fairbairn et al. (2003) extensively presented adiabatic 
test results corresponding to different concrete mixes. Table 
1 and 2 show the composition of the concrete mixes and 
their thermo-chemo-mechanical parameters, respectively. 
Figure 2 demonstrates the adiabatic temperature rise for the 
different concrete mixes which are used in this study as 
reference to take appropriate adiabatic parameters required 
for the numerical analysis. Each mix has unique 
combination of the adiabatic parameters depending on the 
water cement ratio, cement content, cement fineness, 
cement compositions, type and amount of supplementary 
cementitious material and type and amount of admixtures 
used. 

2. MATERIALS AND METHODS 

 The numerical solution scheme used in this study is 
based on the Taylor-Galerkin finite element method in 
combination with finite difference method. A linear 
element is used for the one dimensional elements at 
the boundaries of the concrete and a bilinear element 
is used for the two dimensional elements inside the 
boundaries. Upon applying the numerical methods at 
the governing heat transfer equation, the following 
system of equation is derived: 
 

[ ] [ ]{ } { }
T

C K T f
t

∂ 
+ = 

∂ 
 (18) 

where, [K] is heat stiffness (conduction, convection, 

irradiation) matrix, [C] is the capacitance matrix, {f} is 

the total heat load vector due to heat generations and heat 

fluxes actions,  {T} is the nodal temperature vector and 

T

t

∂ 
 
∂ 

is the rate of change of nodal temperature vector. 

 For time dependence problems, where temporal 

discretization is needed, it is effective to employ numerical 

solutions in the time domain to get the solution of the 

differential equation (Wang and Tian, 2005). From the 

mean value theorem for the differentiation Equation 19: 
 

{ } { }
t t t

T TT

t t

+∆

−∂ 
= 

∂ ∆ 
 (19) 

 

where, ∆t is the time step and {T}
t+∆t

 and {T}
t
 are the 

vectors containing nodal temperature values at time t+∆t 
and t, respectively. 
 The vector {T} at time t = t

*
 within the time step ∆t 

is given as: 

 

{ } { }
t t t

T (1 ) T {T}
+∆

= − θ + θ  (20) 

 

where, 
t t

t

∗

−
θ =

∆
, the vector {f}  is equal at t and t+∆t. 

Re-writing Equation 18 in terms of {T}
t
 and {T}

t+∆t
 

results in: 

 

[ ] [ ]( ){ }

[ ] ( ) [ ]( ){ } { }

t t

t

C t K T

C 1 t K T t f

+∆

+ θ∆

= − − θ ∆ + ∆
 (21) 

 

 Equation 21 gives nodal values {T}
t+∆t

  in terms of a set 

of known values, {T}
t
 and the ratio,θ. There are four 

different types of finite difference schemes depending on 

the value of θ. In this study, the backward finite 

difference method, for which θ equals to 1, is used 

because a Fourier stability analysis showed that the 

numerical solutions of Equation 21 are unconditionally 
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stable for θ ≥1/2 (Lewis et al., 1996). Hence, the 

Equation 21 reduces to: 
 

[ ] [ ]( ){ } [ ]{ } { }
t t t

C t K T C T t f
+∆

+ ∆ = + ∆  (22) 

 
 A Matlabprogram is developed to obtain numerical 
results of Equation 22. 

3. RESULTS AND DISCUSSION 

 The main output of the temperature prediction 
program is the temperature of hardening concrete at each 
node of the finite element mesh at each time step. Figure 
3 shows part of the mesh and the selected 21 nodes along 
the depth of the concrete section to evaluate temperature 
development with depth versus time. Table 3 shows the 
general material and geometrical input parameters used 
for evaluating the numerical model results based on a 
theoretical scenario. The scenario assumes that the 
concrete slab is placed under an ambient temperature 
varying sinusoidally between maximum and minimum 
daily temperatures of 35 and 15°C, respectively. The 
placement temperature is 25°C. The Cauchy’s boundary 
coefficient for the top surface is taken as 5.15 whereas at 
the bottom of the concrete is about 2.15. The total heat 
loss/gain Cauchy’s boundary coefficients are obtained by 
dividing the total heat loss/gain coefficients, htop and 
hbottom, by the conductivity of the concrete. This scenario 
emulates concrete pavements or slabs on grade. Figure 4 
shows the plots of temperature development at 
thirteenodd number nodes along the depth of the 
concrete.  
 Figure 4 confirms the expectation that the 
temperature developments at nodes around the core 
appeared to be higher but less affected by the ambient 
temperature variation than those nodes close to the top 
and bottom surfaces during the first couple of daysafter 
casting. Due to a higher heat transfer coefficient at the 
top surface than at the bottom surface, the effect of the 
ambient temperature appeared to be higher at the top 
nodes than at the bottom nodes. Referring to Fig. 4, the 
maximum temperature difference critical for early age 
cracking was found to be about 6°C, which was between 
nodes 9 (close to mid depth) and 21(at the top surface) 
and occurred around 13 h after casting time. It can also 
be seen that the maximum temperatures at the nodes 
occurred at different times in such a way that the lowest 
of the maximum temperatures occur first and the highest 
occur in the last. After about 72 h from the time the 
concrete was placed, the effect of heat of hydration 
became almost zero and the variations with depth are 
more or less followed the ambient temperature, which 
was assumed as varying sinusoidally in a 24 h period. 

 
 
Fig. 3. Part of the mesh and the 21 nodes used for evaluating 

the temperature developments 

 
Table 3. General material and geometrical inputparameters used 

Parameters Values used 

No. of nodes in length direction 21 
No. of nodes in depth direction 21 
Length of the concrete slab 1.83 m (6 ft) 
Depth of the concrete slab 33.02 cm (13 in) 
Density of the concrete (ρ) 2400 kg/m3 
Conductivity of the concrete (k 2.7 W/m/°C 
Specific heat of the concrete (Cp) 720 J/(kg°C) 
Adiabatic max. temperature (K) 45°C 
Adiabatic rate parameter (α) 0.05183 

 
 Figure 5 shows the zero stress temperature 
distributions along the depth of the concrete based on the 
findings that they are about 94% of the corresponding 
maximum temperatures shown in Fig. 4. It is worth 
noting that the zero stress temperature distribution is 
non-uniform and non-linear. 
 Finally, temperature results measured in the 
laboratory by Ballim (2004) were compared with the 
corresponding results from the numerical model 
developed in this study. Ballim (2004) measured the 
temperatures at different location after casting a 0.5 m

3 

concrete block with a nominal compressive strength of 
25 MPa. Figure 6 Shows the concrete block used by 
Ballim which was insulated on the two opposite 700 
by1000 mm faces. 
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Fig. 4. Temperature plots for all odd numbernodes along the depth of the concrete 
 

 
 

Fig. 5. Plot of zeros stress temperatures along the depth 
 

 
 

Fig. 6. The concrete test block with side insulation 
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Fig. 7. Comparison of results from the numerical model and experimental results by Ballim (2004) 
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With the exception of the adiabatic parameters, the rest of 
the environmental and material parameters for executing 
the present model are taken from the literature including 
the thermal conductivity of the concrete (3.5 W/mK), heat 
capacity (1228 J/kgK), the heat transfer coefficients (30 
W/m

2
K for exposed concrete surface at top and 5 W/m

2
K 

for the 700×700 mm end surfaces). The ambient 
temperature varied between 21-16°C during the five days 
when the test was conducted. Having related  the 
properties of the concrete used for the test block and the 
adiabatric curves documented for different concrete 
mixes by Fairbairn et al. (2003) as shown in Fig. 2, it 
was reasonably determined that the adiabatic maximum 
temperature parameters is about 45°C and the adiabatic 
rate parameters is about 0.0375. The following three 
plots show the comparisons of the temperatures 
measured by Ballim (2004) and modeled in this study 
at three locations on the xy plane at the center of the 
block along the depth, which are at the bottom, at the 
mid depth and at 200 mm from the top of the block. 
As seen from Fig. 7, the overall results from the 
numerical model were in very good agreement to the 
experimental results with a maximum discrepancy of 
about 2°C at the mid depth at around 40 h after the 
concrete block was cast.  In general, the maximum 
temperatures from the model at all the three locations are 
almost equal to the measured values. However, with 
regard to when these maximum temperatures occurred, 
the comparison plots show that results from the 
numerical model lag their corresponding from the 
experimental results. The maximum lag was about 6 h 
which was observed at the mid depth of the block. 

4. CONCLUSION 

 This study presents a numerical model predicting 

early-age temperature development of concrete which 

incorporates the effects of cement type, cement content, 

water cement ratio, types and amount of admixtures (in 

terms of adiabatic parameters), environmental 

conditions, concrete thickness and curing conditions. 

This provides structural and construction engineers a 

better tool and understanding to estimate the potential 

of thermal cracking at early-ages during hydration as 

well as in the long-term when the concrete is exposed 

to cold temperatures. As expected, the numerical 

model shows that temperature developments of the 

nodes around the core are much less influenced to 

environmental variations than those nodes close to the 

surface. It was also observed that the zero-stress 

temperature distribution along the depth of the 

concrete is far from being linear. 
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