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Abstract: Problem statement: This study presents an application of Indirect Adaptive Generalized 
Predictive Control (IAGPC) of an incubator for newborn, in order to improve the performance of 
temperature control. Approach: Analysis of physical phenomena of incubator was involved together 
knowledge of the dynamic behavior. Incubator was identified by means of Recursive Least Square 
(RLS) technique associated with a projection of the model parameters for robust system identification. 
Results: Results showed that mathematical model of neonatal incubator predicted coincide with the 
measured data. A comparative study was made between ON-OFF, PID and IAGPC control in order to 
provide the performance of each strategy. Conclusion: Results had proved effectiveness of the IAGPC 
as a control of incubator system. 
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INTRODUCTION 

 
 The First Published Report of an Incubator for use 
in the care of the premature infant  by Thomas et al. 
(1857) At this time, he had the idea to run a cradle zinc 
called incubator, in which it was possible to maintain a 
constant heat and to keep the baby warm. Therefore 
temperature is one of the most important factors that 
need to be maintained with minimum variation to keep 
the transpidermal respiratory and water loss to a 
minimum level and to increase the heat storage body 
(Bach et al., 1999). At this time, the neonatal incubator 
keeps the newborn or premature infants in a suitable 
atmosphere in terms of temperature, humidity and 
oxygenation and thus protect, as much as possible from 
external aggression as germs and noise. This 
development is due to technological progress, seen in 
these last years. Furthermore, the current commercial 
devices use a classical control as the on-off or PID 
control (Thomas, 1999). But this type of control does not 
always achieve the required performance: overshoot and 
undershoot in the air temperature (Silva et al., 2006; 
Rddy et al., 2009). The question remains if we use an 
advanced control strategy, we can be provide suitable 
environment for premature born infants and maintained 
the temperature that is set by the doctor without 
significant variation over time whatever disturbance. 
 The purpose of the present study was to address 
this question by generalized predictive control. In this 
case, a development of an accurate model is essential. 

The modeling is to gather knowledge that has the 
dynamic behavior of process, by analysis of physical 
phenomena involved. The study of system 
nonlinearities is considered as parametric uncertainty 
where the need for adaptive control. To do this we have 
achieved and implemented a control system based on a 
microcontroller. In this study, an overview of the 
product was presented. After that, an incomplete 
physical model of the incubator shows the complexity 
of the process and the parametric model has been 
developed. As a control, we opted for the Indirect 
Adaptive Generalized Predictive Control IAGPC, the 
control law for the incubator is described and 
simulations examples are illustrated. Finally, a 
comparative study was made between PID and ON-
OFF and IAGPC control in order to show the 
performance of each strategy. 
 

MATERIALS AND METHODS 
 
 This application concerns an AIR-SHIELDS C100 
INCUBATOR located in Higher Institute of Medical 
Technologies of Tunis.  
 In order to collect relevant data then to estimate the 
parameters of mathematical model and to test the 
control law, a system of identification and control was 
constructed. The system mainly consists of four units: 
the incubator AIR-SHIELD chamber, the acquisition 
board, the controller board and the computer.  
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Fig. 1: The process of identification and control of 

heating in a premature infant incubator 
 
 In Fig. 1 we based our design on a system able to 
put our process in open-loop (modeling) or closed loop 
(control) (Zermani et al., 2011). The experimental 
device consists of putting the incubator in open loop 
which allows having a flow of air with space heater 
characteristics. The air is warmed in the contact with a 
heating resistance. The fan is turned on and allows air 
circulation inside the incubator. The internal temperature 
measurement is based on T-type LM35. The sensor 
resistance value is converted to a voltage signal and 
amplified to suit the acquisition board that communicate 
with the computer through parallel port DB25. The 
heater output needs to be controlled in order to control 
the temperature of the system. This is done with the 
phase angle control provided by a microcontroller PIC 
16F77. A RS232 link is used to communicate between 
the controller board and the computer. 
 
Physical model for incubator: In the literature, several 
physical models of the incubator have been made 
(Taweel and Amer, 2006) but which of them is suitable 
for control synthesis? To answer this question, we 
began by gathering and analyzing knowledge of the 
dynamic behavior of process. This analysis leads to the 
definition of the model structure Fig. 2. 
 The phenomena occurring in the heat of the 
incubator are as follow: 
 
• The convective exchange with the outside air 
• The radiative exchange with the outside air 
• The convective exchange with the inside air 
• The radiative exchange between the walls 
• Transfer by conduction through completely opaque 

walls 

 
 
Fig. 2: Physical model incubator representing all heat 

transfers 
 
 Assumption for the model are: 
 
• A Compartment is assumed to be homogenous 

throughout its material 
• The air flow in the incubator air space is 

considered to be uniform 
• All heat transfers are one-way 
• Convective and radiative exchanges are expressed 

by a factor of global exchange 
• The walls of the incubator are modeled by a 

resistor with conduction coefficient Balance of 
trade with the air resulting node 

 
result

air air globle i p. int erne reultr

air air 0 reult vent

dT
( c) v H S (T T )

dt

n( c) v (T T ) Q P(t)

ρ −

+ ρ − + +

∑  (1) 

 
 The complexities of the physical model, especially 
those regarding the transfer by conduction through 
walls and different materials inside and outside the 
incubator, makes difficult their holdings for the 
identification and control. To take into account these 
complexities and uncertainties, the system is seen as a 
mathematical model and the recursive estimation 
approach is adopted to estimate parameters in real time. 
 
Nomenclature: 
 
p Density of air, kg.m−3 
c  Specific mass capacity, m3.kg−1 
v Volume, m3 
HGLOBAL  Convective and radiative exchanges, 

W.m−2.K−1 
Si  Exchange surface, m2 
Tp.interne  Air temperature near the walls, K 
T result  Temperature resulting node, K 
n  Air change rate, m3.sec−1 
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T0  Outside air temperature, k 
Qvent  Flow ventilation heat, m3.sec−1 

P(t)  The applied power proportional to the 
resistor heating, Watt 

 
RESULTS  

 
Identification: Generally, there are three  categories of 
models  that can   be used  to simulate and  predict the 
incubator  environment. The first  category is based on 
the concept of energy  and mass balance (Taweel and  
Amer, 2006; Tourneux et al., 2009). The drawback of 
this  method  is that these models are difficult to put in 
practice. The second category  is based on the 
combination  of  physical  and mathematical models 
with   prior    knowledge  of   the   system   is necessary. 
The third category is based on computation intelligence 
such as fuzzy clustering, artificial neural networks and 
genetic algorithm. Oliveira et al. (2005) used 
orthogonal basis functions to model the neonatal 
incubator prototype  and Abbas  and Leonhardt (2009) 
al. used a system identification of neonatal incubator 
based on adaptive ARMAX Technique. In this section 
an identification procedure for the newborn incubator is 
achieved and a linear model is computed. Although 
temperature characteristic is a continuous variable, it 
was measured and registered at time steps. 
 In this discrete domain, the incubator system can be 
modeled in several ways, such as auto regressive models. 

 

1 n

1u mu

y(k) a y(k 1)... a y(k n)

b y(k 1 d)... b u(k m d) e(k)

= − − − − +

− − − + − − +
 (2) 

 
 With d: delay, u: input system, y: output system 
and e: white noise. Pseudo-Random Binary Sequence 
(PRBS) signals were designed as input u(k) and the 
temperature was designed as output y(k). All 
experimental data were recorded with a sampling 
period of 10 sec. The selection of the appropriate orders 
of the ARX model is crucial and it has been performed 
by using Akaike Information Criterion (AIC) in the 
conventional and standard approach (Fukata et al., 
2006). The parameters of the ARX model were updated 
on line using Recursive Least Square (RLS) method 
(Landau and Gianluca, 2006). 
 

1

T

T1

2

1
P(k) [P(k 1)

(k)

P(k 1) (k) (k)P(k 1)
]

(k)
(k) (k)P(k 1)

(k)

= − −
λ

− ϕ ϕ −
λ + ϕ ϕ −
λ

 (3) 

 
K(k) P(k) (k)= ϕ  (4) 

T(k) (k 1) K(k)y(k) (k) (k 1)θ = θ − + − ϕ θ −  (5) 
 
θ is a vector of parameters to be identified and '(k) is an 
observation vector which are given by: 
 

T
1 1 m 1 2 n[a ,a ...a b ,b ,...b ]θ =   (6) 

 
T (k) [ y(k 1), y(k 2)... y(k n)

u(k 1 d)...u(k d m)

ϕ = − − − − − −
− − − −

 (7) 

 
 The algorithm with constant forgetting factor is to 
choose λ1(k) = λ11 and λ2(k) = 1, typical values for-1 is 
selected within an interval (0.95, . . . , 0.99). The effect 
of λ1 is to introduce a decreasing weight on the previous 
data. This is why-1 is known as the forgetting factor. 
The maximum weight is given to the most recent error. 
This type of profile suits the identification of slowly 
time varying systems (Landau and Gianluca, 2006). To 
excite the heating resistance of the incubator, we used a 
pseudo random binary sequence. This sequence is 
generated programmatically. After several trials, we 
found that the dynamic of warming is much faster than 
cooling. Thus, we were forced to extend the sequence a 
little cooling. Figure 3 shows the evolution of the 
sequence applied (PRBS). The response from the 
incubator to the excitation is shown in Fig. 4. 
 The model developed is written as follows: 
 
y(k) = 0.9458y(k-1) + 0.0308y(k-2) 
+0.0194u(k-4) + 0.0071u(k-5) + e(k)  (8) 
 
 Figure 4 shows that the incubator has two 
dynamics: a dynamic heating and cooling. Hysteresis 
effect plays a very important role in this dynamic. 
Indeed, hysteresis is the difference between the curve of 
rise and fall. The latter is caused by the thermal inertia of 
various elements of the incubator which is also 
responsible for the nonlinearity of T = f(P) (T: 
Temperature, P: Power) which sometimes makes it very 
difficult to model this relationship by a mathematical 
equation. This phenomenon explains the modeling error 
to be taken into account later as a parametric uncertainty. 
 
Indirect Adaptive Generalized Predictive: Control 
(IAGPC) design: The synthesis of the Generalized 
Predictive Controller (GPC) suggested by Clarke et al. 
(1987). This method was used successfully in industrial 
applications of various forms (Richalet et al., 1978; 
Dion et al., 1991; Dumur et al., 1997; Filatov 
Unbedhauen, 2004). The approach of generalized 
predictive control is based on a dynamic model of type 
CARIMA (Controlled Auto-Regressive Integrated 
Moving Average), given by the following form: 
 

1 d 1 1
1

e(k)
A(q )y(k) q B(q )u(k 1) C(q )

(q )
− − − −

−= − +
∆

  (9) 
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Fig. 3: Data for identification - system input and system 

output 
 

 
 

Fig. 4: Real and estimated temperature 
 
y(k) is the system output, u(k) the system input, e(k) the 
uncorrelated random sequence, ∆(q−1) = 1-q−1 
corresponds to an integral action. Its presence in the 
direct channel allows a zero error in steady state value, 
A(q−1), B(q−1) and C(q−1) are polynomials. In our case 
the polynomial C is equal to 1. 
 
Cost function: The generalized predictive control 
based on the minimization of a quadratic criterion on a 
sliding horizon, which involves a term related to the 
difference between the predicted output sequence and 
the sequence of future control (Clarke et al., 1987). The 
criterion is given by the following relation: 
 

2

C

N 2
cj N1

N 2

j 1

ˆJ [y (k j) y(k j)]

u (k j 1)

=

=

= + − +

+λ ∆ + −

∑

∑
 (10) 

 
With: 
 
ŷ(k)  =  The output value predicted at time k 
yc  =  The set points values at time k 
∆u(k) =  The increment of control at time k 
N1  =  The minimum prediction horizon 
N2 =  The maximum prediction horizon 
NC  =  The control horizon 
_ =  The control-weighting factor 

Prediction of the system output: Consider the output 
expressed by the following equation: 
 
yF (k) = F(q−1)y(k)  (11) 
 
 Using both Eq. 9 and 11 the output at time (k + j) 
will be: 
 

1 1

1

1 1

1 1

F(q )B(q )
yF(k j) u(k k d a)

A(q )

F(q )C(q )
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− −

−

− −

− −

+ = + − −

+ +
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 (12) 

 
 By applying the Euclidean algorithm on the second 
term of Eq. 12 we get: 
 

11 1
j1 j

j1 1 1 1

G (q )F(q )C(q )
L (q ) q

A(q ) (q ) A(q ) (q )

−− −
− −

− − − −= +
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  (13) 

 
 Using Eq. 9, 13 and we assuming that the term 
related to the disturbance is zero, the optimal predictor 
of the output is written as follows: 
 

1 1 1
j

1

1
j

1

L (q )B(q ) (q )
ŷF(k j)

C(q )

G (q )
u(k j 1 d) y(k)
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− − −

−

−

−

∆
+ = −

+ − − +

 (14) 

 
 A second Diophantine equation decompose the 
predictor in two terms: a term based on the current 
output, old orders, the system output and a second term 
dependent on future orders. 
 

11
j1 j d

J1 1

R (q )(q )
H (q ) q

C(q ) C(q )

−−
− − +

− −

σ = +   (15) 

 
With: 
 

1 1 1
j(q ) L (q ) B(q );− − −σ = +   (16) 

 
 The optimal predictor of the output is written as 
follows: 
 

1 1
j

1 1
j j 1

1 1

ŷF(k j) H (q ) (q )u(k j d 1)

G (q ) R (q )
y(k) (q )u(k 1)

C(q ) C(q )

− −

− −
−

− −

+ = ∆ + − −

+ ∆ −
 (17) 

 
where, Hj(q−1), Gj (q−1), Rj(q−1) et Lj(q−1) are 
polynomial solutions to the Diophantine equation 
(Astrom, 1983). 
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 The matrix formulation is represented in (18): 
 

y
j 1

ˆ ˆG (k) R u(k 1)ˆŷ(k) H U(k)
C(q )−

+ ∆ −
= ∆   (18) 

 
With: 
 

c TU [ u(k)... u(k N 1)]∆ = ∆ ∆ + −   (19) 

 
1 1 T

1 d N2 dĜ [G (q )...G (q )]− −
+ +=   (20) 

 
1 1 T

1 d N2 dR̂ [R (q )...R (q )]− −
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0

1 0

N2 1 N2 2 N2 NC

h 0 ... 0

h h ... 0
Ĥ

... ... ... ...

h h ... h− − −

 
 
 =
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Law order: We can write the criterion J in matrix form: 
 

T T
c c

ˆ ˆJ [Y(k) y (k)] [Y(k) y (k)] U(k) U(k)= − − + λ∆ ∆   (23) 
 
With: 
 

c c 1 c 2Y [y (k N d)...y (k N d)]= + + + +   (24) 

 
 The optimal control law is derived from analytical 
minimization of the previous cost function. Only the 
first control value is finally applied to the system. 
 

yT
GPC c 1

ˆ ˆG (k) R u(k 1)
u(k) u(k 1) m [Y (k) ]

C(q )−

− − ∆ −
= − + +   (25) 

 
 Which: T

GPCm represents the first line of 
T 1 T

Nc
ˆ ˆ ˆ(H H I ) H−+ λ  and INc is diagonal matrix of size 

Nc*Nc 
 

Nc

1 0
I

0 1

 
=  
 

  (26) 

 
Adaptive control: The synthesis of the previous 
predictive control considers that the parameters of the 
process are fixed, but in reality this is not the case. 
These parameters vary over time a slow variation 
affecting the controller performance. The adaptive 
predictive controller which is proposed by the bloc 
diagram flow is an indirect controller (Astrom, 1983; 
De Mathelin and Lozano, 1999). The least-squares 
(RLS) algorithm is applied to estimate the unknown 
system parameters Aˆ and ˆB , after that the estimated 

parameters are updated at each sampling period for 
tuning of the GPC control Hˆj , G ĵ , R ĵ and L ĵ . The 
procedure is iterated while the new output is available. 
 The application of adaptive control is based on a 
priori knowledge of the process. The start of the 
command is rather difficult. Both approaches of starting 
the adaptive predictive control most used in practice 
are: starting with an estimated independent command or 
starting with adjusting the sampling period. In our case 
we use the first approach. This technique recommends 
the use of an independent monitor of the estimated 
parameters at the outset. Therefore predictive adaptive 
control is used only when the estimates converges to 
the true values. This avoids the oscillation control 
signal due to rapid variation of parameters estimated. 
 
Control problem statement: When there are no 
disturbances and noise and when the parameters are 
constant most adaptive control algorithms have good 
convergence and stability. In addition, we hope that this 
performances will be preserved in presence of modeling 
error and presence of delay. This error can be an 
hysteresis effect that characterize most of thermal 
system which cause the change of system dynamics. 
However, in the presence of bounded disturbances, 
noise and time-varying parameters not even stability of 
the recursive estimation algorithm can be guaranteed. 
So, the use of the RLS estimated without modification 
can be dangerous especially in the absence of persistent 
excitation in presence of slow perturbation and small 
modeling errors. Therefore, it must modify the 
estimation so that it can not diverge. Given: 
 

d 1

1

q B(q )
y(k) 1 H*)u(k / 1) e(k)

A(q )

− −

−= + − +   (27) 

 
 With e representing an external perturbation and 
the operator H- which is arbitrary (linear or not, variant 
or not) (Chaoui and  Saad, 2001). We assume that: 
 

• The static gain 
B(1)

A(1)
 

• ∆(q−1) and B(q−1) are coprime 
• A(q−1) is a hurwitz operator 1A(z ) 0 z `− = ⇒ <  

• A real number *ρ  such as *θ ≤ ρ  
 

 The regression form of the model is as follow: 
 

Ty(k) (k) θ= ϕ + µ   (28) 
 
 On the other hand: 
 

T 2n 1
1 1 n 1 nC [ ... ] R / ... 0−= θ θ ∈ θ + + θ >   (29) 
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2n 1
2 1C { R / *}−= θ ∈ θ ≤ ρ   (30) 

 
C* = C1 ∩ C2  (31) 
 
C* is a known convex and compact: 
 The Least squares algorithm with projection is as 
follow: 
 

1

T

T1

2

1
P(k) [P(k 1)

(k)

P(k 1) (k) (k)P(k 1)
]

(k)
(k) (k)P(k 1)

(k)

= − −
λ

− ϕ ϕ −
λ ϕ ϕ −
λ

  (32) 

 
K(k) = P(k)φ(k)  (33) 
 

t(k) (k 1) K(k)(y(k) (k) (k 1)θ = θ − + − ϕ θ −   (34) 
 
θ(k) = projC* (θ(k)P )  (35) 
 
 This algorithm is guarded against any divergence 
estimated by means of a projection within convex set 

2nC R⊂ to ensure that this projection preserves the 
qualities of the original estimate, we must ensure the 
convex contains the true vector’s parameter. 
 We assumed that the lower Ij and upper Sj limits of 
each element j are known so that Ij ≤ j ≤ Sj where Sj and 

jI R∈  and j = 1, · · · · · · , 4. 
 

T
1 2 3 4(k) [ ]θ = θ θ θ θ  (36) 

 
= [a1 a2 b1 b2]  (37) 
 
 The orthogonal term-by-term projection is then 
given by: 
 

j j j j

j j j

j j j

, I S

(k) projc * ( (k)P) I , I

S ,S

 θ ≤ θ ≤
 θ = θ = θ ≤ 
 ≤ θ 

 (38) 

 
Result and discussion of IAGPC, PID and on-of 
controllers: The IAGPC, PID and ON-OF controllers 
have been applied to the incubator system in pediatric 
room. The objective of this study is to find a more 
appropriate control law to obtain a thermal comfort 
environment. Real time results will give the limit of 
each controller. The simplest control algorithm which 
does not need any tuning effort is the ON-OF control. 
So the control input is equal to 100 percent of power 
when the temperature inside the incubator is below the 
set point furthermore, it is OFF u(k) = 0. 
 The PID control is given by this expression: 

k

p i dl 0
u(k) K e(k) K e(l) K (e(k) e(k 1))

=
= + + − −∑   (39) 

 
where, Kp, Ki and Kd represents respectively the 
proportional gain, the integral gain and the derivative 
gain. Great effort is necessary to choose the right values 
of gain. The following PID parameters values were 
used in this study Kp = 7.2, Ki = 0.1 and Kd = 2.5. This 
choice is based on Ziegler-Nichols tuning rule (Landau 
and Gianluca, 2006). Concerning the IAGPC algorithm, 
the model parameters were initialized by zero vectors 
and the covariance matrix P(0) = 106 with fixing the 
forgetting -1 = 0.95. We fixed the parameters of 
predictive control synthesis essentially by the 
simulation: the minimum prediction horizon N1 = d, the 
maximum prediction horizon N2 = 15, the control 
horizon NC = 1 and the control-weighting factor - = 1. 
More  detailed  information   may be found in (Clarke 
et al., 1987). The robust identification algorithm and 
the GPC programme have been developed in Matlab 
7.4. The estimate of the heating model parameters and 
the update law parameters are performed with a step 
sampling of 10s. Responses of the temperature inside 
the incubator controlled by IAGPC, PID and ON-OFF 
controller are given in the following figure. 
 

DISCUSSION 
 
 In the present study the ON-OFF control showed 
higher fluctuations in the air temperature. The offset 
band between the set point and the inside temperature is 
4C. This fluctuations decrease and the ON-OFF cycling 
is reduced if a hysteresis band was adopted. On the other 
side the offset band caused by IAGPC and PID is 
negligible. The rise time with the On-OFF controller was 
250s, with the PID was 1500s and with IAGPC was 600.  
 Figure 5 represented the indirect adaptive 
generalized predictive control strategy witch the a 
recursive estimation approach was adopted to estimate 
in real time the system parameters and to adapt at the 
same time the GPC controller parameters. 

Figure 6 shown a good performance control GPC 
when there are no disturbances and noise and when the 
parameters are constant. The temperature is closed to 
the different set points. For Fig. 6-8, it is clear that the 
behavior of the IAGPC is greater than others two 
controllers in many aspect. The IAGPC has a speed 
response to close to the different set points. The 
robustness of this strategy can be observed through 
overshoot and the fluctuation rejection, this is not the 
case of PID or ON-OFF controllers. This can be 
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explained by the predictive effect of the GPC: when the 
heater is closed, (when the temperature is below the set 
point), the effect of heater continues to be felt. Since 
this effect is not predicted in conventional PID or ON-
OFF control, the calculating of the cooling action is not 
appropriate, so showed the oscillation. Now let as show 
in Fig. 8-9 the performance of PID and IAGPC when the 
incubator clappers open for regular treatment such as 
providing medicine, nutrition or visual inspection of 
newborn. From the sample 500, the hand ports was 
opened. The temperature initially dropped then rised, the 
optimal value is 10 min for IAGPC and 13 min for PID. 
 So through Fig. 9 we can conclude that the IAGPC 
is more efficient than PID in disturbance rejection. 
 Most of the time the controller is designed to meet 
specifications in steady state. In practice, the operation of 
an incubator is not maintained at a constant speed, but 
evolves with the physiological status of the newborn. 
 Some examples of mathematical models based on 
simplified configuration of human body are: Gagge’s 
tow mode model (core and shell), Wyndham and 
yamamoto’s tree part model. In this study, an adaptive 
model was considered so that the thermal dynamic 
properties of the premature infant were evaluated using 
adaptive system identification. This technique is very 
important to update the parameters model that depend 
on infant related parameters such size maturity level, 
metabolic factor, maturity of skin body development 
also for changing incubator characteristics like single 
wall, double wall. In the figures we show the 
importance of the adaptive technique when a change is 
made on the structure of the model. The IAGPC has 
succeeded to maintain stability and reduce the 
fluctuation but not in the case of the GPC.  
 Comparisons among these three controllers applied 
to the incubator system are summarized. Table 1 
demonstrate that the IAGPC is superior and more 
appropriate than the other controller 
 

 
 
Fig. 5: Structure of the IAGPC 

 
(a) 

 

 
(b) 

 

Fig. 6: Response of the incubator heating system 
controlled by ON-Off  controller 

 

 
(a) 
 

 
(b) 

 
Fig. 7: Response of the incubator heating system 

controlled by PID and IAGPC controller 
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Fig. 8: Response of incubator the heating system 
controlled by GPC controller with a change 
made on the structure of the model 

 

 
 

Fig. 9: Response of incubator heating system 
controlled by IAGPC controller with a change 
made on the structure of the model 

 
Table 1: Comparison among IAGPC, PID and on-off 
Controller  On-off  PID  IAGPC 
Tuning effort  None  Considerable  None 
Response speed  Slow  slow  Fastest 
Offset band  very large  large  negligible 
On-off cycling  Frequent  None  None 
Requirement of  
adaptive system  No  No  Yes 

 
CONCLUSION 

 
 This study focused on the identification and control 
of an incubator for newborns. In the first part we 
presented the system identification that achieved to 
collect relevant data and to implement a different 
algorithm of control. After that an adaptive system 
identification was used to determine a model of the 
incubator. Experimental results show that this model 
coincide well with the measurement data. At the 
command, we opted for IAGPC control.  
The results of simulation and implementations in real 
time of the incubator were presented and interpreted. 
A comparative study was made between IAGPC PID 
and ON-OFF. Simulation results demonstrate that the 
IAGPC is superior and more appropriate than the 
other controllers. 
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