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Abstract: Problem statement: Many modern structures are made from thin shells. Design of these 
elements depends to a large extent on their buckling behavior which is hugely affected by the initial 
geometric imperfections. Approach: For axially compressed isotropic circular cylindrical shells, 
axisymmetric localized geometric imperfections were found to reduce severely the buckling strength.  
Among various axisymmetric shapes of localized defects that were investigated, the entering triangular 
form was recognized to yield the most adverse case. Since multiple localized defects may be present in 
the same shell structure and interact, studying their mutual effect on the buckling load is of great 
importance for shell design. Results: In this study, the effect of two interacting entering triangular 
localized axisymmetric initial geometric imperfections on shell buckling strength under uniform axial 
compression was modeled by means of the finite element method. A special software package which 
was dedicated to buckling analysis of quasi axisymmetric shells was used in order to compute the 
buckling load either via the linear Euler buckling analysis or through the full non linear iterative 
procedure.  A set of five factors including shell aspect ratios, defect characteristics and the distance 
separating the localized initial geometric imperfections had been found to govern the buckling 
problem. A statistical approach based on the Taguchi method was used then to study their relative 
influence on the buckling load reduction. It was shown by comparison with the single imperfection 
case that further diminution of the critical load was obtained. Conclusion/Recommendations: In the 
range of investigated parameters, the distance separating the localized geometric imperfections and 
imperfection wavelength were found to yield major influences on the critical load. Further studies must 
be performed in order to assess shell buckling strength in the presence of more than two defects and to 
state the relative influence of the intervening factors. 
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INTRODUCTION 
 
 Thin shells are used in many fields such as 
structural elements (silos, tank). Whatever the 
manufacturing process used for this type of structures, 
the final geometry is never perfect. Defects affecting 
the shell initial form known as geometric imperfections 
disturb the ideal desired shell geometry. Control of 
manufacturing processes of shells and their 
optimization makes it certainly possible today to 
decrease these imperfections, but they could never be 
completely eliminated since, even if at first guess the 

geometry seems to be perfect, precise measurements 
enable always to detect defects having in general a 
magnitude of the same scale order than shell thickness. 
 During service life, shell structures may be 
subjected to various kind of loading, such as axial 
compression, external/internal pressure, flexure or 
torsion. For thin cylindrical shells under uniform axial 
compression, the buckling strength constitutes always 
the most adverse design issue. Calculation of the 
buckling load as it could be affected by the presence of 
various kinds of initial geometric imperfections 
represents hence a crucial task. The pursued objective is 
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to know how to perform shell structural design with 
pertinent and relevant margins of safety.  
 Several studies have been reported in the literature 
which deals with the effect of imperfections on strength 
buckling of thin shell structures. Arbocz and Babcock 
(1969) have studied experimentally buckling of 
cylindrical shells subjected to general imperfections. 
They have shown that a huge reduction of the buckling 
critical load could be obtained. Koiter (1982) has given 
a review study about the effect of geometric 
imperfections on shell buckling strength. Other 
extensive investigations have been achieved in the 
particular field of shell buckling as it could be 
influenced by initial geometric imperfections: Koiter 
(1982); Yamaki (1984); Arbocz (1987); Bushnell 
(1989); Godoy (1993) and Combescure and Galletly 
(1999). They have dealt with the effect of both 
distributed and/or localized imperfections on reduction 
of the buckling load.  
 All the previous literature agrees on the fact that 
imperfections reduce drastically the buckling load of 
elastic cylindrical shells when subjected to axial 
compression. The obtained reduction depends however 
on the nature of initial geometric imperfections that are 
present in the shell structure. It has been found also that 
reduction of the buckling load is, in general, more 
severe in case of distributed imperfections than for 
localized ones.  
 Imperfections for which maximum reduction of the 
buckling load is obtained could be artificial and purely 
theoretical like for instance the well known generalized 
Koiter imperfection: Koiter (1982). They might hence 
never be encountered in practice in case of real shells. 
Therefore, modern investigation in the filed of shell 
buckling has been motivated largely by the analysis of 
buckling strength in the presence of typical 
imperfections obtained from modal analysis of 
measured data or by considering realistic imperfection 
shapes such as those resulting from welding operations 
performed during assembling of shell parts.  
 Steel silos and tanks are constructed from plates 
which are rolled to obtain the correct curvature and 
subsequently welded together to form strakes. The 
strakes are brought together then to assemble by 
welding the complete shell structure. At circumferential 
welds localized geometric imperfections develop. The 
welding profile can vary from one shell to another but a 
common feature of welds is that their geometry can be 
characterized by a small number of parameters which 
are associated to the amplitude and wavelength of weld 
defects. Measurements have revealed that mostly 
axisymmetric imperfections occur in shell structures 
assembled by welding, Ding et al. (1996). 

Circumferential weld-induced imperfections were 
found to have a great influence on buckling of thin-
walled cylindrical shell structures. Hutchinson et al. 
(1971); Amazigo and Budianski (1972) and Gusic et al. 
(2000) investigated localized axisymmetric 
imperfections and have shown that a single 
axisymmetric imperfection is sufficient to yield large 
effect on buckling strength of thin shells.  
 Combining shell theory with actual field 
imperfection measurements, Pircher et al. (2001) have 
found that three parameters governed the shape of the 
surveyed weld imperfections: the amplitude (depth), the 
wavelength (width) and the roundness. This last has 
been found to have small influence in comparison with 
the two first. 
 Using an analytical approach which is based on 
Arbocz equations, Arbocz (1987) and Khamlichi et al. 
(2004) have considered a parabolic localized 
imperfection and have obtained large reduction of the 
buckling load for thin axisymmetric cylindrical shell 
under uniform axial compression. Using finite element 
modeling of shell buckling Mathon and Limam (2006) 
has compared the relative influence of several localized 
imperfections on reduction of the buckling load of 
shells subjected to axial compression or to flexure. He 
has shown that a triangular imperfection shape has the 
most severe effect on buckling strength.  
 Considering the combined effect resulting from 
localized geometric imperfections and residual stresses 
Hübner et al. (2006) has recently investigated the case 
of large steel cylinders with patterned welds.  
 In almost all the previous study only single 
geometric imperfections were considered. The objective 
of this study is to investigate how two interacting 
localized imperfections would affect the shell buckling 
strength. The localized geometric imperfections 
considered are assumed to have an entering triangular 
form. It was found by Mathon and Limam (2006) that 
the entering configuration (peak of the geometric 
imperfection is towards the shell axis of symmetry) 
yields the most adverse case as to buckling strength 
reduction in comparison with the outgoing 
configuration (peak of the geometric imperfection is 
outwards the shell axis of symmetry). The triangular 
geometric imperfection has a shape which can be 
characterized by only tow parameters: The amplitude 
and the width denoted also wavelength.  
 Investigation of the relative effect of the 
intervening factors on the shell buckling load is 
performed following two stages. At first, the triangular 
geometric imperfection is considered alone and then in 
the situation where two defects having this form are 
interacting. In this second situation, the distance 
separating the two defects is an additional parameter. To 
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these three parameters one should add the shell aspect 
parameters: Radius over thickness and length over 
thickness. Thin axisymmetric cylindrical shells made of 
homogeneous and isotropic elastic material are 
considered. They are assumed to deform under a purely 
axisymmetric strain state when they are subjected to 
axially uniform compressive loads.  
 The objective pursued is to quantify the relative 
influence of factors. This is performed in order to guess 
which factor would be preferably to act on in order to 
enhance the shell buckling resistance.  
 In order to limit the total number of simulations, a 
design of experiment method using Taguchi (1986) 
approach is applied. Three levels for each of the five 
intervening factors have been selected. 
 

MATERIALS AND METHODS 
 
 Shell equations corresponding to Sanders model 
and incorporating the effect of initial imperfections, 
Markus (1988), are used to analyze the effect of initial 
geometric imperfections on shell buckling strength for 
the particular case of thin circular cylindrical shells 
subjected to quasi-static uniform compressive loads. A 
variant of this model has been used by Combescure and 
Galletly (1999) in order to perform finite element 
modeling of shell buckling. Relevant modeling of 
geometrically imperfect shell equations has then been 
carried out by this author who has developed Stanlax 
software package (called earlier INCA). Stanlax is based 
on an analytical expansion in terms of the circumferential 
wave number and finite element modeling of axial 
dependant quantities. The initial imperfections are 
included in shell model formulation under the 
assumption of small perturbations to the shell geometry. 
 This software was validated by comparison of the 
obtained bulking results with those produced by other 
commercial finite element buckling software.  
 For cylindrical axisymmetric shells undergoing 
axial compression a special element designated Coque 
was developed. It is used in the following in order to 
model the imperfect axisymmetric cylindrical shell 
having one or two localized geometric imperfections. 
Stanlax offers either a linear Euler buckling analysis 
mode or a full non linear iterative computation of the 
buckling load. For shells under axial compression, it 
was shown that a linear Euler calculus is sufficient. 
 The shell material is linear elastic having Young’s 
modulus E and Poisson’s ratio and υ. The defects are 
localized in the median zone of the shell length and 
sufficiently far from the shell ends in order to avoid any 
interaction with the boundary conditions. The selected 
boundary conditions are those corresponding to 
clamped shell ends.  

 
 
Fig. 1: Geometry of the imperfect cylindrical shell 

showing two localized defects 
 
 During the whole study the shell radius is 
maintained constant at the value R = 135 mm while the 
other parameters are varied. As shown in Fig. 1, 
parameters t, H, A designate respectively shell 
thickness, shell length, defect amplitude and distance 
separating the two localized geometric imperfections. 
 To clarify the presentation, the following non 
dimensionalized parameters obtained form the 
imperfect shell factors monitoring the shell buckling 
strength are introduced: 
 
• R/t radius to thickness ratio 
• H/R length to radius ratio 
•  A/t defect amplitude parameter 
• d/R defect interval scale to radius ratio 

•  ( )K / 1.72 Rt= λ  parameter fixing the defect wave 

length λ 
 

RESULTS 
 
 Let’s consider a single triangular geometric 
imperfection located at the mid height of the shell for 
which geometric and material properties are given by: 
R = 135 mm, H = 405 mm, t = 0.09 mm, E = 7×1010 Pa 
and υ = 0.3. In this case the classical buckling load is 
σcl = 28.233×106 Pa. When, the imperfection amplitude 
is fixed at A/t = 1 and its wavelength at λ = 15 mm, 
Fig. 2 presents the evolution of the buckling load ratio 

cr cl/σ σ  as function of the number of elements with σcr 

the actual critical load and σd the classical buckling 
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load defined as cl 2

E t

R3(1 )
σ = ×

− υ
. A total number of 

100 elements were found sufficient to guarantee FEM 
model convergence. Another study on the influence of 
the number of circumferential harmonics on FEM 
results has enabled to conclude that 25 harmonics are 
enough to guarantee convergence in the example 
considered. Other results not shown here have 
demonstrated that for all single or interacting 
imperfection cases a total number of 300 elements and 
a total number of 30 harmonics guarantee well 
convergence of the finite element model.  
 The effect of a single localized geometric 
imperfection has been investigated at first in order to 
determine the most severe defect characteristics as to 
the buckling load reduction, El Bahaoui (2007). These 
characteristics have then been used to estimate the 
effect of two interacting defects on the shell buckling 
load. In the following the single defect parameters 
corresponding to the most adverse case are referred to as 
intermediate values as indicated in Table 1. Table 1 gives 
also the list of parameters levels that have been 
considered in the analysis of shell buckling under the 
coupling situation of localized geometric imperfections: 
Lower threshold, intermediate value and higher 
threshold. 
 Based on Table 1, a parametric study regarding the 
influence of two interacting defects has been conducted. 
This was performed according to a design of 
experiment method using five factors and three levels 
for each factor such as they are given by the Taguchi 
table L27(3

13). The model so considered is hence linear 
without any interaction between factors. It has been 
shown a posteriori that there is no need to consider 
interaction between factors as the residuals are very 
small. 
 

 
 
Fig. 2: FEM convergence as function of the number of 

elements 

 Stanlax software enables for each combination 
associated to a given line of the Taguchi table L27(3

13) 
to compute the critical load. A total set of 27 numerical 
simulations have been performed. The results are given 
in Table 2.  
 Subsequently Analysis Of Variance (ANOVA) has 
been performed in order to determine the relative 
influence of each factor. 
 By imposing the shell aspect ratio R/t to be greater 
than 450 for thin shell approximation to be valid, it has 
been shown in El Bahaoui (2007) that the most 
adverse case, with regards to the shell buckling 
strength when considering a single entering triangular 
geometric imperfection, is obtained for: R/t = 450, 
H/R = 3, K = 2.5, the obtained results expressed as the 
actual critical load divided by the classical critical load 
versus the parameter A/t are presented in Fig. 3. The 
continuous curve gives the results associated to a single 
defect. The dashed curve gives in the same conditions 
of parameters values the results for two interacting 
triangular geometric imperfections.  
 
Table 1: Ranges of variation of the considered factors 
Parameter K A/t R/t H/R d/R 
Lower threshold 1 2.0 450 1 0.000 
Intermediate value 2 2.5 1000 2 0.370 
Higher threshold 3 3.0 1500 3 0.741 

 
Table 2: Simulation data layout according to Taguchi L27(313) 

orthogonal array 
Simulation 
number A/t d/R K R/t H/R σcr/σcl 
1 2.0 0.000 1 450 1 0.287 
2 2.0 0.000 2 1000 2 0.222 
3 2.0 0.000 3 1500 3 0.213 
4 2.0 0.370 1 1000 3 0.240 
5 2.0 0.370 2 1500 1 0.247 
6 2.0 0.370 3 450 2 0.188 
7 2.0 0.741 1 1500 2 0.229 
8 2.0 0.741 2 450 3 0.261 
9 2.0 0.741 3 1000 1 0.809 
10 2.5 0.000 1 1000 1 0.254 
11 2.5 0.000 2 1500 1 0.192 
12 2.5 0.000 3 450 3 0.185 
13 2.5 0.370 1 1500 3 0.293 
14 2.5 0.370 2 450 1 0.371 
15 2.5 0.370 3 1000 2 0.733 
16 2.5 0.741 1 450 2 0.355 
17 2.5 0.741 2 1000 3 0.184 
18 2.5 0.741 3 1500 1 0.686 
19 3.0 0.000 1 1500 1 0.223 
20 3.0 0.000 2 450 2 0.165 
21 3.0 0.000 3 1000 3 0.166 
22 3.0 0.370 1 450 3 0.574 
23 3.0 0.370 2 1000 1 0.300 
24 3.0 0.370 3 1500 2 0.135 
25 3.0 0.741 1 1000 2 0.733 
26 3.0 0.741 2 1500 3 0.172 
27 3.0 0.741 3 450 1 0.619 
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Fig. 3: Comparison between a single defect and two 

interacting defects 
 

 
 
Fig. 4: Multifactor ANOVA diagram performed on the 

five factors 
 
  The effect of two interacting geometric 
imperfections is not very important when the parameter 
A/t is small. But, when A/t increases (A/t>1) the two 
geometric imperfection configuration yield an obvious 
reduction of the shell buckling strength as compared 
with the single geometric imperfection effect. The most 
adverse reduction of the shell buckling load σcr/σcl 
passes from 0.20 in the case of a single defect to only 
0.16 in the case of two interacting defects. 
 Figure 4 presents the obtained ANOVA diagram 
performed on simulation results as given in Table 2. 
One can notice that the relative distance between the 
two localized defects d/R gives the lowest probability 
which is equal to 1.91%. This percentage is well below 
the other percentages associated to the other remaining 
parameters of the problem: A/t (79.69%), K (7.02%), 
R/t (18.54%) and H/R (9.81%). This signifies that, in 
the range of parameters values investigated here when 
considering the situation of two coupled defects, the 
relative distance between the two geometric 
imperfections is the most important parameter. It is 
followed by the geometric imperfection wavelength and 
by the shell aspect ratios. The defect amplitude has the 
lowest influence on shell buckling loads. 

 Regarding the intrinsic influence of the geometric 
imperfection amplitude, it is well known that this 
parameter monitors to a large extent the shell buckling 
strength as it is shown for example in Fig. 3 in the 
range A/t ∈ [0,3]. But, in the range of parameters 
values considered here A/t ∈ [2,3] this parameter has 
only a reduced influence as one could notice that form 
the plateau present in the buckling curves, Fig. 3.  
 According to the multifactor analysis of variance 
ANOVA, on can verify that the method of Taguchi 
which has been applied here without taking into 
account interaction between factors is well justified 
since the residuals are very small (not exceeding 8%). 
 

DISCUSSION 
 
 Studying the buckling load for the case of a single 
triangular entering geometric imperfection, as function 
of wavelength and amplitude parameters shows always 
that there are only small effects associated to 
parameters H/R and R/t in the range of thin shells. It 
had been shown also that the wavelength K = 2.5 yields 
the most adverse case, El Bahaoui (2007). Fixing the 
imperfection wavelength at this value, the most 
important parameter left in case of a single geometric 
initial imperfection is the imperfection amplitude. Its 
effect stabilizes however in the most dangerous interval 
of amplitudes A/t ∈ [2, 3] as the results show in general 
the existence of a plateau in the curve giving the 
buckling load  σcr/σcl  as function of A/t.  
 Studying the buckling load for the case of two 
triangular entering geometric imperfections, as function 
of the above parameters plus the distance separating the 
localized defects has shown the same conclusions 
regarding the effects of shell ratio parameters, the 
imperfection amplitude and wavelength. This gives 
details why it is important to analyze effect of 
parameter d on the buckling strength within the worst 
interval of amplitudes A/t ∈ [2,3]. The pursued 
objective is to help from a practical point of view 
determining the ideal height for welding strakes which 
allows maximizing the bulking strength of shell 
assembly.  
 Fixing for instance the parameters: R = 135 mm, 
A/t = 2, K = 2.5, R/t = 450, H/R = 3 and varying the 
distance separating the two localized imperfections 
from d = 50-150 mm increases the reduced buckling 
load from 0.17-0.21.  The gain is significant and can 
even be higher for other values of parameters.  

To assess these results further parametric studies are 
needed. Investigating the effect of more than two 
defects and considering complete ranges of parameters 
will be very useful.  
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CONCLUSION 
 
 Numerical simulations based on the finite element 
method have been performed in order to quantify shell 
buckling load reduction in the presence of localized 
defects. Elastic thin cylindrical shells subjected to axial 
compression and having one or two axisymmetric 
defects of entering triangular form have been analyzed. 
A set of five factors intervening in the problem have 
been considered. A parametric study according to 
Taguchi method of design of experiment has then been 
performed in order to determine their relative influence 
on the shell buckling strength.  
 It has been shown that two interacting defects 
could yield further reduction of the critical load in 
comparison with the single defect case. In the range of 
parameters investigated, the distance separating the two 
triangular geometric defects has been found to have the 
major influence on critical load reduction. It is followed 
by the defect wavelength and by the shell aspect ratios. 
The defect amplitude has the lowest influence on shell 
buckling loads. 
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