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Abstract: Problem statement: In the area of globalization the degree of comijoetitn the market
increased and many companies attempted to mantegattta products efficiently to overcome the
challenges facedApproach: Mixed model assembly line was able to provide cardus flow of
material and flexibility with regard to model changrhe problem under study attempted to describe
the mathematical programming limitation for minimig the overall make-span and balancing
objective for set of parallel lineResults: A proposed mixed-integer model only able to find thest

job sequence in each line to meet the problem thgscfor the given number of job allotted to each
line. Hence using the proposed mathematical maatelafge size problem was time consuming and
inefficient as so many job allocation values shamédchecked. This study presented an intelligence
based genetic algorithm approach to optimize thesidered problem objectives through reducing the
problem complexity. A heuristic algorithm was irdtwed to generate the initial population for
intelligence based genetic algorithm. Then, ittethrto find the best sequence of jobs for each line
based on the generated population by heuristicritthgo. By this means, intelligence based genetic
algorithm only concentrated on those initial popioles that produce better solutions instead of
probing the entire search spac€onclusion/Recommendations: The results obtained from
intelligence based genetic algorithm were used rasndial point for fine-tuning by simulated
annealing to increase the quality of solution. tdes to check the capability of proposed algorithm,
several experimentations on the set of problem®wlene. As the total objective values in most of
problems could not be improved by simulated alfamitit proved the well performing of proposed
intelligence based genetic algorithm in reachirgnbar optimal solutions.

Key words: Intelligent based genetic algorithm, simulatedesiimg, mixed model assembly line

INTRODUCTION mechanism and natural genetic. The population is
composed of a collection of chromosomes which each
Evolutionary computing is a research area withinstring is encoded the problem solution as a fikitegth
computer science that used for solving combindtoriaof gens. The entire evolution process works based o
optimization  and complex problems which they natural mechanism. Evolutionary computing algorihm
perform base on principles of generic populatiosdo usually reach to the good solutions in the reasenab
heuristic techniques (Eiben and Smith, 2003). Wih  amount of time though the achieved solution can be
emergence of meta-heuristic algorithms in receatsje local or global optimum. A two-stage flow shop
s0 many complex problems have been studied angroblems is considered by Johnson (1954) and the
solved by metaheuristic search techniques suchnas Aproposed heuristic algorithm was developed to
colony optimization, Tabu Search, Genetic Algorithmminimize the completion time. By increasing the
and Simulated Annealing have been employed to deaomplexity of practical problems in real world,
with  complex scheduling problems. Many Meta- sequence-dependent setup times become one of the
heuristic algorithms were applied to overcome themost favored assumptions in the area of scheduling
complexity of sequencing problems in assembly linesesearches (Naderigt al. 2008). A mixed integer
problems. Genetic algorithm is introduced by Goldbe programming model is developed by Wagner which
(1989) as it works based on the procedure of niaturaminimizes the makespan in permutation flow shop
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(Fr/permu/G,,) with an arbitrary number of machines. understanding of research problem and an inteltigen
This formulation focuses on minimizing the totaleid based genetic algorithm is applied to overcome the
time on the last machine which is associated withproblem complexity. A numerical example is illust
minimizing the total idle time on the last machinein the following. Conclusion and future researcle ar
(Naderi, 2002). A comparison of two metaheuristicpresented in the last part.
search in flow-line manufacturing cell was done by
(Skorin-Kapov and Vakharia, 1993). The problem MATERIALSAND METHODS
focuses on sequencing the part families with simila
setup time and the heuristic search techniques was Typically, a mixed model assembly line is
developed based on Tabu search. The results pneve tequipped with flexible workstations which are capab
outperforming of developed search techniques irPf producing variety of product models similar in
comparison to previous simulated annealing. A hybri product characteristics continuously and conculyent
Simulated Annealing and Tabu search is introduged b(Groover, 2001). The problem under study includes a
(Lin and Ying, 2009) for scheduling the non- number of parallel mixed-model assembly lines and
permutation flowshop problems. The objective €ach line consists of number of workstations wizich
considered in this problem was focus on optimizimg ~ capable of serving any job. A workstation in anyeli
make-span time for non-permutation flowshopshould be setup for the new materials requiremebet
scheduling. The performance of hybrid searchable to serve the new set of products. Initial getone
algorithm was compared to several metaheuristids essential for the first job of sequence and ghaver
algorithms such as Tabu Search, ant colonyime is required to change the settings betwees job
optimization and simulated annealing and the resultthe same line. The following assumptions are
confirm the well performance of hybrid approach. considered in this research: All the assembly lines
perform assembly operation independently. The
Problem statement: The problem under study attempts workstation time for every single job at all workbns
to describe the mathematical programming limitationare specified. Once the job allocated to any ljobs
for solving set of parallel lines. A mixed-integmodel  are not allowed to shift to other assembly lines.liNe
was developed by Wagner (Pinedo, 2002) to find thehould be left without job assignment. Each assgmbl
best job sequence that minimize the make-span for kne represents type of flow shop system and the
single line. The number of jobs assigned to eauh i  workstations representative of involved machinethén
predetermined for a single line problem, whiledet of  flow shop system and in a larger prospect, the ahol
parallel lines different number of jobs can be gssidl  System likes parallel machine scheduling problems.
to each line that minimizes the overall make-sparet Each assembly line acts as flow line system in Wwhic
of system so the mathematical model should bdéhe overall make-spam for set of parallel lines is
formulated for different values of job allocatedeteery ~ determined by the longest completion of line so
single line. Meanwhile this study presented anminimizing the completion time of all lines diregtl
intelligence based search approach to addressothe jeffect on overall make span of system. Model diagra
allocation problem for parallel mixed-model assgmbl of problem under study is illustrated in Fig. 1.
line to minimize the overall makespan and alsorzda
the lines in way that all lines have almost equal

processing time. A simple evolutionary based - Il set up e assembly fine 1
algorithms like GA, SA or etc also faced with ;o forined
difficulties as there is no guaranty that which —— / e £ V% /7N
: H H . . . Tobi | ! between jobs Jobi Jobj Jobk Tobn
configuration of job allocation provides best smntso
an intelligence based genetic algorithm is develajpe Sl il et p timg
or line 2

Cmax; Make-span

decrease the problem complexity through providing |*°*

some degree of proficiency in selecting the poaénti ‘

This study is organized as follows: A descriptioh o | = |

problem under study is provided to clarify the peofss N) \\ i et

assumptions and the mathematical programming mode time for line L

for problem under study is described. The compjexdt

problem under study is discussed to demonstrat€ig. 1: Model diagram of parallel lines
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Mathematical programming for job allocation: The

Sk=0;k=2 (14)

proposed mixed-integer programming model is built
based on flow shop model which is developed bwv=0, I>0
Wagner (Pinedo, 2002) and it is expanded to conside

the effect of initial setup time and sequential rife
over time for multiple lines. The mathematic foranig
as follow:

L-1 L

Min {(Max{c max }) +> > Bek} Q)
e=lk=e+t1
Subject to:
m-1 n k-1
Idletimg = > (X, *p))+ >l ;L=1,...,L (2
i=1 j=1 =1
Kk-1n n
Setup =33 > (G+ $)70% ) 0f, ) 3
k=1 i=1 j#i=1 ‘ ! ( )
=1,...L
n k\
Process=) > X, *B iF 1.l (4)
EPT=
Cmax = Setup+ Idle timg+Process| =1,...L (5)
L
Bo= X |T.-Te=1..L-1 (6)
k=e+1
n k\
To=2 2 X ik =heL 7)
=k =1
SX,, =Lk =Lk =1L ®)
=1
k\
2 X, SLi=ln =1L 9)
K =1
Lok
DX, =Li=1..n (10)
L=l =1
Ii,k‘,l +;Xi,k, +1,|*PU +Wi,k, +1,1 _Wi,k, | ‘;Xj,k‘ ,|*Pi+1-i (11)
iy, Z0K =1k - Li= Lem 1E 1L
Will=0;i=1,...m-1,1=1,..L (12)
L =0;k=1, ... ... n-1,1=1,..L (13)
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Xiu = If job j is the kth job in the sequence in line
L

lia = |Ideal time on machine i between the
processing of job in the kth and (k+1)th
position in assembly line L

Wiy = Waiting time of the job in the kth position
in between machine i and i+1 in the Ith
assembly line

m = Number of workstations in assembly line

n = Number of jobs in flow shop system

Sk = Initial setup time for job i in the kth
position of job sequence

G = Change over time between job i and j

Idle timg = Total idle time at the last workstation for
Ith assembly line.

Setup = Total setup time for Ith assembly line

Cmax = Completion time for Ith assembly line

Process = Processing time at the last workstation of
Ith assembly line

Bex = Total absolute difference among process
time of line e and rest of lines

t; = Total Process time for job j

T = Total process time of Ith assembly line

K, = Number of jobs allocated to Ith assembly
line

L = Number of assembly line

Pi = Process time of job j at workstation i

Prmj = Process time of job j at workstation m

The first term of objective function (1) attemps
minimize the overall make-span of this system is by
minimizing the longest completion time of lines.eTh
second term of objective function attempts to bedan
workload among all assembly lines by consideririg al
jobs’ process time for every single job. Minimizittge
absolute value of total differences in process tirhall
assembly lines is the procedure that is used for
achieving this goal.

Constraint explanation: Minimizing the makespan
time in (F/permu/G,sy) is associated with minimizing
the total idle time on the last workstation. Thess
set of Equation 2 is used to obtain the minimunaltot
idle time at the last workstation for every single
assembly line. Equation 3 calculates the totalpsétoe

by summing the initial setup time and the changerov
time between the different jobs in sequence fotheac
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assembly line. It is obvious that initial setup ¢ims  N.= Set of configurations for job allocation to
only considered for the first job of sequence. Eiquad assembly lines
determines the processing time at the last woikstat N = Number of jobs
for every assembly line. Generally in the simplewfl
shop system, the completion time is achieved by It should be noted that the different number @isjo
summing the process time and idle time on the lastan be allocated to each line so the total periomsit
workstation of the corresponding line. Equation 5for this problem is obtained by summing the all
calculates the total completion time for every &ng possible configurations of job allocation. Due to
assembly line by adding job’s initial setup timedan massive permutations of job allocation, intelligenc
change over time to the flow time of the corresppgd based genetic algorithm is applied to probe thetwmol
line. Equation 6 helps to find the difference inato space to find the near optimal solutions through
process time for multiple lines by computing thereducing searching space by choosing the set of
absolute difference in total process time for linespotential members of Nthat provides best job
Equation 7 is used to attain the process time ¥erye allocation and sequence that meet both problem
single line which is determined by summing all jhles  objectives. In this case, the problem complexity is
allocated to the assembly lindhe total process time tended to n!.
for every single assembly line is attained by sungmi
the process times of all the jobs allocated to thaProblem solving procedure: All jobs involved in the
assembly line. Constraint (8) is used to dedichtiplas  system can be assigned to set of parallel asselinkly
to the available positions in which each job iscpthat in different way in which the total summation of al
the unique position of that assembly line. Constréd)  allocated jobs are fixed. This process provideterint
ensures that each job can be placed in only onteeof configuration of job allocation which increases the
available positions of sequence for each assenmy | complexity of parallel mixed assembly line problesas
Constraint (10) ensures that from all the availabledifferent number of jobs can be allocated to edus, |
positions in the system, each job must be proceissed while only one of them can provides potential ditwa
only one of all available positions of sequencelse T that may conduce to the best sequence of allogaled
last set of constraints 11 show the inevitableti@mia to meet the presumed objectives. The proposed mixed
between the idle time and waiting time in eachinteger model gives the optimum solution for theegi
assembly line. It represents the logical concept ofonfiguration of job allocation for each line while
involve variables in flow shop system. Equation 12checking all the possible value of kor large size
reveals that the waiting time for the first job & problems requires huge problem formulation and
sequence is always equal to zero for any assernmgly | massive computation by exact methods. A simple
Equation 13 shows that the first workstation isafe  genetic algorithm also faces with difficulties aere is
ready to process the first job of a sequence in ango guaranty that which configuration of job alldoat
assembly line. Equation 14 illustrates that theidhi provides the best solution, because it's directly
setup time is only considered for the first job of associated with job’s process time so all confiara
sequence and for the rest of jobs is zero. of job allocation should be checked. As can be seen
from Eq. 15, this value can dramatically increases
Complexity theory: The proposed mixed-integer large size problem, so checking all the configoradiof
model is able to find the best job sequence in diaeh job allocation would be so time consuming. In ttase,
to meet the problem objectives for a predeterminedn intelligence based evolutionary algorithm shdugd
value of k specifying the best value of that provides applied to solve the problem and find the solutions
opportunity for mixed integer model to be solved byefficient way. In a usual genetic algorithm, thndiss
exact methods are quite time consuming and ineffici function is a particular function which quantifiéise
while the problem should be formulated for all pbles  quality of generated chromosome and these functions
value of k The total permutation of job allocation to are usually predetermined and specified with regard

set of parallel lines can be computed as follows: objectives of the corresponding problem and they ar
usually expressed in terms of mathematical equation
N, even set of rules. As in each configuration of job
Totalpermutatiors ) r (15)  allocation, several permutations of job allocatiamd

o job sequence are available so in the proposed

intelligence based genetic algorithm, GA-2 is exedu
Where: as a cost evaluation function to find the minimum
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attainable cost for the corresponding chromosome. IThe chromosomes are sorted according to their cost
this regard, the fitness function for GA-1 is not avalue and proceed to the genetic operators in (HA-1
specified function but the best result that can bdor further evolution. In this process, GA-1 attdmfo
achieved by GA-2 is considered as a related cdst. T find the potential configuration of job allocatidhat
total configurations of job allocation are obtaineg has higher probability for better job allocationdan

solving the Eg. 16: sequencing. Meanwhile this probability is compubed
GA-2 through finding the optimum job allocation and
L+, +...+l, =n job sequence that optimize the presumed objective
{|12|22__.2|1 |, Olnteger (16)  ‘functions. This process continues until the optimum

value is achieved. In the final step, a simulated
annealing is used to fine-tune the best resultaiodd
y intelligence based genetic algorithm to impréive
uality of solutions. GA-1 aims to intelligently dease
the N, and chose those configurations of job allocation
that there is a higher possibility of optimum salnt It
lets the GA-2 to mainly focus on specific valueMf
which is directly conduced to a better near optimal
solution through reducing the search space. The

Where: b

I, = Represents number of jobs assigns to the Itk(11
assembly line

n = Shows the total number of jobs in the system

The best configuration of job allocationdisectly
depends on jobs’ process time so all should bekeltec

to find the best solution. In order to tackle the . . , -
. . . ; flowchart of intelligence based GA and fine-tuniisg
complexity of this problem, an intelligence basedshown in Fig. 2

O i, PoRoses WL Dovees 59 s mentoned in problem sohing secton, GA-
9 9 fgom aims to find the best configuration of job allocatiby

job allocation and let the GA-2 to find the bests) o ¢, finding the optimum job sequence that
sequence of a_IIocatgd job ba;ed on the given JOlﬁwinimizes the objective function. The possible solu
allocation configuration to avoid checking all the for Equation 16 can be set of integer value betwietm
potentlal S.OIUt.'()n which is S0 time consuming. ASn as it satisfies the condition. A chromosome fé-G
illustrated in Fig. 2, a population of potentialig@n is a string of length L where it is composed of som

which can meet the CO”d'“O'_” (Eq. 16) is ranOIOmlyinteger values as the total summation of distritjisds
generated. The cost computation for each chromosome

is done by GA-2 through finding the best sequerfce oimong lines is equal to total number of jobs inteys

jobs which is accompanied with the best job alioca The\(/:vhhrggf)some for GA-1 is shown in Fig. 3.

The best sequence of jobs are g
Population of different computed based on the given SA to fine-tune the obtained solution

configuration of job allocation configuration by intelligence GA L

Chromosome 1 Chromosome of jobs Tnitial point E P| =n (17)
1=1

[— Rt !

Chromosome n

P, = Represents number of jobs assigns to the Ith
ﬁ* assembly line
Tournament selection

n = Shows the total number of jobs in the system

Bt resul . Example: In order to distribute 10 jobs among 4 lines,

e the chromosome can be initiated as follows: [4,31]
Leon or[5,2,2 1]or (3,3, 2 2]
= e s g S S e Initial population generation: In order to generate the

initial population for GA-1, a simple heuristic algthm
is proposedo generate possible solutions for different
configuration of job allocation which as follows:

Fig. 2: Diagram of intelligence based genetic athan
and fine-tuning process

Po| Po| P | woeeeee R + The following Linear Programming (LP) models
capable of determining the upper and lower bounds
Fig. 3: Chromosomes of integer numbers for GA-1 of possible solutions for distributing n jobs amdng
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assembly line. Lpl aims to maximize thees A set of new generated points provide an initial
maximum value of any involved variables as much  population for GA-1 to start the intelligence based
as possible so it only force one of the variabtes t genetic algorithm

reach to the maximum while the rest of variables ) . ) ]

get the minimum value. The value obtained form ~ An example is provided to clarify the implemented

LP1 is called upper bound for job allocation which techniques for generating new points. Twenty joigs a
guaranty that no lines is left without job assigned to 4 lines in which each line must setve a

I, +1,+1 4 ,=20
LP1 I, 21,21,2l,1 Onteger
Max{max x}} ; 1= 1.1
Lo The solution obtained by LP1 and LP2 are
;Xl =n (18) illustrated as follows:
X 2Xgq; =1L LP1 = Upper bound = = 17, %=1, %=1, % = 1]
2kl =1,..L LP2 = Lower bound = [y=5, % =5, =5, y; = 5]
x, OInteger

For a givera = 0.3, a new generated point is
Z,=[0.3*(1)+(1-0.3)*(5)]; | = 2,...,4 then[Z=4, & =
* LP2 attempts to maximize the minimum value of4, Z, = 4] and finally z, = 20‘24:221 = 8. Meanwhile
all variables so all intend to be in a minimum ealu the new generated pointis,[Z 8, 2 =4, 4 =4, Z =
difference. The solution achieved by LP2 is called4] which is produced by linear interpolating of n-1

lower bound: variables. The first variable is not engaged in
interpolation process to keep the number of jols fi
LP2 during the whole generation process. A populatibn o
o new points can be produced by generating a random
Max{ma{ x}} 1= 1L value ofa.
L
Z_llx' =n (19)  Crossover operator: As the entire algorithm moves

forward those generated points that have minimum

2X,; | = . ) i~
Xi ‘X[*l'_l L.L value of cost function have higher probability te &
Xzl =1..L part of candidate region around the optimum pomt s
x, OInteger continuous crossover capable of producing new

offspring inside the candidate region to do further
. In order to generate new solutions, a particularevolunon as the generation moves on. Meanwhile, a

combining technique is applied to construct new S offspring can be produced while carrying the

data points within the range of upper and Iowermformation from both parents. The blending methods

point. The equation (20) and (21) are able tOfor this problem can be done by finding ways to

¢ ints wh d bit combine variable values from the two parents irge/ n
ggg;irgeentr_]ew points where andp are arbitrary variable values while keeping the jobs number fixed

during the crossover process. A single offspring

variable value comes from a combination of the n-1

Z, ={a* (X,)+@L-a)* ()1 =2, L (20) variables of two corresponding parents’ variable.
Producing new offspring can be done through
generating two different random value @& and

4 (21 g ,

g combining the selected parents. The entire crogsove

procedure is shown as follows:

L
z,=n-
=

Where:
o = Random number on the interval [0, 1] C,= B*(PL)+ @-B)*(P2)]iI= 2. L 22)
X, = Ith variable in the upper bound set
Y, = Ith variable in the lower bound set L
Z = Ith variable in the new generated point Gw=n-2a (23)
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Where: Generally an appropriate fitness function closely
B =Random number on the interval [0, 1] associates with mathematical objective functionclvhi
P1, = Ith variable in the mother chromosome is capable of computing the cost for each chrom@&som
P2 = Ith variable in the father chromosome quickly. Fitness function is used to evaluate the
C, =Ith variable in the new generated point generated chromosomes to measure the optimality of
n = Number of jobs solutions. Total objective value is computed by

summing the value of make-span time, process time
In the continuous crossover, some gens ardlifference and completion time difference. The

randomly selected to be combined while for theproposed fitness function is given by:
proposed crossover operator, the combining process
should be done for all the n-1 variables and it ban L1 L 2
seen as a main difference between ordinary contguo lel[ max{Cmax > > |T - Tkj (24)
crossover and the proposed crossover operatone=igu extiert
illustrates the proposed crossover operator for th
considered problem. Crossover operator is consildereT
as a main genetic operator in genetic algorithm S(?_k
mutation operator is not executed in GA-1.

here:

max = Completion time for Ith assembly line
= Total process time of kth assembly line
= Number of assembly lines

Those chromosomes that provide minimum make-
span time and also balance the lines are selected f
mating operation. This process continues until GA-2
finds the best job sequence and allocation for the
corresponding chromosome of GA-1. In the next step,
the second chromosome of GA-1 is selected and the
5)est attainable cost is computed through GA-2.tiAdl
computed costs for the entire population membegs ar
transferred to GA-1 for sorting operation.

GA-2 for Job allocation problem: GA-2 attempts to
allocate jobs to the assembly lines and find thet fob
sequence in order to minimize the objective fumio
As the best order of jobs provide the optimum sofyt

it falls to permutation based genetic algorithmegaty.
The chromosome is a string of length N exgh
ke ;1 =1,... L represents the number of jobs assigns t
the Ith assembly line in the"Cconfiguration of job
allocation. Figure 5 represents a chromosome ddstas
and the shows how they are assigned to the

workstations. Tournament selection: Tournament selection is a very
popular strategy that aims to imitate natural caitipa

= of specious (Michalewicz, 1996). The tournament

Parent 1 | Pt |sz | [ NS \l P'“1| selection works in the way that two individuals are

] | I randomly selected from the mating pool. The indinid
! with the highest fitness value is selected as thmev
of the tournament and the selection process cagginu
i’ \I i by selecting a new tournament group randomly il

Parent 2

N T T
Py P (REEEEE / \ P / Pa

the individuals are selected. Finally the winnereath
competition is copied to the worst chromosomes.

Offspring 1 | Camt |cm; | e N \|cm | Tournament selection is applied in both GAs as
[ Wi \ . . . L
1 i | sglegtmg mec_hamsrln. for .choosmg the best indivglua
\ il l within population. Elitism is usually used to prav¢he
Offspring 2 | Cn [Cf: | N eeeee N /"| CﬂJ loss of the current fittest member of the populatine
== == to crossover or mutation operators and keep thé bes
_ _ individual from generation to generation (Haupt and
Fig. 4: Continuous cross over operator for GA-1 Haupt, 1997). Elitsm is applied through genetic
rogramming.
DEdiCﬂ.[EdjObsm Dedicated jobs to Dedicated jobs to prog g
line 1 line 2 line L

/_\4/_\4 m Genetic parameter setting:  Genetic  Algorithm

parameter setting aims to increase the algorithm
L7 O B A R Ja | Ja performance by setting the genetic parameters by
optimal values. The initial population is composdd
set of individuals, which are generated by usinglcan
Fig. 5: Chromosome of jobs generator. The size of population for both GA-1 and
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GA-2 are fixed during all generations. Crossover isa main operator for exploring different solutions.
considered as most important genetic operator whichleighborhood search generates a new atomic steuctur
combines set of information from different by changing the candidate solution in order totvisi
chromosomes and generates new offspring whicimore potential solutions within the search spacehis
captures the both individuals information. Paniall case, two jobs are randomly swapped by generatiag t
Mapped Crossover (PMX) is employed as crossoverandom keys (Naderigt al. 2008). In order to avoid
operator in GA-2 algorithm which the cross oveerat  algorithm to reach to the local optimum, some worse
set based on initial population size. Initial pgiidn  moves might be accepted based on current temperatur
size is directly associated with providing moreeadsity  The exponential cooling scheduling is used in this
of potential solution which is varied for different research as it believed to be an appropriate gpolin
complexity of problem. The complexity of job schedule for the SA (Wang and Zheng, 2001). The
allocation problem is increasing by n! order so aninitial experiment demonstrated us that the tenpesa
appropriate level of population is required to pdev over the range 40-50 is proper for fine-tuning s
more diversity of potential solutions and discowsg and the stopping temperature is fixed at 0 whileling
premature convergence to local optimums. Thaemperature is setto 0.05.

population size for GA-2 is set to 80 with 50% obss

over rate which is used by many researchers aredtabl RESULTSAND DISCUSSION
find good solution in a reasonable amount of time
(Grefenstette, 1986). Mutation operator aims tovjoi® In order to check the efficiency of proposed

a means to prevent algorithm from rapid convergenc@rocedure, different numbers of jobs are allocateithe

or premature convergence and drive algorithm tocbea lines which each considered as a new problem that
further feasible problem space to escape from locashould be solved by intelligence based genetic
optimum. For this means swap mutation is elected a8lgorithm. There are three lines in which each ss
mutation operator. The Mutation probability is set Of two workstations. The first problem starts witte
0.02 in GA-2 algorithms which is a typical valuer fo first 10 jobs in the system and the problem comipfex
Genetic Algorithm (Leugt al. 1994). Total number of IS rising as the number of jobs increasing unticteto
generation is used as a stopping criterion in GA-2h€ maximum of 15. For each problem, upper bound

program to terminate the algorithm at 300 genenatio and onver bound is compL_Jte_d by LP1 and LP2 to
determine the range of variation for chromosomes of

Simulated annealina-fine-tuning: Simulated GA-1. Table 1 illustrates the required process tand
o g-fine 9 the amount of workload in workstations for evenygiée
annealing is able to deal with n0|sy.search spack a job. Table 2 includes the initial setup time ance
complex problems. In the annealing process, th ver time matrix for all jobs. Metaheuristic algbrns
temperature of the molten mgtal decreases .untll thgmy guaranty the local optimality so the best o
crystal is frozen. If the cooling procedure is donenat provides minimum objective value is selectecha
quickly some structural irregularities will happenthe  near optimal solution. Different experiments arenelo
atomic structure. The algorithm starts with a smallpased on different number of jobs and for each
random perturbation to the atomic structure. Ifsthi problem, the chromosome values range between the

results in the lower energy sate, the algorithm idower boundand the upper bound within the problem.
repeated by using new energy state. But if the drigh

energy state is achieved through the new atomigable 1: Job process time and workload at workstati

structure, the new state is accepted with certain Work load
probability which is depends on the history of the g Process time W1 W2
search (Winston, 2003). Simulated annealing is only 160 80 80
used to fine-tune the solution obtained by intelige 3 prd 3 1
based genetic algorithm to improve the quality ofs 240 120 120
solutions. This procedure helps to find the optimumd 700 450 250
T . . 200 100 100
solution if it was not found in previous step. Is@a 7 300 150 150
confirms the well performing of proposed search8 840 420 420
Igorithm wh i tis achieved durirg th 5 199 LA 30
algorithm when no improvement is achieved durirgy th ;, 150 75 75
fine-tuning algorithm. For each problem, the bedi | 1% %28 %88 1%8
sequence Wh_|ch is obtained by |n_te_ll_|gence_ baseq3 200 100 100
genetic algorithm is used as an initial point fori4 1500 650 850
simulated annealing. A neighborhood search is ased 15 2000 1200 800
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Table 2: Initial setup time and changeover time
J1 J2 J3 J4 J5 J6 J7 J8 J9 Jio Ji1 J12 J13 J14 Jial setup time

J1 0 12 8 7 11 13 5 20 19 16 20 20 10 25 15 40
J2 20 0 20 18 13 18 16 20 10 8 5 15 10 16 43 50
J3 19 10 0 20 10 12 7 28 15 10 5 15 20 8 56 60
J4 18 12 10 0 10 5 20 18 15 12 18 16 10 9 18 100
J5 6 9 12 9 0 20 25 13 34 23 45 13 40 26 32 140
J6 20 9 12 10 20 0 6 50 30 42 20 15 20 32 14 30
J7 20 12 10 20 30 45 0 18 10 20 35 20 20 14 19 40
J8 30 18 12 30 60 10 30 0 12 18 20 20 20 10 22 150
J9 10 15 16 20 20 30 18 45 0 24 34 33 13 16 33 30
J10 20 30 45 34 20 10 28 32 45 0 30 20 24 32 43 20
J11 25 35 40 30 20 15 25 32 25 20 0 24 42 28 13 0 12

J12 12 42 33 34 23 14 15 32 26 35 44 0 34 12 17 50
J13 12 23 34 35 42 21 23 42 34 23 43 23 0 16 20 40
J14 22 42 33 34 283 14 15 32 26 35 44 34 43 0 10 0 20

J15 55 34 29 30 80 73 43 65 39 18 20 15 11 9 0 300

Table 3: Intelligent based genetic algorithm

Selected configuration

Problem No. of job Upper bound Lower bound of jibaation Make-span Time difference Objective value
1 10 [8,1,1] [4, 3, 3] [3,4,3] 964 100 1064
2 11 [9,1,1] [4, 4, 3] [6, 2, 3] 967 40 1007
3 12 [10, 1, 1] [4,4,4] [4,3, 5] 1050 20 1070
4 13 [11, 1, 1] [5, 5, 3] [4,6, 3] 1067 20 1087
5 14 [12, 1, 1] [5, 5, 4] [6, 6, 2] 1645 20 1665
6 15 [13,1, 1] [5, 5, 5] [5, 6, 4] 2274 0 2274

Table 4: Job sequence for every single line allocation for each problem clearly prove that ¢hex

No.of job Line 1 Line 2 Line 3 no rules to determine the best configuration of job
10 2 83 7 4 6 10 5 9 allocation as it directly based on jobs procese tawen
n 5% ¢ a2t o8 ® %%, 11 though this value may dramatically change withtteli
13 13 5 1 9 3 7 4 2 B2 10 8 11 ini 1 I 1
B B e 5 LR e, changes |njobs time even V\{Ith the same numbesinf | _
15 1 14 107 6 1 5 812 4 9 13 15 3 The solution obtained by intelligence based genetic

algorithm is used as an initial point for fine-tngi

Table 5: Fine-tuning process by SA process. The solution obtained from fine-tuningcpss

No. Selected configuration Time Objective . . .
Problem of job of job allocation Make-span  diffecen value IS |I!ustrated n Table 6-_ As can be S_een from @E&ﬂ
1 10 43,3 964 100 1064 no improvement is achieved by SA in minimizing the
2 11 6,32 967 40 1007 iacti i i i i
3 2 [B43 1009 20 1029 second objective (time d_|fferences betwee_n Ilnf_rsalh
4 13 [6,4. 3] 1067 20 1087 problems. It clearly confirms that the solution ahed
5 14 66,2 1645 20 1665 by intelligence based genetic algorithm was optinasm
6 15 [6, 5, 4] 2230 0 2230 . . .
the total objective value for problem 1-4 are fixad
Table 6: Final result for job sequence for evengl line no further improvements are gained by SA. Therefore
No.ofjob Line 1 Line 2 Line 3 the intelligence based genetic algorithm is stridygh
0 A 0oy directed to the optimum solution in problem 1-4aih
12 411 12 7 3 12 6 5 18 9 objectives. Fine-tuning process helps to find bette
13 13 5 1 9 3 7 4 2 B2 10 8 11 . . . . . .
14 02 4 13 8 6 5 9 m 123 1 14 solutions in problem 3 and 6 in finding the befiay
15 7 11 1 10 2 14 4 5 18 13 6 15 3 9

sequences which results in improving the first otiye

) _ ) function (overall make-span). Although the time
Table 3 shows the result obtained by intelligentgifferences in both problem 3 and 6 are fixed,zitity
based genetic algorithm in which the total objeztralue  fine-tuning algorithm leads to a shorter make-sjpam

is computed by summing the make-span time and tim@os0 to 1009 in problem 3 and 2274 to 2230 in @bl
difference between the lines which is shown in €l g

The corresponding job sequence for each problem is
shown in Table 4. As can be seen from the restliese

is no time difference between the lines in prob&and
also this value is reach to the minimum of 20 in
problem 3, 4 and 5. The selected configurationobf |
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CONCLUSION

In this study, an intelligence based genetic
algorithm is applied to tackle the complexity of
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sequencing problem in parallel mixed-model assemblylohnson, S.M., 1954. Optimal two-and three-stage

line problems. For solving such problems by
mathematical methods the proposed multi objective
mixed-integer model should be formulated for selvera

production schedules with setup times included.
Naval Res. Logistt Q., 1. 61-68. DOI:
10.1002/nav.3800010110

configuration of job allocation which is quite time Leu, Y.Y., L.A. Matheson and L.P. Rees, 1994.

consuming and inefficient. A simple genetic aldurit
also faces difficulties due to massive search space
the proposed search technique is implemented tacesd
the problem complexity and overcome the required

Assembly line balancing using genetic algorithms
with heuristic-generated initial populations and
multiple evaluation criteria. Dec. Sci., 25: 581560
DOI: 10.1111/j.1540-5915.1994.tb01861.x

massive search space. The solving procedure @stiat Lin, S.\W. and K.C. Ying, 2009. Applying a hybrid

by generating initial population for different
configuration of job allocation. The cost evaluatifor
the involved chromosomes is done by GA-2 and then t
population is sorted according to computed cost-Z5A
tries to allocate jobs to the assembly lines ineprtb
minimize the multi objective functions. The simelat
annealing is applied to fine-tune the obtain sofutin
order to increase the quality of solutions. Theieaad
results from SA proves that proposed algorithm bkgpa
of finding the best sequence of allocated job & riost

of problems. However, there are enormous oppoitsnit
for future work of this research by engaging more
practical issues of material handling systems @eoto
feed the workstations which are widely used in many

simulated annealing and Tabu search approach to
non-permutation flowshop scheduling problems.
Int. J. Prod. Res., 47: 1411-1424DOQIl:
10.1080/00207540701484939

Michalewicz, Z., 1996. Genetic Algorithms + Data

Structures = Evolution Programs. 3rd Edn.,
Springer, ISBN: 10: 3540606769, pp: 387.

Naderi, B., M. Zandieh, A. Khaleghi Ghoshe Balagh

and V. Roshanaei, 2008. An improved simulated
annealing for hybrid flowshops with sequence-
dependent setup and transportation times to
minimize total completion time and total tardiness.
Expert Syst. With Appli., 36: 9625-9633. DOI:
10.1016/J.ESWA.2008.09.063

industry units. Meanwhile some new parameters an#®inedo, M.L., 2002. Scheduling: Theory, Algorithms

constraints are required to
properties. Other systematic local search algostican

represent the system and Systems. Prentice Hall, Upper Saddle River,

New Jersey, pp: 586.

be developed to reduce the problem complexity dk weSkorin-Kapov, J. and A.J. Vakharia, 1993. Scheduéin

as increasing the solution quality.
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