
American J. of Engineering and Applied Sciences 2 (4): 789-795, 2009
ISSN 1941-7020
© 2009 Science Publications

789

Evolutionary Algorithm Definition

Nada M.A. AL-Salami

Department of Management Information Systems, Faculty of Economic and Business,
Al Zaytoonah University of Jordan, Amman, Jordan

Abstract: Problem statement: Most resent evolutionary algorithms work under weak theoretical
basis and thus, they are computationally expensive. Approach: This study discussed the use of new
evolutionary algorithm for automatic programming, based on theoretical definitions of program
behaviors. Evolutionary process adapted fixed and self-organized input-output specification of the
problem, to evolve good finite state machine that efficiently satisfies these specifications. Results: The
proposed algorithm enhanced evolutionary process by simultaneously solving multi-parts from the
same problem. Conclusion: The probability that the algorithm will converge to the optimal solution
was highly enhanced when decomposing the main problem into multi-part.

Key words: Evolutionary computation, genetic programming, automatic programming, system

design, self-organization system

INTRODUCTION

 Life on earth has evolved for some 3.5 billion
years. Initially only the strongest creatures survived, but
over time some creatures developed the ability to recall
past series of events and apply that knowledge towards
making intelligent decisions. The very existence of
humans is testimony to the fact that our ancestors were
able to outwit, rather than out power, those whom they
were in competition with, in other words, their response
to the threat of their environment was intellectual
adaptation. This could be regarded as the beginning of
intelligent behavior. “Intelligent behavior is a
composite ability to predict one’s environment coupled
with a translation of each prediction into a suitable
response in light of some objective”. Evolutionary
Computing is a research area within Computer Science,
which draws inspiration from the process of natural
evolution. Evolutionary computation, offers practical
advantages to the researcher facing difficult
optimization problems. These advantages are multi-
fold, including the simplicity of the approach, its robust
response to changing circumstance, its flexibility and
many other facets. The evolutionary approach can be
applied to problems where heuristic solutions are not
available or generally lead to unsatisfactory results.
Thus evolutionary computing is needed for Developing
automated problem solvers, where the most powerful
natural problem solvers are human Brain and
evolutionary process (that created the human brain).
Designing the problem solvers based on human brain
leads to the field of “neurocomputing”. While the

second one leads to evolutionary computing. The
algorithms involved in Evolutionary computing are
termed as Evolutionary Algorithms (EA). Application
of EC may includes: Bioinformatics, numerical
combinatorial optimization, system modeling and
identifications, planning and control, engineering
design, data mining, machine learning and artificial life.
In evolutionary computation, the idea of self-
modification has its origins in the ontogenetic
programming system of Spector and Stoffel[1], the
graph re-writing system of Gruau[2] and the
developmental method of evolving graphs and circuits
of Miller [3].
 In this study, we propose new evolutionary
algorithm, based on theoretical definition of system and
it’s input-output boundaries, in contrast with traditional
evolutionary methods. Then compare it to the most
recently used evolutionary algorithms.

Background: Evolutionary algorithms are ubiquitous
nowadays, having been successfully applied to
numerous problems from different domains, including
optimization, automatic programming, machine learning,
operations research, bioinformatics and social systems.
In many cases the mathematical function, which
describes the problem is not known and the values at
certain parameters are obtained from simulations. In
contrast to many other optimization techniques an
important advantage of evolutionary algorithms is they
can cope with multi-modal functions[4]. Additional
advantages are listed as follows:

Am. J. Engg. & Applied Sci., 2 (4): 789-795, 2009

790

• It is conceptually simple. The procedure may be
written as difference equation:

 x[t + 1] = s(v (x [t])) (1)

 Where:
 x[t] = The population at time t under a

representation x
 v = A random variation operator
 s = The selection operator
• It is representation independent, in contrast with

other numerical techniques, which might be
applicable for only continuous values or other
constrained sets

• It offers a framework such that it is comparably
easy to incorporate prior knowledge about the
problem. Incorporating such information focuses
the evolutionary search, yielding a more efficient
exploration of the state space of possible solutions

• Can also be combined with more traditional
optimization techniques. This may be as simple as
the use of a gradient minimization used after
primary search with an evolutionary algorithm, or
it may involve simultaneous application of other
algorithms

• The evaluation of each solution can be handled in
parallel and only selection (which requires at least
pair wise competition) requires some serial
processing

• Traditional methods of optimization are not robust
to dynamic changes in problem the environment
and often require a complete restart in order to
provide a solution (e.g., dynamic programming). In
contrast, evolutionary algorithms can be used to
adapt solutions to changing circumstance

• It has the ability to address problems for which
there are no human experts. Although human
expertise should be used when it is available, it
often proves less than adequate for automating
problem-solving routines

 However there are some disadvantages of EC
such as:

• There is no guarantee for optimum solution within

finite time
• Works under weak theoretical basis
• May need parameter tuning
• Computationally expensive

Resentally area in EC: Sub-area of the term
evolutionary computation or evolutionary algorithms
includes:

• Evolutionary Programming (EP)
• Evolution Strategies (ES)
• Genetic Algorithm (GA)
• Genetic Programming (GP)

 They all share a common conceptual base of
simulating the evolution of individual structures via
processes of selection, mutation and reproduction. The
processes depend on the perceived performance of the
individual structures as defined by the problem, Table 1.
Evolutionary programming, developed by Fogel et al.[4]
traditionally has used representations that are tailored to
the problem domain. EP is often used as an optimizer,
although it arose from the desire to generate machine
intelligence. Rechenberg and Schwefel developed
Evolutionary Strategies. The algorithm is similar to EP
in many ways. In the last few years they have had
something of a renaissance and have become more
popular, particularly in research work. However, in
practical and industrial systems, they have been
eclipsed somewhat by the success of the GA. One
reason behind the GA’s success is that its advocates are
very good at describing the algorithm in an easy to
understand and non-mathematical way.
 A genotype-phenotype mapping therefore implies
an algorithm that transforms an input string of numbers
encoding a genotype into another string of numbers that
comprises the phenotype of an individual. Both
evolutionary programming and evolutionary strategies
are known as phenotypic algorithms (physical
characteristic of the genotype like smart, beautiful,
healthy), whereas the genetic algorithm is a genotypic
algorithm (Particular set of genes in a genome).
Phenotypic Algorithms operate directly on the
parameters of the system itself, whereas genotypic
algorithms operate on strings representing the system.
In other words, the analogy in biology to Phenotypic
Algorithms is a direct change in an animal's behavior or
body and the analogy to Genotypic is a change in the
animal’s genes, which lie behind the behavior or
body.GA is implemented by having arrays of bits or
characters to represent the chromosomes. In EP there
are no such restrictions for the representation. In most
cases the representation follows from the problem. EP
typically uses an adaptive mutation operator in which
the severity of mutations is often reduced as the global
optimum is approached while GA’s use a pre-fixed
mutation operator. Among the schemes to adapt the
mutation step size, the most widely studied being the
“meta-evolutionary” technique in which the variance of
the mutation distribution is subject to mutation by a
fixed variance mutation operator that evolves along
with the solution.

Am. J. Engg. & Applied Sci., 2 (4): 789-795, 2009

791

Table 1: Comparison between different Evolutionary Algorithms
 Algorithm type Developed researcher Individual representation Operators Selection method
Evolutionary programming Phenotypic Fogel et al., 1966 [4] FSMs Mutation only Tournament
Evolutionary strategies Phenotypic Rechenberg, 1973 [4-8] Real values Mainly mutation Ranking
Genetic algorithm Genotypic Holland, 1975 [5] Bitstrings Mainly crossover Proportionate
Genetic programming Phenotypic Koza, 1992 [4][8] Expression trees Mainly crossover Proportionate

 On the other hand, when comparing evolutionary
programming to evolution strategies, one can identify
the following differences: When implemented to solve
real-valued function optimization problems, both
typically operate on the real values themselves and use
adaptive reproduction operators. EP typically uses
stochastic tournament selection while ES typically uses
deterministic selection. EP does not use crossover
operators while ES uses crossover. Some specific
advantages of genetic programming are that no analytical
knowledge is needed and still could get accurate results.
GP approach does scale with the problem size. GP does
impose restrictions on how the structure of solutions
should be formulated. There are several variants of GP,
some of them are: Linear Genetic Programming (LGP),
Gene Expression Programming (GEP), Multi Expression
Programming (MEP), Cartesian Genetic Programming
(CGP), Traceless Genetic Programming (TGP) and
Genetic Algorithm for Deriving Software (GADS).
Following we shall concentrate on CGP, since it is the
most near to our proposed method[5-8].

Cartesian genetic programming: Cartesian genetic
programming was originally developed by Miller and
Thomson[9] for the purpose of evolving digital circuits
and represents a program as a directed graph. One of
the benefits of this type of representation is the implicit
re-use of nodes in the directed graph. Originally CGP
used a program topology defined by a rectangular grid
of nodes with a user defined number of rows and
columns. In CGP, the genotype is a fixed-length
representation and consists of a list of integers which
encode the function and connections of each node in the
directed graph. The genotype is then mapped to an
indexed graph that can be executed as a program. In
CGP there are very large numbers of genotypes that
map to identical genotypes due to the presence of a
large amount of redundancy. Firstly there is node
redundancy that is caused by genes associated with
nodes that are not part of the connected graph
representing the program. Another form of redundancy
in CGP, also present in all other forms of GP is,
functional redundancy. Simon Harding and Ltd
introduce computational development using a form of
Cartesian Genetic Programming that includes self-
modification operations. One advantage of this
approach is that the system can be used to solve

computational problems[10]. The interesting
characteristic of CGP are:

• More powerful program encoding using graphs, than

using conventional GP tree-like representations, the
population of strings are of fixed length, whereas
their corresponding graphs are of variable length
depending on the number of genes in use

• Efficient evaluation derived from the intrinsic
feature of subgraph-reuse exhibited by graphs

• Less complicated graph recombination via the
crossover and mutation genetic operators

MATERIALS AND METHODS

 Proposed method is based on theoretical system
definitions discussed in[11], thus it overcomes the
difficulties of traditional method, in addition it has all
attractive characteristic of CGP. Our evolutionary
algorithm evolves FSA that achieve input-output
specification of the problem. FSA transit from state to
state according to trajectory data sets, which either
fixed, or Self-Organized during evolutionary process.
Trajectory data are stored as a string of numbers (the
genotype) and evolved to achieve the optimum
mapping. The theory is based on McCarthy's formalism
of the theory of computer science[12-13]: There is a set of
base function F and a set of strategies C for building
new function out of old, the closure C (F) comprises all
computable functions. For any language L it may be
possible to isolate a set (FL.) of base functions to
express the meaning of identifiers and statements and a
set (CL) of strategies to express the meaning of the
linguistic structure and data structures of L. Then the
meaning of P in L would be computable function in
CL(FL):

Meaning (P): L→CL(FL)

 So, P effects a transformation:

(P) Xinitial→X
final

on a state vector X, which consists of an association of
the variable manipulated by the program and their
values. A program P can be defined as 9-tuples, called
Semantic Finite State Automata (SFSA)[11]:

Am. J. Engg. & Applied Sci., 2 (4): 789-795, 2009

792

P = (x, X, T, F, Z, I, O, γ, Xinitial)

Where:
x = The set of system variables
X = The set of system states, X = {X initial, …..,

X final}
T = The time scale, T = [0, ∞)
F = The set of primitive functions
Z = The state transition function, Z = {(f, X, t): (f,

X, t)ЄF × X × T, z(f, X, t) = (•X, •t)}
I = The set of inputs
O = The set of outputs
γ = The readout function
X initial = The initial state of the system, XinitialЄX

 All sets involved in the definition of S are arbitrary,
except T and F. Time scale T must be some subset of the
set [0, ∞) of nonnegative integer numbers, while the set
of primitive function F must be a subset of the set CL (FL)
of all computable functions in the language L and
sufficient to generate the remainder functions. Two
features characterize state transition function:

z (-, -, t) = (Xinitial, 1) if t = 0 (2)

z(f, X, t) = z (f, z(f(t-1), X, t-1)) if t ≠ 0 (3)

 The concepts of reusable parameterized subsystems
can be implemented by restricting the transition functions
of the main system, so that it has the ability to call and
pass parameters to one or more such sub-systems.
Suppose we have sub-system •P and main-system P, then
they can be defined by the following 9-tuples:

P (x, X, T, F, Z, 1, 0, Xinitial, γ)

•P (•x, •X, •T, •F, •Z, •I, O, •X initial,
•
γ)

where, •x ⊆ x, •X initialЄX, then there exit *fЄF, zЄZ,
•f,ЄF and •zЄ•Z and h is a function defined over •Z with
value in •X is defined as follows:

h = •z (•f, •X

initial, 1) = Xh, ti (4)

z(*f, X, t) = z (h, X, t) = Xh,t (5)

*f is a special function we call it sub-SFSA function to
distinguish it from other primitive functions in the set F.
Also, we call the sub-system •S, sub-SFSA, to
distinguish it from the main SFSA. Formally, a system
•S is a sub-system of a system S, iff: •x ⊆ x, •T ⊆ T, •I

⊆ I, •O ⊆ O, •γ must be the restriction of γ to •O and •F

⊆ N, where N is the set of restrictions of F to •T. If (•f,
•X, •t) is an element of •F × •X × •T, then there exists
fЄF, such that the restriction of f to •T is •f and •z (•f,

•X, •t) is z (f, X, t).
 The idea of recursive function could be simply
applied with the proposed method using mathematical
induction. The principle of mathematical induction can
be used to construct system as well as proofs. Consider
the following definition of the recursion function fr,
which is highly reminiscent of proofs by mathematical
induction:

fr (X) = X, t = tmax +1 if X = 0 (base of induction)

fr (X) = Xinitial = X, t = 0 otherwise (induction step)

where, T = [0, tmax].

Input-Output Specification (IOS): An IOS is a
modification for input-output specification used with
ant colony optimization algorithm given in[14]. IOS is
establishing the input-output boundaries of the system.
It describes the inputs that the system is designed to
handle and the outputs that the system is designed to
produce. An IOS is not a system, but it determines the
set of all systems that satisfy the IOS. It is a 6-tuples:

IOS = (T, I, O, Ti, To, η)

Where:
T = The time scale of IOS
I = The set of inputs
O = A set of outputs
Ti = A set of input trajectories defined over T, with

values in I
T = A set of output trajectories defined over T, with

values in O
Η = A function defined over Ti whose values are

subset of To; that is, η matches with each given
input trajectories Ti the set of all output
trajectories that might, or could be, or eligible to
be produced by some systems as output,
experiencing the given input trajectory Ti.

 A system P satisfies IOS if there is a state X of P
and some subset U not empty of the time scale T of P,
such that for every input trajectory g in Ti, there is an
output trajectory h in To matched with g by η such that
the output trajectory generated by S, started in the
state X is:

γ (Z (f (g), X, t) = η(h(t)) For every tЄU (6)

Am. J. Engg. & Applied Sci., 2 (4): 789-795, 2009

793

RESULTS

 The search space in genetic program generation
algorithm is the set of all possible computer programs
described as an 9-tuples SFSA. Multi-objective fitness
measure is adopted to incorporate a combination of
correctness (satisfy IOS), parsimony (smallness T) and
efficiency (smallness β), whereas, β, is the time
required by the machine to complete system execution,
hence it is high sensitive to the machine type.. The
fitness value of individual is computed by the following
equation:

x

1

T

i i
j 0

max i i

fitness(i) T (j) (R (j))

(T T) ()

=

= δ α − η − η

+ − + β − β

∑ (7)

Where:
δ = The weight parameter, δ > = 2
βi = The run time of individual i
Tx = The time scale of the individual i
Ri = The actual calculated input trajectory of

individual i

 Three types of points are defined in each
individual: Transition zЄZ, function fЄF and function
arguments. When structure-preserving crossover is
performed, any point type anywhere in the first selected
individuals may be chosen as the crossover point of the
first parent. The crossover point of the second parent
must be chosen only from among points of this type.
The restriction in the choice of the second crossover
points ensures the syntactic validity of the offspring.
When sub-SFSA functions are being used, the initial
random generation of the population must be created so
that each individual has the intended constrained
structure, that is one main-SFSA and zero or more sub-
SFSA defined under the condition of transition function
restriction. The population at generation 0 is
architecturally diverse, the architecture of the
participating individuals are changing during a run of
GPG and hence determine the architecture of a multi-
part system dynamically during the run.
 Sub-systems can be reused to solve multiple
problems. They provide rational way to reduce
software cost and increase software quality. Programs
with less sub-programs tend to disappear because they
accrue fitness from generation to generation, more
slowly than those programs with sub-programs. The
proposed APS gain leverage in simultaneously solving
the problems of system induction and evolving the
architecture of a single or multi-part system. From Fig. 1,

Fig. 1: Convergance time with respect to no. of sub-

program

its clear that using high number of sub-program may
lead to speed up algorithm convergences). The
operation of “sub-SFSA creation”, creates new sub-
system within an overall system:

Creating sub-SFSA algorithm:

• An individual is selected from the population,

based on I’s fitness value
• Randomly create sub-SFSA defined by a 9-tuples P

(•x, •X, •T, •F, •Z, •I, •O, •X initial, •
γ), where •x is a

subset of the corresponding term x in the main-
FSA and •X initial gets its value from the state of the
calling transition function

• A uniquely-named sub-SFSA function * f is added
to the set F of the main-SFSA such that each
occurrence of *f in the transition function set Z will
be replaced by the transition function •z (•f, •X initial,
1) of the newly created sub-SFSA

• Randomly choose a point in the main-SFSA
transition function and mutate it with *

 The last step is optional, since it just ensures the
existence of at least one reference to the newly created
sub-SFSA function *f.

DISSCUSION

Fixed versus self-organized data trajectory sets:
During evolutionary process, trajectory information
play the primary role. States transformations are done
according to them values, which either fixed, or self-
organized during evolutionary process. Trajectory data
are stored as a string of numbers (the genotype) and
evolved to achieve the optimum mapping.

Example: Assume we try to solve a search problem to
find an occurrence of element e in a list L of i integer
number. At least i+2 inputs are needed (two inputs to read
the values of e and i and i input to read i element of L).

Am. J. Engg. & Applied Sci., 2 (4): 789-795, 2009

794

Table 2: Fixed input-output trajectory sets
I = {e,i, L[1], L[2], ….., L[i]}
0 = {0, 1)
Tx = 1 2 3 4 5 6
Ti = I[1] I[2] I[j] -1 -1 -1
To = -1 -1 -1 -1 O1 O2
Then η:
η (Ti(t)) = O1 if t = 5
 O2 if t = 6 , and -1 otherwise

Table 3: Self-Organized Input and Output Trajectory sets.
Ti(at iteration: 0) = -1, -1, I[1] To(at iteration: 0) = O1, -1, -1
Ti(at iteration:10) = I[1], -1, -1, I[2] To(at iteration: 10) = -1, -1, O1, -1
Ti(at iteration: n) = I[1], I[2], To(at iteration: n) = -1, -1, -1,
-1, -1, -1, -1, I[3] -1, O1, -1, -1

Accordingly, at least two different output may be
produced by the program to indicate search result
(found and not found, or, 1 and 0). Obviously no such
outputs are produced unless at least four operations are
executed that are: input e, input i, input L[1] and check
its equality with e. The time scale of IOS must be
defined under the worst case. i.e., L[i] = e, or no
occurrence of e is found at all. Now, we can pre-
specified Tx, Ti and To, as fixed set as given in Table 2.
In this case, Evolutionary process computes the fitness
value for each individual based on applying fitness
function only. While in case of self-organized case,
trajectory sets are randomly built according to currently
available information about system input-output
boundaries, as seen in Table 3. At the end of i
generations, these sets are modified according to the
input-output specification of the best individuals,
obviously, such modifications are vary continually until
the required results are produced. Although trajectory
data are changed over time, but by experiment, it still
sensitive to initial configuration of SFSA. This is one of
the most important characteristic of a chaotic system
(butterfly effect sensitivity to the initial conditions)[15].

CONCLUSION

• Proposed method is based on theoretical system

definitions, thus it overcomes the difficulties of
traditional method, in addition it have all attractive
characteristic of CGP

• Sub-systems can be reused to solve multiple
problems. They provide rational way to reduce
software cost and increase software quality.
Programs with less sub-programs tend to disappear
because they accrue fitness from generation to
generation, more slowly than those programs with
sub-programs. The proposed APS gain leverage in
simultaneously solving the problems of system
induction and evolving the architecture of a single
or multi-part system

• Trajectory information play important role in the
Evolutionary Process. Fixed specification of
trajectory sets, speed-up convergence time of the
algorithm. Although self-organized trajectory sets
are useful tools in chaotic behavior, they take more
time to converge to the fine solution

REFERENCES

1. Spector, L. and K. Stoffel, 1996. Onto genetic

programming. Proceedings of the 1st Annual
Conference, MIT Press, Stanford University, CA.,
USA., pp: 394-399.

2. Gruau, F., 1994. Neural network synthesis using
cellular encoding and the genetic algorithm. PhD
Thesis, Laboratoire de l’Informatique du
Parallelisme, Ecole Normale Superieure de Lyon,
France.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.29.5939

3. Miller, J.F. and P. Thomson, 2003. A
developmental method for growing graphs and
circuits. Lecture Notes Comput. Sci., 2606: 93-104.
http://cat.inist.fr/?aModele=afficheN&cpsidt=1567
2446

4. Abraham, A., N. Nedjah and L.D.M. Mourelle,
2006. Evolutionary computation: from genetic
algorithms to genetic programming. Stud. Comput.
Intel., 13: 1-20.
http://www.springerlink.com/content/l646l37m787
g121t/

5. Grosan, C. and A. Abraham, 2007. Hybrid
evolutionary algorithms: Methodologies,
architectures and reviews. Stud. Comput. Intell.,
75: 1-17. http://www.softcomputing.net/hea1.pdf

6. Montes, H.A. and J.L. Wyatt, 2003. Cartesian
genetic programming for image processing tasks.
Proceedings of the IASTED International
Conference on Neural Networks and
Computational Intelligence, May 19-21, Cancun,
Mexico, pp: 185-190.
http://md1.csa.com/partners/viewrecord.php?reque
ster=gs&collection=TRD&recid=200311420157CI
&q=&uid=788263103&setcookie=yes

7. Koza, J.R., 1995. Survey of genetic algorithms and
genetic programming. Proceeding of the
Conference on Microelectronics Communications
Technology Producing Quality Products Mobile
and Portable Power Emerging Technologies, Nov.
7-9, IEEE Xplore Press, San Francisco, CA, USA.,
pp: 589.

 http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnum
ber=485447

Am. J. Engg. & Applied Sci., 2 (4): 789-795, 2009

795

8. Poli, R., W.B. Langdon, N.F. McPhee and J.R. Koza,
2007. Genetic programming: An introductory
tutorial and a survey of techniques and
applications. Technical report CES-475.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.126.3889

9. Miller, J.F. and P. Thomson, 2000. Cartesian
genetic programming. Proceedings of European
Conference on Genetic Programming, Apr. 15-16,
ACM Press, Springer-Verlag, London, UK.,
pp: 121-132.

 http://portal.acm.org/citation.cfm?id=704075
10. Harding, S.L., J.F. Miller and W. Banzhaf, 2007.

Self-modifying Cartesian genetic programming.
Proceedings of the 9th Annual Conference on
Genetic and Evolutionary Computation, July 7-11,
ACM Press, New York, USA., pp: 1021-1028.
http://portal.acm.org/citation.cfm?id=1277161&dl
=GUIDE&coll=GUIDE&CFID=51767811&CFTO
KEN=87184646

11. Nada Al Salami, 2009. System evolving using ant
colony optimization algorithm. J. Comput. Sci.,
5: 380-387.

12. Hoperoft, J.E. and J.D. Ullman, 1979. Introduction
to Automata Theory: Languages and Computation.
Addison Wesley Publishing Company, USA.,
ISBN: 10: 020102988X, pp: 418.

13. Wymore, 1986. Theory of System. Handbook of
Software Engineering, CBS Publishers, pp: 119-133.

14. AL-Salami, N.M.A., 2009. System evolving using
ant colony optimization algorithm. J. Comput. Sci.,
5: 380-387.

 http://www.scipub.org/fulltext/jcs/jcs55380-
387.pdf

15. Smith, L., 2007. Chaos: A Very Short Introduction.
Illustrated Edn., Oxford University Press, USA.,
ISBN: 10: 0192853783, pp: 176.

