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Abstract: Problem statement: Most resent evolutionary algorithms work under weak theoretical 
basis and thus, they are computationally expensive. Approach: This study discussed the use of new 
evolutionary algorithm for automatic programming, based on theoretical definitions of program 
behaviors. Evolutionary process adapted fixed and self-organized input-output specification of the 
problem, to evolve good finite state machine that efficiently satisfies these specifications. Results: The 
proposed algorithm enhanced evolutionary process by simultaneously solving multi-parts from the 
same problem. Conclusion: The probability that the algorithm will converge to the optimal solution 
was highly enhanced when decomposing the main problem into multi-part. 
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INTRODUCTION 
 
 Life on earth has evolved for some 3.5 billion 
years. Initially only the strongest creatures survived, but 
over time some creatures developed the ability to recall 
past series of events and apply that knowledge towards 
making intelligent decisions. The very existence of 
humans is testimony to the fact that our ancestors were 
able to outwit, rather than out power, those whom they 
were in competition with, in other words, their response 
to the threat of their environment was intellectual 
adaptation. This could be regarded as the beginning of 
intelligent behavior. “Intelligent behavior is a 
composite ability to predict one’s environment coupled 
with a translation of each prediction into a suitable 
response in light of some objective”. Evolutionary 
Computing is a research area within Computer Science, 
which draws inspiration from the process of natural 
evolution. Evolutionary computation, offers practical 
advantages to the researcher facing difficult 
optimization problems. These advantages are multi-
fold, including the simplicity of the approach, its robust 
response to changing circumstance, its flexibility and 
many other facets. The evolutionary approach can be 
applied to problems where heuristic solutions are not 
available or generally lead to unsatisfactory results. 
Thus evolutionary computing is needed for Developing 
automated problem solvers, where the most powerful 
natural problem solvers are human Brain and 
evolutionary process (that created the human brain). 
Designing the problem solvers based on human brain 
leads to the field of “neurocomputing”. While the 

second one leads to evolutionary computing. The 
algorithms involved in Evolutionary computing are 
termed as Evolutionary Algorithms (EA). Application 
of EC may includes: Bioinformatics, numerical 
combinatorial optimization, system modeling and 
identifications, planning and control, engineering 
design, data mining, machine learning and artificial life. 
In evolutionary computation, the idea of self-
modification has its origins in the ontogenetic 
programming system of Spector and Stoffel[1], the 
graph re-writing system of Gruau[2] and the 
developmental method of evolving graphs and circuits 
of Miller [3]. 
 In this study, we propose new evolutionary 
algorithm, based on theoretical definition of system and 
it’s input-output boundaries, in contrast with traditional 
evolutionary methods. Then compare it to the most 
recently used evolutionary algorithms. 
 
Background: Evolutionary algorithms are ubiquitous 
nowadays, having been successfully applied to 
numerous problems from different domains, including 
optimization, automatic programming, machine learning, 
operations research, bioinformatics and social systems. 
In many cases the mathematical function, which 
describes the problem is not known and the values at 
certain parameters are obtained from simulations. In 
contrast to many other optimization techniques an 
important advantage of evolutionary algorithms is they 
can cope with multi-modal functions[4]. Additional 
advantages are listed as follows: 
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• It is conceptually simple. The procedure may be 
written as difference equation: 

 
 x[t + 1] = s(v (x [t])) (1) 
 
 Where: 
 x[t] = The population at time t under a 

representation x 
 v = A random variation operator 
 s = The selection operator 
• It is representation independent, in contrast with 

other numerical techniques, which might be 
applicable for only continuous values or other 
constrained sets 

• It offers a framework such that it is comparably 
easy to incorporate prior knowledge about the 
problem. Incorporating such information focuses 
the evolutionary search, yielding a more efficient 
exploration of the state space of possible solutions 

• Can also be combined with more traditional 
optimization techniques. This may be as simple as 
the use of a gradient minimization used after 
primary search with an evolutionary algorithm, or 
it may involve simultaneous application of other 
algorithms 

• The evaluation of each solution can be handled in 
parallel and only selection (which requires at least 
pair wise competition) requires some serial 
processing  

• Traditional methods of optimization are not robust 
to dynamic changes in problem the environment 
and often require a complete restart in order to 
provide a solution (e.g., dynamic programming). In 
contrast, evolutionary algorithms can be used to 
adapt solutions to changing circumstance 

• It has the ability to address problems for which 
there are no human experts. Although human 
expertise should be used when it is available, it 
often proves less than adequate for automating 
problem-solving routines 

 
 However there are some disadvantages of EC 
such as: 
 
• There is no guarantee for optimum solution within 

finite time 
• Works under weak theoretical basis 
• May need parameter tuning 
• Computationally expensive  
 
Resentally area in EC: Sub-area of the term 
evolutionary computation or evolutionary algorithms 
includes: 

• Evolutionary Programming (EP)  
• Evolution Strategies (ES) 
• Genetic Algorithm (GA) 
• Genetic Programming (GP) 
 
 They all share a common conceptual base of 
simulating the evolution of individual structures via 
processes of selection, mutation and reproduction. The 
processes depend on the perceived performance of the 
individual structures as defined by the problem, Table 1. 
Evolutionary programming, developed by Fogel et al.[4] 
traditionally has used representations that are tailored to 
the problem domain. EP is often used as an optimizer, 
although it arose from the desire to generate machine 
intelligence. Rechenberg and Schwefel developed 
Evolutionary Strategies. The algorithm is similar to EP 
in many ways. In the last few years they have had 
something of a renaissance and have become more 
popular, particularly in research work. However, in 
practical and industrial systems, they have been 
eclipsed somewhat by the success of the GA. One 
reason behind the GA’s success is that its advocates are 
very good at describing the algorithm in an easy to 
understand and non-mathematical way.  
 A genotype-phenotype mapping therefore implies 
an algorithm that transforms an input string of numbers 
encoding a genotype into another string of numbers that 
comprises the phenotype of an individual. Both 
evolutionary programming and evolutionary strategies 
are known as phenotypic algorithms (physical 
characteristic of the genotype like smart, beautiful, 
healthy), whereas the genetic algorithm is a genotypic 
algorithm (Particular set of genes in a genome). 
Phenotypic Algorithms operate directly on the 
parameters of the system itself, whereas genotypic 
algorithms operate on strings representing the system. 
In other words, the analogy in biology to Phenotypic 
Algorithms is a direct change in an animal's behavior or 
body and the analogy to Genotypic is a change in the 
animal’s genes, which lie behind the behavior or 
body.GA is implemented by having arrays of bits or 
characters to represent the chromosomes. In EP there 
are no such restrictions for the representation. In most 
cases the representation follows from the problem. EP 
typically uses an adaptive mutation operator in which 
the severity of mutations is often reduced as the global 
optimum is approached while GA’s use a pre-fixed 
mutation operator. Among the schemes to adapt the 
mutation step size, the most widely studied being the 
“meta-evolutionary” technique in which the variance of 
the mutation distribution is subject to mutation by a 
fixed variance mutation operator that evolves along 
with the solution. 
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Table 1: Comparison between different Evolutionary Algorithms 
 Algorithm type Developed researcher Individual representation Operators Selection method 
Evolutionary programming Phenotypic Fogel et al., 1966 [4] FSMs Mutation only Tournament 
Evolutionary strategies Phenotypic Rechenberg, 1973 [4-8] Real values Mainly mutation Ranking 
Genetic algorithm Genotypic Holland, 1975 [5] Bitstrings Mainly crossover Proportionate 
Genetic programming Phenotypic Koza, 1992 [4][8] Expression trees Mainly crossover Proportionate 

 
 On the other hand, when comparing evolutionary 
programming to evolution strategies, one can identify 
the following differences: When implemented to solve 
real-valued function optimization problems, both 
typically operate on the real values themselves and use 
adaptive reproduction operators. EP typically uses 
stochastic tournament selection while ES typically uses 
deterministic selection. EP does not use crossover 
operators while ES uses crossover. Some specific 
advantages of genetic programming are that no analytical 
knowledge is needed and still could get accurate results. 
GP approach does scale with the problem size. GP does 
impose restrictions on how the structure of solutions 
should be formulated. There are several variants of GP, 
some of them are: Linear Genetic Programming (LGP), 
Gene Expression Programming (GEP), Multi Expression 
Programming (MEP), Cartesian Genetic Programming 
(CGP), Traceless Genetic Programming (TGP) and 
Genetic Algorithm for Deriving Software (GADS). 
Following we shall concentrate on CGP, since it is the 
most near to our proposed method[5-8]. 
 
Cartesian genetic programming: Cartesian genetic 
programming was originally developed by Miller and 
Thomson[9] for the purpose of evolving digital circuits 
and represents a program as a directed graph. One of 
the benefits of this type of representation is the implicit 
re-use of nodes in the directed graph. Originally CGP 
used a program topology defined by a rectangular grid 
of nodes with a user defined number of rows and 
columns. In CGP, the genotype is a fixed-length 
representation and consists of a list of integers which 
encode the function and connections of each node in the 
directed graph. The genotype is then mapped to an 
indexed graph that can be executed as a program. In 
CGP there are very large numbers of genotypes that 
map to identical genotypes due to the presence of a 
large amount of redundancy. Firstly there is node 
redundancy that is caused by genes associated with 
nodes that are not part of the connected graph 
representing the program. Another form of redundancy 
in CGP, also present in all other forms of GP is, 
functional redundancy. Simon Harding and Ltd 
introduce computational development using a form of 
Cartesian Genetic Programming that includes self-
modification operations. One advantage of this 
approach is that the system can be used to solve 

computational problems[10]. The interesting 
characteristic of CGP are: 
 
• More powerful program encoding using graphs, than 

using conventional GP tree-like representations, the 
population of strings are of fixed length, whereas 
their corresponding graphs are of variable length 
depending on the number of genes in use 

• Efficient evaluation derived from the intrinsic 
feature of subgraph-reuse exhibited by graphs 

• Less complicated graph recombination via the 
crossover and mutation genetic operators 

 
MATERIALS AND METHODS 

 
 Proposed method is based on theoretical system 
definitions discussed in[11], thus it overcomes the 
difficulties of traditional method, in addition it has all 
attractive characteristic of CGP. Our evolutionary 
algorithm evolves FSA that achieve input-output 
specification of the problem. FSA transit from state to 
state according to trajectory data sets, which either 
fixed, or Self-Organized during evolutionary process. 
Trajectory data are stored as a string of numbers (the 
genotype) and evolved to achieve the optimum 
mapping. The theory is based on McCarthy's formalism 
of the theory of computer science[12-13]: There is a set of 
base function F and a set of strategies C for building 
new function out of old, the closure C (F) comprises all 
computable functions. For any language L it may be 
possible to isolate a set (FL.) of base functions to 
express the meaning of identifiers and statements and a 
set (CL) of strategies to express the meaning of the 
linguistic structure and data structures of L. Then the 
meaning of P in L would be computable function in 
CL(FL): 
 

Meaning (P): L→CL(FL) 
 
 So, P effects a transformation: 
 

(P) Xinitial→X  
final 

 
on a state vector X, which consists of an association of 
the variable manipulated by the program and their 
values. A program P can be defined as 9-tuples, called 
Semantic Finite State Automata (SFSA)[11]: 
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P = ( x, X, T, F, Z, I, O, γ, Xinitial) 
 
Where: 
x = The set of system variables 
X = The set of system states, X = {X initial, ….., 

X final} 
T = The time scale, T = [0, ∞) 
F = The set of primitive functions 
Z = The state transition function, Z = {(f, X, t): (f, 

X, t)ЄF × X × T, z(f, X, t) = (•X, •t)} 
I = The set of inputs 
O = The set of outputs 
γ = The readout function 
X initial = The initial state of the system, XinitialЄX 
 
 All sets involved in the definition of S are arbitrary, 
except T and F. Time scale T must be some subset of the 
set [0, ∞) of nonnegative integer numbers, while the set 
of primitive function F must be a subset of the set CL (FL) 
of all computable functions in the language L and 
sufficient to generate the remainder functions. Two 
features characterize state transition function: 
 
z ( -, -, t) = (Xinitial, 1) if t = 0 (2) 
  
z(f, X, t) = z (f, z( f(t-1), X, t-1)) if t ≠ 0 (3) 
 
 The concepts of reusable parameterized subsystems 
can be implemented by restricting the transition functions 
of the main system, so that it has the ability to call and 
pass parameters to one or more such sub-systems. 
Suppose we have sub-system •P and main-system P, then 
they can be defined by the following 9-tuples: 
 
P (x, X, T, F, Z, 1, 0, Xinitial, γ) 
 

•P (•x, •X, •T, •F, •Z, •I, O, •X initial, 
•
γ) 

 
where, •x ⊆ x, •X initialЄX, then there exit *fЄF, zЄZ, 
•f,ЄF and •zЄ•Z and h is a function defined over •Z with 
value in •X is defined as follows: 
 
h = •z (•f, •X  

initial, 1) = Xh, ti (4) 
 
z(*f, X, t) = z (h, X, t) = Xh,t (5) 
 
*f is a special function we call it sub-SFSA function to 
distinguish it from other primitive functions in the set F. 
Also, we call the sub-system •S, sub-SFSA, to 
distinguish it from the main SFSA. Formally, a system 
•S is a sub-system of a system S, iff: •x ⊆ x, •T ⊆ T, •I  

⊆ I, •O ⊆ O, •γ must be the restriction of γ to •O and •F 

⊆ N, where N is the set of restrictions of F to •T. If (•f, 
•X, •t) is an element of •F × •X  × •T, then there exists 
fЄF, such that the restriction of f to •T is •f and •z (•f, 

•X, •t) is z (f, X, t). 
 The idea of recursive function could be simply 
applied with the proposed method using mathematical 
induction. The principle of mathematical induction can 
be used to construct system as well as proofs. Consider 
the following definition of the recursion function fr, 
which is highly reminiscent of proofs by mathematical 
induction: 
 
fr (X) = X, t = tmax +1 if X = 0 (base of induction) 
 
fr (X) = Xinitial = X, t = 0 otherwise (induction step)  
 
where, T = [0, tmax]. 
 
Input-Output Specification (IOS): An IOS is a 
modification for input-output specification used with 
ant colony optimization algorithm given in[14]. IOS is 
establishing the input-output boundaries of the system. 
It describes the inputs that the system is designed to 
handle and the outputs that the system is designed to 
produce. An IOS is not a system, but it determines the 
set of all systems that satisfy the IOS. It is a 6-tuples: 
 

IOS = (T, I, O, Ti, To, η) 
 
Where: 
T = The time scale of IOS 
I = The set of inputs 
O = A set of outputs 
Ti = A set of input trajectories defined over T, with 

values in I 
T = A set of output trajectories defined over T, with 

values in O 
Η = A function defined over Ti whose values are 

subset of To; that is, η matches with each given 
input trajectories Ti the set of all output 
trajectories that might, or could be, or eligible to 
be produced by some systems as output, 
experiencing the given input trajectory Ti. 

 
 A system P satisfies IOS if there is a state X of P 
and some subset U not empty of the time scale T of P, 
such that for every input trajectory g in Ti, there is an 
output trajectory h in To matched with g by η such that 
the output trajectory generated by S, started in the 
state X is:  
 
γ (Z (f (g), X, t) = η(h(t)) For every tЄU (6) 
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RESULTS 
 
 The search space in genetic program generation 
algorithm is the set of all possible computer programs 
described as an 9-tuples SFSA. Multi-objective fitness 
measure is adopted to incorporate a combination of 
correctness (satisfy IOS), parsimony (smallness T) and 
efficiency (smallness β), whereas, β, is the time 
required by the machine to complete system execution, 
hence it is high sensitive to the machine type.. The 
fitness value of individual is computed by the following 
equation: 
 

x

1

T

i i
j 0

max i i

fitness(i) T ( j) (R ( j))

(T T ) ( )

 
 
 

=

 
= δ α − η − η  

 

+ − + β − β

∑  (7) 

 
Where: 
δ = The weight parameter, δ > = 2 
βi = The run time of individual i 
Tx = The time scale of the individual i 
Ri = The actual calculated input trajectory of 

individual i 
 
 Three types of points are defined in each 
individual: Transition zЄZ, function fЄF and function 
arguments. When structure-preserving crossover is 
performed, any point type anywhere in the first selected 
individuals may be chosen as the crossover point of the 
first parent. The crossover point of the second parent 
must be chosen only from among points of this type. 
The restriction in the choice of the second crossover 
points ensures the syntactic validity of the offspring. 
When sub-SFSA functions are being used, the initial 
random generation of the population must be created so 
that each individual has the intended constrained 
structure, that is one main-SFSA and zero or more sub-
SFSA defined under the condition of transition function 
restriction. The population at generation 0 is 
architecturally diverse, the architecture of the 
participating individuals are changing during a run of 
GPG and hence determine the architecture of a multi-
part system dynamically during the run.  
 Sub-systems can be reused to solve multiple 
problems. They provide rational way to reduce 
software cost and increase software quality. Programs 
with less sub-programs tend to disappear because they 
accrue fitness from generation to generation, more 
slowly than those programs with sub-programs. The 
proposed APS gain leverage in simultaneously solving 
the problems of system induction and evolving the 
architecture of a single or multi-part system. From Fig. 1, 

 
 
Fig. 1: Convergance time with respect to no. of sub-

program 
 
its clear that using high number of sub-program may 
lead to speed up algorithm convergences). The 
operation of “sub-SFSA creation”, creates new sub-
system within an overall system: 
 
Creating sub-SFSA algorithm: 
 
• An individual is selected from the population, 

based on I’s fitness value 
• Randomly create sub-SFSA defined by a 9-tuples P 

(•x, •X, •T, •F, •Z, •I, •O, •X initial, •
γ), where •x is a 

subset of the corresponding term x in the main-
FSA and •X initial gets its value from the state of the 
calling transition function 

• A uniquely-named sub-SFSA function * f is added 
to the set F of the main-SFSA such that each 
occurrence of *f in the transition function set Z will 
be replaced by the transition function •z (•f, •X initial, 
1) of the newly created sub-SFSA 

• Randomly choose a point in the main-SFSA 
transition function and mutate it with * 

 
 The last step is optional, since it just ensures the 
existence of at least one reference to the newly created 
sub-SFSA function *f. 
 

DISSCUSION 
 
Fixed versus self-organized data trajectory sets: 
During evolutionary process, trajectory information 
play the primary role. States transformations are done 
according to them values, which either fixed, or self-
organized during evolutionary process. Trajectory data 
are stored as a string of numbers (the genotype) and 
evolved to achieve the optimum mapping. 
 
Example: Assume we try to solve a search problem to 
find an occurrence of element e in a list L of i integer 
number. At least i+2 inputs are needed (two inputs to read 
the values of e and i and  i  input  to  read i element of L). 
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Table 2: Fixed input-output trajectory sets 
I = {e,i, L[1], L[2], ….., L[i]} 
0 = {0, 1) 
Tx = 1 2 3 4 5 6 
Ti = I[1] I[2] I[j] -1 -1 -1 
To = -1 -1 -1 -1 O1 O2 
Then η: 
η (Ti(t)) = O1 if t = 5 
  O2 if t = 6 , and -1 otherwise 
 
Table 3: Self-Organized Input and Output Trajectory sets. 
Ti(at iteration: 0) = -1, -1, I[1] To(at iteration: 0) = O1, -1, -1 
Ti(at iteration:10) = I[1], -1, -1, I[2]  To(at iteration: 10) = -1, -1, O1, -1 
Ti(at iteration: n) = I[1], I[2], To(at iteration: n) = -1, -1, -1, 
-1, -1, -1, -1, I[3] -1, O1, -1, -1 

 
Accordingly, at least two different output may be 
produced by the program to indicate search result 
(found and not found, or, 1 and 0). Obviously no such 
outputs are produced unless at least four operations are 
executed that are: input e, input i, input L[1] and check 
its equality with e. The time scale of IOS must be 
defined under the worst case. i.e., L[i] = e, or no 
occurrence of e is found at all. Now, we can pre-
specified Tx, Ti and To, as fixed set as given in Table 2. 
In this case, Evolutionary process computes the fitness 
value for each individual based on applying fitness 
function only. While in case of self-organized case, 
trajectory sets are randomly built according to currently 
available information about system input-output 
boundaries, as seen in Table 3. At the end of i 
generations, these sets are modified according to the 
input-output specification of the best individuals, 
obviously, such modifications are vary continually until 
the required results are produced. Although trajectory 
data are changed over time, but by experiment, it still 
sensitive to initial configuration of SFSA. This is one of 
the most important characteristic of a chaotic system 
(butterfly effect sensitivity to the initial conditions)[15]. 
 

CONCLUSION 
 
• Proposed method is based on theoretical system 

definitions, thus it overcomes the difficulties of 
traditional method, in addition it have all attractive 
characteristic of CGP  

• Sub-systems can be reused to solve multiple 
problems. They provide rational way to reduce 
software cost and increase software quality. 
Programs with less sub-programs tend to disappear 
because they accrue fitness from generation to 
generation, more slowly than those programs with 
sub-programs. The proposed APS gain leverage in 
simultaneously solving the problems of system 
induction and evolving the architecture of a single 
or multi-part system  

• Trajectory information play important role in the 
Evolutionary Process. Fixed specification of 
trajectory sets, speed-up convergence time of the 
algorithm. Although self-organized trajectory sets 
are useful tools in chaotic behavior, they take more 
time to converge to the fine solution  
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