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Abstract: Perturbation methods depend on a small parameter which is difficult to be found for real-life 
nonlinear problems. To overcome this shortcoming, two new but powerful analytical methods were 
introduced to solve nonlinear heat transfer problems in this letter, one is He’s Variational Iteration 
Method (VIM) and the other is the Homotopy-Perturbation Method (HPM). Nonlinear hyperbolic 
equations were used as examples to illustrate the simple solution procedures. These methods were 
useful and practical for solving the nonlinear hyperbolic equation, which is associated with variable 
initial condition. Comparison of the results has been obtained by both methods with exact solutions 
reveals that both methods were tremendously effective. 
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INTRODUCTION 

 
 Hyperbolic partial differential equations are the 
subject of many researches because of their application 
in many engineering fields such as wave equation and 
telegraph equation. In recent years, several such 
techniques have drawn special attention, such as 
Hirtoa’s bilinear method[21], the Adomian’s 
decomposition method[5], the EXP function method[22-

26], fractional method[27-33], the Homotopy Perturbation 
Method (HPM)[3,34-38] and Variational Iteration Method 
(VIM)[39-47]. Various methods for obtaining explicit 
solutions to hyperbolic partial differential equations 
have been proposed[1-8]. 
 Biazar et al.[1] use Adomian decomposition method 
to solve this equation. In this work we use homotopy 
perturbation method and variational iteration method to 
solve hyperbolic equations. Unlike classical techniques, 
the nonlinear equations are solved easily and elegantly 
without transforming or linearizing the equation by 
using the Homotopy Perturbation Method (HPM)[9-11]. 
It provides an efficient explicit solution with high 
accuracy, minimal calculations and avoidance of 
physically unrealistic assumptions. 
 The HPM was first proposed by He [12-16] and has 
been shown to solve a large class of nonlinear problems 
effectively, easily and accurately with approximations 
converging rapidly to accurate solutions. The HPM was 
proposed to search for limit cycles or bifurcation curves 
of nonlinear equations[17]. In[14], a heuristic example 
was given to illustrate the basic idea of the HPM and its 

advantages  over the d-method, the method was also 
applied to solve boundary value problems [18] and heat 
radiation equations[19]. Variation iteration method is 
based on the use of Lagrange multipliers for 
identification of optimal values of parameters in a 
functional. Using this method a rapid convergent 
sequence is produced. The variational iteration method 
is suitable for finding the approximation of the solution 
without discretization of the problem[20]. 
 The general form of hyperbolic equation as a kind 
of second-order quasi-linear partial differential equation 
is: 
 

   
2 2 2

2 2

u u ua b c e 0
x x y y
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∂ ∂ ∂ ∂
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, i.e., The second 

order derivatives occur only to the first degree. If  b2-
4ac>0, then Eq. 1 is called hyperbolic equation. 
 

MATERIALS AND METHODS  
 
 In this study, we have applied the Homotopy 
perturbation method and variational iteration method to 
the discussed problems. To illustrate the basic ideas of 
methods, we have considered the following nonlinear 
differential equation. 
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Homotopy perturbation method: To illustrate the 
basic ideas of this method, we consider the following 
nonlinear differential equation: 
 

    A (u)-f (r) = 0, r ∈ Ω  (2) 
 
 With the boundary conditions of:

    

   u
B(u, ) 0,r

n
∂

= ∈ Γ
∂

 (3) 

 
 Where A, B, f (r) and G are a general differential 
operator, a boundary operator a known analytical 
function and the boundary of the domain Ω , 
respectively. 
 Generally speaking, the operator A can be divided 
into a linear part L and a nonlinear part N. Eq. 2 can 
therefore be rewritten as: 
 
   L (u)+N(u)-f (r) = 0 (4) 
 
 By the homotopy technique, we construct a 
homotopy v(r,p): Ω×[0, 1]? ℜ which satisfies: 
 

   0H(v,p) (1 p)[L(v) L(u )]

p[A(u) f(r)] 0,p [0,1],r

= − − +

− = ∈ ∈ Ω
 (5) 

 
or 
 

   0 0H(v,p) L(v) L(u ) pL(u )

p[N(v) f(r)] 0

= − + +

− =
 (6) 

 
 Where p∈[0, 1] is an embedding parameter, while 
u0 is an initial approximation of Eq. 2 which satisfies 
the boundary conditions. 
 Obviously, considering Eq. 5 and 6 we will have: 
 
   H (v, 0) = L(v)-L(u0) = 0 (7) 
 
   H (v, 1) = A(v)-f (r) = 0 (8) 
 
 The changing process of p from zero to unity is just 
that of v (r, p) from u0 (r) to u (r). In topology, this is 
called deformation and L (v)-L (u0) and A (v)-f (r) are 
being called homotopy. 
 According to the HPM, we can first use the 
embedding parameter p as a small parameter and 
assume that the solution of Eq. 5 and 6 can be written 
as a power series in p, namely: 
 
   v = v0 +pv1 + p2v2 +··· (9) 
 

 Setting p = 1 result in the approximate solution of 
Eq. 2 to:  
 
   u = lim v = v0 +v1 + v2 +··· (10) 
 
   p? 1 
 
 The combination of the perturbation method and 
the homotopy method is called the HPM, which 
eliminates the drawbacks of the traditional perturbation 
methods. The series 10 is convergent for most cases. 
However, the convergent rate depends on the nonlinear 
operator A (v) (the following opinions are suggested by 
He[3]): 
 
• The second derivative of N (v) with respect to V 

must be small because the parameter may be 
relatively large, i.e., p→1 

• The norm of 1 N
L

v
− ∂

∂
 must be smaller than one so 

that the series converges  
 
Variational iteration method: To clarify the basic 
ideas of VIM, we consider the following differential 
equation: 
 
    Lu + Fu = g (t)  (11)  
 
 Where L is a linear operator, F is a nonlinear 
operator and g (t) is a heterogeneous term.  
 According to VIM, we can write down a correction 
functional as follows: 
 

  
t

n+1 n n n
0

u (t) u (t) (Lu ( ) Fu ( ) g( ))d= + λ τ + τ − τ τ∫ %  (12) 

 
 Where λ is a general Lagrangian multiplier[17-20] 
which can be identified optimally via the variational 
theory. 
 The subscript n indicates the nth approximation 
and nu% is considered as a restricted variation[17-20], i.e., 

nu 0.δ =%  
 
Applications: In order to assess the accuracy of VIM 
and HPM for solving hyperbolic equations and to 
compare it with exact solution, we will consider the 
three following examples. 
  
Example1: Consider the partial differential equation 
with the initial conditions[7]: 
 
 2 2 2

2
2 2

u u u
(1 2x) (x x 2) 0

x x y y
∂ ∂ ∂

+ − + − − =
∂ ∂ ∂ ∂

 (13) 
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u (x, 0) = x, 
u(x,0)

1
y

∂
=

∂
 

 
Homotopy perturbation method: Now we apply 
homotopy perturbation to Eq. 13: 
 

 

2
2

2

2 2

2

2
2

2

H( , p ) : (1 p)(x x 2) (x,y)
y

(x,y) (1 2x) (x,y)
x y x

p 0

(x x 2) (x,y)
y

 ∂υ = − − − υ ∂ 

  ∂ ∂υ + − υ  ∂ ∂ ∂  + =  ∂ + − − υ  ∂  

 (14) 

 
 Substituting Eq. 9 into Eq. 14 and rearranging 
based on powers of p-terms, we have: 
 

 

2 2
0 2

02 2

2

0 02

p : x [ (x,y)] x[
y y

(x,y)] 2[ (x,y)] 0
y

∂ ∂
υ −

∂ ∂

∂
υ − υ =

∂

 (15) 

 

 

2 2

0 12 2

2
2

12

2 2
1

0 0

2

12

(x,y) 2[ (x,y)]
x y

x [ (x,y)]
y

p : (x,y) 2x[ (x,y)]
y x y x

x[ (x,y)] 0
y

∂ ∂υ − υ
∂ ∂

∂+ υ
∂

∂ ∂
+ υ − υ

∂ ∂ ∂ ∂

∂
− υ =

∂

 (16) 

 

 

2 2
2

1 22

2 2
2

1 22 2

2 2

1 22

2x[ (x,y)] x [ (x,y)]
y x y

p : (x,y) 2[ (x,y)]
x y

(x,y) x[ (x,y)] 0
y x y

∂ ∂
− υ + υ

∂ ∂ ∂

∂ ∂+ υ − υ
∂ ∂

∂ ∂
+ υ − υ =

∂ ∂ ∂

  (17) 

 

 

2 2

2 22

2 2
3

2 32

2 2
2

3 32 2

(x,y) 2[ (x,y)]
x y x

p : (x,y) 2[ (x,y)]
y x y

x [ (x,y)] x[ (x,y)] 0
y y

∂ ∂
υ − υ

∂ ∂ ∂

∂ ∂
+ υ − υ

∂ ∂ ∂

∂ ∂
+ υ − υ =

∂ ∂

 (18) 

  
 To determine u, the above equations should be 
solved. Considering the appropriate initial conditions 
we have: 

  
0 0

i i y 0

v (x,0) x y, v (x,0) 1
y

v(x,0) 0, v (x ,0 ) | 0, i 1,2,...
y =

∂
= + =

∂
∂

= = =
∂

 (19) 

 
The Solution of Eq. 15-19 may be written as follows: 
 
  0v (x,0) x y= +   (20) 
 
 In the same manner, the rest of components were 
obtained using the maple package. 
 According to the HPM, we can conclude: 
 

  0p 1

1 2

u(x,y) limv(x,y) v (x,y)

v (x,y) v ( x , y ) ...
→

= = +

+ +
 (21)

   
 In this manner three components of the 
perturbation series 9 were obtained. So, we have: 
 
  u(x,y) x y= +

  
Variational iteration method: Now Before applying 
this procedure to Eq. 13 following[42,43], we construct a 
correction functional, as follows: 

 

 

y 2

n 1 n n2
0

2 2
2

n n2

u (x,y) u (x,y) ( )[ u (x, ) (1 2x)
x

[ u (x, )] (x x 2)[ u (x, )]]d
x

+
∂= + λ τ τ + −

∂

∂ ∂
τ + − − τ τ

∂ ∂τ ∂τ

∫
 (22) 

  
 Its stationary conditions can be obtained as 
follows: 

 

  

2

2
2

2

2

n2

d
1 (x x 2)[ (y)] 0,

dy

d(x x 2)[ ( )] 0,
d

(y)[ u (x,y)] 0, (y) 0
x

− − − λ =

− − λ τ =
τ

∂
λ = λ =

∂

  (23) 

 
 The Lagrangian multiplier can therefore be 
identified as: 

 
   

2

y
( )

x x 2
τ −

λ τ =
− −

  (24)

 

 

 
 As a result, we obtain the following iteration 
formula: 
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y 2

n 1 n n2
0

2 2
2

n n2

u (x,y) u (x,y) ( )[ u (x, ) (1 2x)
x

[ u (x, )] (x x 2)[ u (x, )]]d
x

+

∂
= + λ τ τ + −

∂

∂ ∂
τ + − − τ τ

∂ ∂τ ∂τ

∫
  (25) 

  
 Now we start with an arbitrary initial 
approximation that satisfies the initial condition: 
 
    0u (x,y) x y= +  (26) 
 
 Using the above variational formula 25, we have: 
 

 

y 2

1 0 02
0

2 2
2

0 02

u (x,y) u (x,y) ( )[ u (x, ) (1 2x)
x

[ u (x, )] (x x 2)[ u (x, )]]d
x

∂
= + λ τ τ + −

∂

∂ ∂
τ + − − τ τ

∂ ∂τ ∂τ

∫
  (27) 

 
 Substituting Eq. 26 in to Eq. 27 and after 
simplifications, we have: 
 
    1u(x ,y) x y= +  (28) 
 
 In the same way, we can obtain U2(X, Y), U3(X, Y) 
and the rest of the components of the iteration formula. 
  
Example 2: Consider the partial differential equation 
with the initial conditions[7]: 
 

   

2 2 2

2 2

u u u2 1 0,
x x y y

u(x,0) x,

u(x,0) x.
y

∂ ∂ ∂+ − + =
∂ ∂ ∂ ∂

=

∂ =
∂

 (29) 

 
Homotopy perturbation method: By applying 
homotopy perturbation to Eq. 29. We have: 
 

 

2 2

2 2

2 2

2

H( ,p) 2(1 p)[ (x,y)] p[ (x,y)
y x

(x,y) 2[ (x,y)] 1] 0
y x y

∂ ∂υ = − − υ + υ
∂ ∂

∂ ∂+ υ − υ + =
∂ ∂ ∂

 (30) 

  
 Substituting Eq. 9 into Eq. 29 and rearranging 
based on powers of p-terms, we have: 
 

   
2

0
02p : 2[ (x,y)] 0

y
∂− υ =

∂
 (31) 

 

   

2 2
1

12 2

2

0 0

p : 2[ (x,y)]
y x

(x,y) (x,y) 1 0
y x

∂ ∂
− υ +

∂ ∂

∂
υ + υ + =

∂ ∂

  (32) 

   

2 2
2

22 2

2

1 1

p : 2[ (x,y)]
y x

(x,y) (x,y) 0
y x

∂ ∂
− υ +

∂ ∂

∂
υ + υ =

∂ ∂

  (33) 

 

   

2 2
3

32 2

2

2 2

p : 2[ (x,y)]
y y

(x,y) (x,y) 0
y x

∂ ∂
− υ +

∂ ∂

∂
υ + υ =

∂ ∂

  (34) 

 
 To determine u, the above equations should be 
solved. Considering the appropriate initial conditions 
we have: 
 

   
0 0

i i y 0

v (x,0) x xy, v (x,0) x,
y

v(x,0) 0, v (x ,0 ) | 0,i 1,2,...
y =

∂
= + =

∂
∂

= = =
∂

 (35) 

  
 The solution of Eq. 31-35 may be written as 
follows: 
 
   0n (x,y) x xy= +  (36) 
 

   2
1

1
n (x,y) y ...andsoon

2
=   (37) 

 
 In the same manner, the rest of components was 
obtained using the maple package. According to the 
HPM, we can conclude: 
 

   
0p 1

1 2

u(x,y) limv(x,y) v(x ,y)

v(x,y) v ( x , y ) ,
→

= =

+ + + ⋅ ⋅ ⋅
  (38) 

 
 Therefore the solution is: 
  
   21

u(x,y): x xy y
2

= + +  (39) 

 
Variational iteration method: First we construct a 
correction functional like example 1, as follows: 
 

  

y 2

n 1 n n2
0

2 2

n n2

u (x,y) u (x,y) ( )[ u (x, )
x

u (x, ) 2( u (x, )) 1]d
x

+
∂= + λ τ τ +

∂

∂ ∂
τ − τ + τ

∂ ∂τ ∂τ

∫
  (40) 

  
 Its stationary conditions can be obtained as 
follows: 
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2

2

2

n2

d d
1 2( (y)) 0, 2( ( )) 0,

dy d

(y)[ u (x,y)] 0, (y) 0
x

+ λ = − λ τ =
τ

∂
λ = λ =

∂

  (41) 

 
 The Lagrangian multiplier can therefore be 
identified as: 
 

     
y

( )
2

τ −
λ τ =

−
  (42)

 

 

 
 As a result, we obtain the following iteration 
formula: 
 

  

y 2

n 1 n n2
0

2 2

n n2

u (x,y) u (x,y) ( )[ u (x, )
x

u (x, ) 2( u (x, )) 1]d
x

+
∂= + λ τ τ +

∂

∂ ∂
τ − τ + τ

∂ ∂τ ∂τ

∫
  (43) 

 
 Now we start with an arbitrary initial 
approximation that satisfies the initial condition: 
 
     0u (x,y) xy x= +   (44) 
 
 Using the above variational formula 43, we have 
 

  

y 2

1 0 02
0

2 2

0 02

u (x,y) u (x,y) ( )[ u (x, )
x

u (x, ) 2( u (x, )) 1]d
x

∂= + λ τ τ +
∂

∂ ∂
τ − τ + τ

∂ ∂τ ∂τ

∫
  (45) 

 
 Substituting Eq. 44 in to Eq. 45 and after 
simplifications, we have: 
 

    2
1

1
u (x,y) xy x y

4
= + +   (46) 

 
 In the same way, we can obtain U2(X, Y) as 
follows: 
 

   2
2

1
u (x,y) xy x y

2
= + +   (47) 

 
 And so on. In the same manner the rest of the 
components of the iteration formula can be obtained. 
  
Example 3: Consider the partial differential equation 
with the initial conditions[6]: 
 

   

2 2
2

2 2

2

u u
4x 0,

x y

u(x,0) x ,
u(x,0) 0

y

∂ ∂
− =

∂ ∂

=
∂ =

∂

  (48) 

Homotopy perturbation method: By applying 
homotopy perturbation to Eq. 48, we have: 
 

  

2
2

2

2 2
2

2 2

H( ,p) 4(1 p)x [ (x,y)]
y

p[ (x,y) 4x [ (x,y)]] 0
x y

∂
υ = − − υ

∂

∂ ∂+ υ − υ =
∂ ∂

 (49) 

 
 Substituting Eq. 9 into Eq. 48 and rearranging 
based on powers of p-terms, we have:

 

   

  
2

0 2
02p : 4x [ (x,y)] 0

y
∂− υ =

∂
 (50) 

 

  
2 2

1 2
1 02 2p : 4X [ (x,y)] (x,y) 0

y x
∂ ∂− υ + υ =

∂ ∂
 (51) 

 

  
2 2

2 2
2 12 2p : 4x [ (x,y)] (x,y) 0

y x
∂ ∂− υ + υ =

∂ ∂
 (52) 

 

  
2 2

3 2
3 22 2p : 4x [ (x,y)] (x,y) 0

y x
∂ ∂− υ + υ =
∂ ∂

 (53) 

 

  
2 2

4 2
4 32 2p : 4x [ (x,y)] (x,y) 0

y x
∂ ∂− υ + υ =

∂ ∂
 (54) 

 
 To determine u, the above equations should be 
solved. Considering the appropriate initial conditions 
we have: 
 

  
2

0 0

i i y 0

v (x,0) x , v (x ,0 ) 0,
y

v(x,0) 0, v (x ,0 ) | 0,i 1,2,...
y =

∂
= =

∂
∂

= = =
∂

 (55) 

 
 The Solution of Eq. 50-55 may be written as 
follows: 
 
  2

0 (x,y) xυ =   (56) 
 

  
2

1 2

1 y
(x,y)

4 x
υ =  (57) 

 

  
4

2 6

1 y
(x,y)

3 2 x
υ =  (58) 

 

  
6

3 10

7 y
(x,y)

640x
υ =  (59) 

 

  
8

4 14

11 y
(x,y)

2048x
υ =  (60) 
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 Therefore the solution is: 
 

 
2 4 6 8

2
2 6 10 14

1 y 1 y 7 y 11 y
u(x,y) x

4 x 3 2 x 640x 2048x
= + + + +  (61) 

 
Variational iteration method: First we construct a 
correction functional like example 1, as follows: 
 

   

y 2

n 1 n 2
0

2
2

n n2

u (x,y) u (x,y) ( )[
x

u (x, ) 4 x ( u (x, ))]d

+
∂= + λ τ

∂

∂
τ − τ τ

∂τ

∫
  (62) 

 
 Its stationary conditions can be obtained as 
follows: 
 

   

2
2 2

2

2

n2

d d
1 4x ( (y)) 0, 4x ( ( )) 0

dy d

(y)[ u (x,y)] 0, (y) 0
x

+ λ = − λ τ =
τ

∂
λ = λ =

∂

  (63) 

 
 The Lagrangian multiplier can therefore be 
identified as: 
 
   

2 2

1 1 y
( )

4 x 4 x
τ

λ τ = − +   (64)

 

 

 
 As a result, we obtain the following iteration 
formula: 
 

   

y 2

n 1 n 2
0

2
2

n n2

u (x,y) u (x,y) ( )[
x

u ( x , ) 4 x ( u (x, ))]d

+

∂
= + λ τ

∂

∂τ − τ τ
∂τ

∫
  (65) 

 
 Now we start with an arbitrary initial 
approximation that satisfies the initial condition: 
 
   2

0u (x,y) x=   (66) 
 
 Using the above variational formula 65, we have: 
 

   

y 2

1 0 2
0

2
2

0 02

u (x,y) u (x,y) ( )[
x

u (x, ) 4x ( u (x, ))]d

∂= + λ τ
∂

∂
τ − τ τ

∂τ

∫
  (67) 

 
 Substituting Eq. 66 in to Eq. 67 and after 
simplifications, we have: 
  

   
2 2

1 2

1 4 x y
u(x,y)

4 x
+

=   (68) 

 In the same way, we can obtain U2(X, Y), U3(X, Y) 
and U4(X, Y) as follows: 
 

   
8 4 2 4

2 6

1 16x 8x y 3y
u(x ,y)

16 x
+ +

=   (69) 

 

 
12 8 2 4 4 4

3 10

1 64x 48x y 36x y 63y
u (x,y)

64 x
+ + +

=   (70) 

 

 
2 4 6 8

2
3 2 6 10 14

1 y 1 y 7 y 11 y
u (x,y) x

4 x 32x 640x 2048x
= + + + +   (71) 

 
 And so on. In the same manner the rest of the 
components of the iteration formula can be obtained. 
  

RESULTS 
 
The solution of hyperbolic equations has been 
investigated analytically by Homotopy Perturbation 
Method (HPM) and Variational Iteration Method 
(VIM). U(X, Y) for both Eq. 47 and 71 have been 
shown in Fig. 1 and 2 respectively. Also in Tables 1-3, 
for some values of x and y, results for both methods 
have been compared with exact solution. The results 
have shown that they are considerably capable of 
solving a wide range of hyperbolic equations. 
 

 
 

Fig. 1: 3D plot of u (x, y) for Eq. 47 
 

 
 

Fig. 2: 3D plot of u (x, y) for Eq. 71 
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Table 1: The solution of u(x, y) for different values of x and y 
  U(x, y) U(x, y) U(x, y) 
x y (HPM)  (VIM)  (exact result) 
0.035 0.071 0.106 0.106 0.107 
0.139 0.074 0.213 0.213 0.212 
0.448 0.077 0.525 0.525 0.526 
0.758 0.075 0.833 0.833 0.834 
0.819 0.152 0.971 0.971 0.971 
 
Table 2: The solution of u(x, y) for different values of x and y 
  U(x, y)  U(x, y) U(x, y) 
x y (HPM)  (VIM)  (exact result) 
0.033 0.067 0.0374 0.0374 0.0378 
0.133 0.067 0.1442 0.1442 0.1444 
0.833 0.067 0.8911 0.8911 0.8911 
0.067 0.133 0.0848 0.0848 0.0844 
0.767 0.133 0.8779 0.8779 0.8778 

 
Table 3: The solution of u(x, y) for different values of x and y 
  U(x, y) U(x, y) U(x, y) 
x y (HPM)  (VIM)  (exact result) 
0.35714 0.034286 0.12987 0.12987 0.12918 
0.35357 0.035180 0.12749 0.12749 0.12709 

 
DISCUSSION 

 
 In this study, the authors have intended to show 
that the two methods, HPM and VIM, are considerably 
capable of solving a wide range of hyperbolic 
equations. The examples given in this study reveal that 
both methods are very effective and have high 
accuracy. In some cases as Examples 1 and 2, after 
some steps the remaining terms would vanish and we 
derive the exact solution. In the cases as Example 3, the 
approximation can be obtained to any desired number 
of terms. 
 VIM and HPM do not need small parameters, the 
limitations and non-physical assumptions required in 
classical perturbation methods are eliminated, 
furthermore, VIM and HPM can overcome the 
difficulties arising in the calculation of Adomian 
polynomials. They do not require linearization; both 
methods are very promising tools for hyperbolic 
equations. Therefore, both methods will find 
applications in various fields. 
 

CONCLUSION 
 

 The methods of HPM and VIM have been 
successfully performed for hyperbolic equations. In 
these cases, we obtained excellent performances that 
might lead to promising approaches for many 
applications. All the examples showed that the results 
of the present methods were in excellent agreement 
with exact solutions. It is capable to converge to correct 
results with fewest number of iterations or even once, 
for some cases. 
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