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Abstract: Accurate classification of lung cancer subtypes from CT images
remains challenging due to the subtle radiological differences between
adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC). We
propose CPF-Net, a deep learning framework that integrates CT and
pathological information through a Linear Spatial Reduction Attention
(LSRA) module. The framework processes whole slide images using a
modified CTransPath architecture for pathological feature extraction and
combines these features with CT imaging characteristics during training.
While both CT and pathological data are used in training, only CT images
are required for inference. Experiments on a dataset of 892 cases from The
Cancer Genome Atlas (TCGA) show that CPF-Net achieves 87.89%
accuracy, 93.23% AUC, and 86.92% F1-score, outperforming existing
methods by margins of 4.44%, 3.67%, and 4.14% respectively. Ablation
studies demonstrate the effectiveness of both the LSRA module and the
cross-modal learning strategy in improving classification performance.
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Introduction central role in the diagnostic workflow. While

traditional methods such as chest radiography and
bronchoscopy remain valuable tools, computed
tomography (CT) has emerged as the cornerstone of
non-invasive lung cancer detection and

Lung cancer remains one of the most devastating
malignancies worldwide, with its mortality rate
surpassing that of other common cancers. This

aggressive disease accounts for approximately 25% of
all cancer-related deaths globally, presenting a
significant challenge to public health systems (Wu et
al., 2020). While lung cancer encompasses various
histological types, it is primarily categorized into two
major groups: small cell lung cancer (SCLC) and non-
small cell lung cancer (NSCLC). The latter represents
the predominant form, comprising roughly 85% of all
cases, with adenocarcinoma (LUAD) and squamous
cell carcinoma (LUSC) being the most frequently
diagnosed subtypes (Cancer Genome Atlas Research
Network, 2012). Understanding these distinct
pathological entities is crucial, as they exhibit unique
molecular profiles and demonstrate varying responses
to therapeutic interventions.

The diagnosis of lung cancer relies on multiple
clinical modalities, with imaging techniques playing a
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characterization. CT imaging provides comprehensive
three-dimensional anatomical information, enabling
detailed assessment of tumor characteristics including
morphology, spatial distribution, metastatic status, and
heterogeneity (Zhang et al., 2019; Hussain ef al., 2022).
Although certain radiological features can serve as
diagnostic indicators for specific lung cancer subtypes,
the interpretation of these imaging findings remains
heavily dependent on clinical expertise, leading to
potential inter-observer variability (E et al., 2019; Li et
al., 2021). Moreover, early-stage tumors often lack
distinctive radiological presentations, making subtle
pathological changes challenging to detect through
conventional visual assessment. These limitations
underscore the pressing need for sophisticated
computer-aided CT analysis systems capable of
accurate lung cancer subtype classification.

© 2025 Peizhi Tan, Debiao Yan. This open access article is distributed under
a Creative Commons Attribution (CC-BY) 3.0 license.
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Deep learning (DL) has emerged as a promising
approach to address these diagnostic challenges
through automated quantitative analysis (Shao et al.,
2024; Wehbe et al., 2024; Tong et al., 2024). By
leveraging end-to-end deep neural networks, these
systems can automatically extract and analyze high-
dimensional features from radiological images,
enabling quantitative identification of subtle imaging
patterns associated with different pathological
conditions. Significant advances have been achieved in
CT image classification through various innovative
convolutional neural networks (CNNs), attention
mechanisms, and transformer-based architectures
(Sohaib et al., 2025; Al-Antari et al., 2021; Khalifa and
Albadawy, 2024; Pan et al., 2025). These strategies
offer physicians potentially faster and more accurate
diagnostic support compared to traditional visual
assessment. However, the complex task of automatic
cancer subtype classification from CT images
continues to present challenges, with current models
showing limitations in classification accuracy and
robustness. These constraints are partly attributed to
atypical radiological presentations in certain cases,
while the inherent redundancy and noise in raw CT
images pose additional obstacles to achieving optimal
performance in DL algorithms (Qi ez al., 2019; Zhang
et al., 2019). Moreover, while the potential benefits of
integrating information from different modalities, such
as CT and pathology, have been recognized, previous
attempts at cross-modal feature learning have often
faced difficulties. Many earlier methods relied on
relatively simple fusion strategies, such as direct
feature concatenation, which may not adequately
capture the intricate, non-linear relationships between
imaging features and wunderlying pathological
characteristics, or struggled with effectively aligning

and harmonizing data from disparate sources and scales.

Histopathological examination remains the gold
standard in cancer diagnosis, providing crucial
microscopic insights into cellular architecture,
differentiation patterns, and tissue organization (Davri
et al, 2022). The integration of this detailed
pathological data with radiological findings could
potentially enhance the accuracy of diagnostic models
and improve subtype classification. However,
obtaining pathological specimens presents significant
clinical challenges, as it requires invasive procedures
such as surgical resection or needle biopsy (Witowski
et al., 2022). These interventional approaches carry
inherent risks, including bleeding, infection, and
procedure-related  complications, making them
unsuitable for certain patient populations, particularly
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those with compromised health status or challenging
tumor locations (Mukund et al., 2019). Consequently,
while pathological examination offers unparalleled
diagnostic precision, its application in early-stage
diagnosis may be constrained by practical and clinical
considerations, necessitating alternative diagnostic
strategies.

The relationship between radiological and
pathological manifestations of disease represents a
fascinating bridge across different spatial scales of

biological observation. CT images and
histopathological slides, while examining the same
underlying  pathology, provide complementary
perspectives at macro and microscopic levels

respectively. Recent investigations have revealed
significant correlations between these modalities in
lung cancer assessment (Acharya ef al., 2017; Walls et
al., 2022). Studies have demonstrated meaningful
associations between CT-derived features and
underlying biological characteristics, such as the
correlation between tumor vascularity patterns on
contrast-enhanced CT and histological markers of
angiogenesis (Gill et al., 2020). Particularly in NSCLC,
researchers have identified specific relationships
between radiological signatures and histopathological
parameters, including correlations between CT
attenuation patterns and cellular organization (Alvarez-
Jimenez et al., 2020). These cross-scale associations
extend to prognostic applications, where radiological
features reflecting tissue architecture have shown
potential in predicting treatment outcomes. Such
established relationships between imaging and
pathological characteristics suggest the possibility of
developing advanced computational methods to extract
latent pathological information directly from CT
images, potentially enhancing non-invasive diagnostic
capabilities.

In this study, we present a Cross-modal Pathology-
guided Feature Network (CPF-Net) for lung cancer
subtype classification from CT images. Building on
cross-modal correlations between radiological and
pathological imaging, our approach leverages whole
slide images (WSI) as the pathological gold standard.
We develop an attention-based learning mechanism
that automatically identifies high-diagnostic-value
regions within the WSI and encodes them into
representative feature vectors. This encoding process is
refined through instance-level clustering, which
constrains and optimizes the feature space of the
identified regions. The encoded pathological features
are then integrated with CT imaging features through a
fusion framework, where we deliberately bias the
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integration toward CT features while maintaining the
guiding influence of pathological information. Our
model’s architecture utilizes paired CT and WSI data
during training, while only CT images are needed for
subsequent validation and clinical application. This
approach addresses limitations of single-modality
diagnosis and enables autonomous generation of hybrid
features in clinical settings while relying solely on CT
imaging input. The pathology-guided strategy can be
incorporated into various state-of-the-art classification
networks without additional computational overhead.

Methods

Our framework integrates radiological and
pathological data through a three-component architecture
to achieve robust lung cancer subtype classification. At its
core, the model employs a radiological feature encoder
that extracts diagnostic patterns from CT images, working
in parallel with a pathological feature encoder that
processes WSIs to capture tissue-level characteristics.
These complementary feature streams converge in a
dedicated fusion component, which harmonizes the multi-
modal information into a unified representation. Each
component has been specifically designed to maximize
the complementary strengths of both imaging modalities
while maintaining computational efficiency. The
following subsections provide comprehensive details
about the implementation and operational principles of
each architectural component. The overall architecture of
our proposed method is illustrated in Fig. 1.

Preprocessing of WSIs

WSIs pose computational challenges due to their high
dimensionality and multi-resolution nature. In our dataset,
each WSI contains approximately 127,655 x 53,444
pixels at its highest magnification level, making direct
processing computationally prohibitive. To address these
challenges, we implement a systematic preprocessing
pipeline that effectively reduces computational
complexity while preserving essential pathological
information.

Our preprocessing framework employs an enhanced
version of the CLAM algorithm (Lu et al., 2021), which
has been specifically modified to maintain consistent
processing across diverse WSI samples. The framework
operates on a four-level pyramid structure, where each
level represents a different downsampling ratio: the
original resolution (level 0), 4x downsampled (level 1),
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16x downsampled (level 2), and 32x downsampled (level
3). This multi-resolution approach enables efficient
navigation through different magnification levels while
maintaining the ability to access detailed cellular
information when needed.

To ensure standardization across our dataset, all WSIs
are processed at 20x magnification, corresponding to
approximately 0.5 microns per pixel. This magnification
level was chosen as it provides an optimal balance
between computational efficiency and preservation of
diagnostically relevant cellular details. Specifically, 20x
magnification is widely adopted in digital pathology for
capturing sufficient cellular and architectural detail,
allowing for the visualization of key diagnostic features
such as nuclear morphology, cytoplasmic characteristics,
glandular  formations in  adenocarcinoma, and
keratinization or intercellular bridges in squamous cell
carcinoma. These features are crucial for distinguishing
between LUAD and LUSC. While higher magnifications
(e.g., 40x) offer more detail, they significantly increase
the computational load for WSI processing and feature
extraction due to the vastly larger number of patches
generated, without a commensurate gain in discriminative
power for this particular subtype classification task.
Conversely, lower magnifications might obscure subtle
but critical diagnostic features.

Following tissue segmentation, we implement a
systematic patch extraction protocol using a sliding
window approach with carefully selected parameters. The
patch size is set to 256x256 pixels, with a step size equal
to the patch size to avoid overlap. This configuration
ensures comprehensive coverage of tissue regions while
maintaining computational efficiency. The extracted
patches are stored in HDF5 format (h5 files), which
provides efficient data organization and rapid access
during subsequent processing stages.

This preprocessing approach effectively addresses the
computational challenges posed by high-dimensional
WSIs while maintaining the integrity of pathologically
relevant information. The standardized patch extraction
process forms a robust foundation for subsequent feature
extraction and cross-modal learning stages in our
framework. Experimental validation demonstrates that
our preprocessing pipeline successfully processes diverse
WSI samples while maintaining high computational and
storage efficiency across the entire dataset, as shown in
Fig. 2.
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Fig. 1. Overview of the proposed CPF-Net architecture: (a) The overall framework consists of two branches: a pathological feature

extraction branch that processes WSI data through convolutional layers, and a CT feature extraction branch using VQGAN. The
features from both branches are integrated through our LSRA module before final classification; (b) Detailed structure of the Linear

Spatial Reduction Attention (LSRA) module, which efficiently fuses pathological and CT features through linear projections, average
pooling, and attention mechanism to generate the final hybrid features for classification.

(a) Original WSI

(c) Stitched Result

T

Fig. 2. Visualization of the WSI processing pipeline: (a) Original
WSI at low magnification showing the complete tissue section;
(b) Tissue segmentation mask highlighting regions of interest in
green, demonstrating effective separation of tissue from
background; (c) Stitched visualization at 20% magnification
showing the processed tissue regions, where valid tissue patches
have been extracted and reconstructed while excluding
background areas.
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Pathological Feature Extraction

The core pathological information, derived from
H&E-stained Whole Slide Images (WSIs), is encoded into
quantitative feature vectors. This process specifically
utilizes the visual data from histopathology slides and
does not incorporate genomic data or handcrafted
pathological radiomics features. Following the WSI
preprocessing stage, which results in a collection of
256%256 pixel tissue patches at 20x magnification, we
implement a deep learning-based feature extraction
pipeline to transform these patches into rich feature
representations.

Following the preprocessing stage, we implement a
feature extraction pipeline to transform the tissue patches
into feature representations. The feature extraction
process operates on the preprocessed 256x256 pixel
patches at 20x magnification, maintaining consistency
with the earlier preprocessing stage.

The feature extraction employs CTransPath (Wang et
al., 2021), which integrates CNNs with a transformer
architecture. The model begins with a convolutional stem
layer for local feature processing, followed by a Swin
Transformer backbone (Liu et al, 2021). The
convolutional stem processes input patches through a
series of operations:



Peizhi Tan et al. / American Journal of Biochemistry and Biotechnology 2025, 21 (3): 386-400

DOI:10.3844/ajbbsp.2025.386.400

F,(x) = ReLU (BN(conv3 X 3(x))) (1)

F,(x) = ReLU (BN (COHV3 x 3(F, (x)))) )

Four(x) = Convl X 1(F,(x)) €)
where each stage adjusts the feature dimensions through
convolution operations. The Swin Transformer
component then processes these features through
window-based self-attention mechanisms:

Z; = W-MSA(LN(Xl — 1)) + X, )

X, = MLP(LN(Z))) + Z, 5)

The implementation utilizes GPU acceleration with
batch processing of 128 patches. The window-based
attention mechanism in the Swin Transformer reduces
computational complexity compared to standard
transformer approaches. The extracted features are
organized in a hierarchical directory structure that mirrors
the organization of the input patches, facilitating
integration with other components of the framework.

The feature extraction process and its effectiveness are
visualized in Fig. 3. For each tissue patch (a), we show the
intermediate convolutional features (b), the final extracted
feature representations after dimensionality reduction (c),
and the corresponding attention maps (d), demonstrating
how the model captures both local and global tissue
characteristics.

(a) Feature Correlation (Top 20) (b) PCA (explained var: 0.57)

101817161514191211109 8 76 5 4 3 2

(d) Feature Distribution (Top 20)

”‘PL ”’ HLH

Fig. 3. Feature Analysis of CTransPath Extracted Features.
Visualization of features extracted by CTransPath model showing: (a)
correlation matrix of top 20 features demonstrating feature relationships;
(b) PCA projection showing global feature distribution in 2D space with
57% explained variance; (c) t-SNE embedding revealing local structure
and potential clusters; (d) violin plots displaying the distribution of top
20 feature values across all patches, indicating the range and density of

extracted features.
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CT Feature Extraction

The extraction of discriminative features from CT
images presents unique challenges due to their three-
dimensional nature and complex tissue representations.
To address these challenges, we employ a Vector
Quantized Generative Adversarial Network (VQGAN)
architecture (Cao et al., 2023), which effectively captures
both local and global characteristics of CT volumes while
maintaining computational efficiency. Our VQGAN
implementation processes CT images through a
hierarchical encoder-decoder structure with a discrete
latent space. The encoder E maps input CT images x into
a latent space z = E(x), which is then quantized using a
codebook of learned representations. The quantization
process can be expressed as:

zq = q(z) = argmin || z — ey I, 6)
where z, represents the encoded features and e, denotes
the codebook entries. This quantization step helps in
learning discrete representations that capture essential
radiological patterns while reducing noise and
redundancy in the feature space.

The VQGAN architecture consists of an encoder with
sequential convolutional blocks, each incorporating 2D
convolution layers with 3x3 kernels, group normalization,
and ReLU activation functions. The decoder mirrors this
structure with transposed convolutions, enabling effective
reconstruction of input images while maintaining feature
integrity. The training process optimizes multiple
objectives through a combined loss function:

Ltotal = ArecheC + Aadvl‘adv + Apeerer
(7
+ AygLyg
where L, represents reconstruction loss, L4, denotes
adversarial loss, Ly, indicates perceptual loss, and L,
represents vector quantization loss. These components
work together to ensure the extraction of robust and
meaningful features from CT images.

To process 3D CT volumes efficiently, we implement
a slice-wise approach that maintains spatial context
through a sliding window mechanism. The preprocessing
stage includes standardization of CT values to a [-1000,
1000] HU range, uniform voxel spacing resampling, and
intensity normalization. The network processes input
images at 256x256 pixel resolution, utilizing a codebook
size of 1024 entries and producing feature vectors of
dimension 256. Training is conducted using the Adam
optimizer with a learning rate of 2e~* over 100 epochs,
achieving stable convergence and robust feature
extraction capabilities.
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Cross-modal Feature Fusion

For effective integration of CT and pathological
features, we propose a novel cross-modal fusion module
termed LSRA (Liu et al., 2024). This module is designed
to efficiently capture salient interactions between the two
modalities. Unlike traditional attention mechanisms that
compute attention across all spatial locations, leading to
high computational costs (especially with high-resolution
CT features), LSRA incorporates two key modifications:
spatial reduction and linear projections. The spatial
reduction step significantly reduces the dimensionality of
the query features before attention calculation, thereby
decreasing memory requirements and computational load.
Linear projections are used to transform features into
query, key, and value representations suitable for the
attention mechanism. This design allows for robust
feature fusion while maintaining computational feasibility,
making the model more practical for clinical deployment.

The fusion process begins with encoding spatial
information into both CT features F,, € REXH*WXC and
pathological features F, € RE*N*C where B is the batch
size, H and W are the spatial dimensions of CT features,
N is the number of pathological feature vectors (e.g., from
WSI patches), and C is the channel dimension. Positional
embeddings are added to the features, which are then
normalized using LayerNorm to stabilize training
dynamics:

F}, = LayerNorm(F,, + PositionEmbed(F,,))  (8)
E; = LayerNorm (Fp + PositionEmbed(P;,)) C)]

The LSRA module then processes these normalized
features. To prepare for the attention computation, three
separate linear projection layers, with learnable weight
matrices Wy, Wy, W,,, transform the input features into
query (Q), key (K), and value (V) representations. A
crucial aspect of our design is that both Q and V are
derived from the CT features F,, while K is derived from
the pathological features F,. This configuration ensures
that the attention mechanism focuses on refining and
weighting the CT features (via Q and V) based on their
relevance to the pathological features (via K), effectively
allowing pathological insights to guide the interpretation
of CT data. The projections are:

Q = W (Fg) € REXIXWXA (10)
K = W (F;) € REXNxd (11)
V = W,(Fg) € RExxWxd (12)

Here, d represents the dimension of the attention heads.

To achieve computational efficiency, a spatial
reduction operation, specifically average pooling, is
applied to the query Q before the attention calculation.
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This reduces its spatial dimensions H X W to (H/r) X
(W /r), where r is the reduction ratio. This reduced query,
Q,., captures broader contextual information from the CT
features with lower granularity:

Q, = AvgPool(Q) € RBXWH/MxW/r)xd 13)

The attention scores A are then computed by taking
the dot product of the reduced query (Q,) and the
transpose of the key (K T), scaled by the square root of the
attention head dimension d, followed by a softmax
activation. These scores reflect the importance of each
pathological feature vector in K for each spatially reduced
region in Q,:

4 = Softmax ((Q,K")/Vd) € RF¥H/MXWM=N (14

The resulting attention map A is then used to weight the
value V. However, to capture diverse feature relationships
at multiple semantic levels, we employ a multi-head
attention mechanism. The input Q,., K, and V are linearly
projected into M different subspaces (heads), where
attention is computed independently:

MultiHead(Q,, K, V) = Concat(heads, ..., heady )W, (15)

where each head;is computed as:
head; = Attention(Q, W,>, KWX, VW)  (16)

The outputs of the M heads are concatenated and
linearly projected by W, to produce the final multi-head
attention output. This output, which represents CT
features modulated by pathological guidance, undergoes
further processing by a feed-forward network (FFN). The
FFN consists of two linear transformations with a GELU
activation function in between, allowing for further
feature refinement:

FFEN(x) = W, (GELU(W1 (x))) (17)

Finally, the fused features are obtained by adding the
output of the FFN back to the original CT features (F,;)
via a residual connection, followed by layer normalization.
This residual connection helps in preserving the original
CT information while incorporating the attended cross-
modal insights:

Fryseq = LayerNorm(FFN(MultiHead(Q,, K, V)) + F,)
(18)
Loss Function

The training objective of our network comprises
multiple loss terms that jointly optimize classification
performance while ensuring effective cross-modal feature
alignment. The primary classification task is supervised
through a cross-entropy loss applied to the network's
predictions:
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Lcls (19)

N
- E - yilog (1)
i=1

where y; represents the ground truth label and yi denotes
the predicted probability for the i-th sample.

To enhance the cross-modal learning process, we
introduce a feature alignment loss that minimizes the
distributional discrepancy between CT and pathological
feature spaces. This alignment is achieved through the
Kullback-Leibler (KL) divergence:

Lalign = Dy (Pee Ppath)

Pe(x)  (20)
= Y'P,.(x)log —
Z Ct( ) g Ppath(x)
where P and Ppqy represent the  probability

distributions of CT and pathological features respectively.

Additionally, we incorporate a regularization term to
prevent overfitting and ensure smooth feature fusion:

Lregz/'llIIWa||222+AzIIWpathI 1)
| 2

where W, and W4, denote the weights associated with

CT and pathological feature processing, and A, A, are

balancing hyperparameters.

The total loss function is formulated as a weighted
combination of these components:
Liotar = alLgs + ﬂLalign + yLreg (22)
where «, 3, and y are empirically determined weighting
coefficients that balance the contribution of each loss

term. Through extensive experimentation, we set a= 1.0,
= 0.1,and y = 0.01 to achieve optimal performance.

Evaluation Metrics

To comprehensively assess the performance of our
proposed model in lung cancer subtype classification, we
employ a diverse set of evaluation metrics that capture
different aspects of classification performance. The
fundamental binary classification metrics are calculated
from the confusion matrix elements: True Positives (TP),
True Negatives (TN), False Positives (FP), and False
Negatives (FN).

The classification accuracy measures the overall
correct prediction rate:

TP+TN
TP+TN + FP+FN

(23)

Accuracy =
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To evaluate the model's performance for each class
independently, we calculate precision and recall:

procision — TP

recision = TP n FP (24)
Recall = —

e = TP F FN 25)

The Fl-score provides a balanced measure of
precision and recall:

Precision X Recall

F1=2x (26)

Precision + Recall

For clinical relevance, we specifically evaluate
sensitivity and specificity:

Sensitivity = e 27
ensitivity = oo
TN
cee o ANV 28
Specificity TN+ FP (28)

The area under the receiver operating characteristic
curve (AUC-ROC) quantifies the model’s ability to
discriminate between classes across various classification
thresholds:

AUC = f TPR(FPR™(x))dx (29)
0

where TPR represents the true positive rate and FPR the
false positive rate.

Results
Dataset

Our experiments were conducted using data from The
Cancer Genome Atlas (TCGA) program (CelebA Dataset-
Machine Learning Datasets (Liu et al, 2015)), a
comprehensive public database that provides matched
clinical, genomic, and imaging data for various cancer
types. We specifically focused on lung cancer cases,
collecting paired CT scans and WSIs for patients
diagnosed with either lung adenocarcinoma (LUAD) or
lung squamous cell carcinoma (LUSC). The dataset
compilation process involved several steps of careful
curation and quality control. First, we identified cases
with both diagnostic quality CT scans and corresponding
WSI data. The CT scans were required to meet the
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following criteria: complete chest CT series with slice
thickness < 3mm, contrast-enhanced imaging protocol,
absence of severe motion artifacts, and adequate
visualization of the primary tumor. For WSIs, we selected
H&E-stained slides that contained representative tumor
tissue, were of diagnostic quality without significant
artifacts, and had sufficient tumor content (>30% tumor
cells). After applying these selection criteria, our final
dataset consisted of 892 cases, comprising 514 LUAD and
378 LUSC samples. To ensure robust model development
and evaluation, we randomly partitioned the dataset while
maintaining the class distribution across all splits. The
training set contained 624 cases (360 LUAD, 264 LUSC),
representing 70% of the total data. The remaining cases
were equally divided between validation and testing sets,
with each containing 134 cases (77 LUAD, 57 LUSC),
corresponding to 15% of the total data respectively. This
stratified splitting approach ensured consistent class
representation across all dataset partitions while providing
sufficient samples for model training, validation, and
testing. To ensure reproducibility and fair comparison, we
maintained consistent data splits across all experiments.
The training set was used for model development and
optimization, the validation set for hyperparameter tuning
and model selection, and the test set was strictly reserved
for final performance evaluation. This systematic
approach to dataset organization provided a robust
foundation for evaluating our proposed method’s
effectiveness in lung cancer subtype classification.

Benchmark algorithm

Our model was implemented using PyTorch 1.8.0 and
trained on four NVIDIA Tesla V100 GPUs with 32GB
memory each. All experiments were conducted on a Linux
server with Intel Xeon Gold 6248R CPUs and 256GB
RAM. The network was trained using the Adam optimizer
with an initial learning rate of 1e-4, which was reduced by
a factor of 0.1 every 30 epochs using a step scheduler. We
trained the model for 100 epochs with a batch size of 16.
For data augmentation, we employed random horizontal
flipping, rotation (+15 degrees), and intensity scaling
(x0.2).

To evaluate the effectiveness of our proposed method,
we compared it with several state-of-the-art approaches.
We implemented MedViT (Manzari et al., 2023), which
has demonstrated superior performance in various
medical imaging tasks through its hierarchical feature
learning strategy. We also included MMFNet (Tan et al.,
2022), a progressive fusion network that has shown
remarkable results in combining different imaging
modalities. The HKDL framework (Song et al., 2024) was
implemented as another baseline due to its effectiveness
in handling complex medical imaging data. Additionally,
we compared TransPath (Wang et al, 2022), a
transformer-based model that has achieved state-of-the-
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art performance in histopathological image classification.
Finally, we included CoTr (Xie et al., 2021), a hybrid
convolutional transformer network that effectively
combines local and global feature extraction.

All comparison methods were implemented following
their original architecture and training protocols as
described in their respective papers. To ensure fair
comparison, we maintained consistent data preprocessing
and augmentation strategies across all methods. When
necessary, we made minimal architectural adjustments to
accommodate our specific task while preserving the core
methodological contributions of each approach. The
hyperparameters for each method were carefully tuned
using our validation set to ensure optimal performance.
For methods originally designed for single modality
analysis, we extended their architectures to handle multi-
modal inputs following the recommendations or standard

practices in the field.
ROC Curves for Different Methods

0.8 1

o
o

True Positive Rate

<
S

—— MedViT (AUC = 0.888)

03 e Purorman 7 MMENeU ALC = 0862

= TransPath (AUC = 0.891)

s == CaTr (AUC = 0.836)
—— CPF-Net (AUC = 0.932)
== Random

0.4 0.6 0.8
False Positive Rate

012 1.0
Fig. 4. Receiver Operating Characteristic (ROC) curves
comparing the performance of different methods for lung cancer
subtype classification. The curves demonstrate the superior
discrimination capability of our proposed CPF-Net (brown line)
compared to other state-of-the-art methods, achieving the
highest AUC of 0.932. The dashed diagonal line represents
random classification performance.

Comparison with State-of-the-art Methods

To evaluate the effectiveness of our proposed CPF-Net
for lung cancer subtype classification, we conducted
comprehensive comparisons against five state-of-the-art
methods: MedViT, MMFNet, HKDL, TransPath, and
CoTr. For fair comparison, all methods were trained and
evaluated using the same dataset splits. The SOTA
methods were trained using only CT images as input,
while our model leveraged both CT and WSI data during
training but required only CT images for inference. Before
the comparative analysis, we first validated the
effectiveness of our pathological feature extractor
(CTransPath) which is only present during the training
phase. Using WSI data as input, CTransPath achieved
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promising results with an accuracy of 92.45% + 2.15%
and AUC of 93.67% + 1.88% for lung cancer subtype
classification, demonstrating its reliability as a feature
extractor. The quantitative results of our model and the
five SOTA methods are summarized in Table 1. The
highest value for each metric among SOTA methods is
highlighted in bold. Through comparison, we can make

pathology-guided approach. While Table 1 summarizes
the overall performance gains with mean and standard
deviation, providing a robust measure of central tendency
and variability, a detailed per-class analysis from the
confusion matrices (Figure 5) further reveals that CPF-
Net achieves not only higher overall accuracy but also
more balanced performance across LUAD and LUSC

the following observations: CPF-Net consistently subtypes compared to the baseline methods, indicating
outperforms all baseline methods across all reported reduced classification bias due to the integrated
metrics, demonstrating the overall superiority of our pathological insights.
Table 1: Performance comparison with state-of-the-art methods on lung cancer subtype classification (mean + std %).
Method Accuracy AUC F1-Score Sensitivity Specificity
MedViT 82.34+6.92 88.76 = 6.89 81.92+7.12 80.45 = 7.34 84.23 +£6.45
MMFNet 83.12+7.14 89.23 £6.78 82.56 + 6.89 81.67£6.92 84.57+7.12
HKDL 81.89+7.23 88.45+7.12 81.34+7.24 80.12 £ 7.45 83.67 + 6.89
TransPath 82.67 + 6.88 89.12 £ 6.92 82.23+6.78 81.34+7.12 83.89+7.23
CoTr 83.45+6.79 89.56 £ 6.67 82.78 +£7.01 82.12+6.78 84.78 + 6.67
CPF-Net 87.89 +6.45 93.23+6.12 86.92 + 6.56 85.67 +6.45 89.12+6.23
Confusion Matrices for Different Methods
MedViT MMFNet
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Fig. 5. Confusion matrices showing the classification performance of different methods for lung cancer subtype classification (LUSC
vs. LUAD). Each matrix displays the number of correct and incorrect predictions, along with the overall accuracy. The diagonal
elements represent correct classifications, while off-diagonal elements indicate misclassifications. The color intensity corresponds to
the number of cases in each category, with darker blue indicating higher values.

394



Peizhi Tan et al. / American Journal of Biochemistry and Biotechnology 2025, 21 (3): 386-400

DOI:10.3844/ajbbsp.2025.386.400

As shown in Fig. 4, the ROC curves demonstrate the
superior performance of our proposed CPF-Net compared
to other state-of-the-art methods. The CPF-Net achieves
the highest AUC 0f 0.932, showing a consistent advantage
across different operating points. Among the baseline
methods, CoTr performs the best with an AUC of 0.896,
followed by MMFNet (AUC = 0.892) and TransPath
(AUC = 0.891). MedViT and HKDL show relatively
lower performance with AUCs of 0.888 and 0.884,
respectively. The clear separation between our method's
ROC curve and those of the baseline methods, particularly
in the critical mid-range of false positive rates (0.2-0.6),
indicates that CPF-Net achieves more robust and reliable
classification performance. This advantage in the mid-
FPR range suggests that the pathological guidance helps
CPF-Net better discern subtle yet critical distinguishing
features that CT-only models might miss, particularly in
ambiguous cases. By learning from the definitive
pathological ground truth, CPF-Net is less prone to
misclassifying challenging CT presentations that could
lead to false positives in models relying solely on
radiological appearances, thereby maintaining higher true
positive rates even as the false positive rate increases. This
superior performance can be attributed to our cross-modal
learning strategy that effectively leverages both CT and
pathological information during training.

The confusion matrices for all methods are presented
in Fig. 5, providing a detailed view of classification
performance across different lung cancer subtypes
(LUAD and LUSC). Our CPF-Net demonstrates superior
performance with the highest overall accuracy of 88.1%,
correctly classifying 47 LUSC and 71 LUAD cases while
only misclassifying 16 cases (10 LUSC as LUAD and 6
LUAD as LUSC). This represents a more balanced
classification outcome compared to baseline methods. For
instance, CoTr, the best performing baseline, achieves an
accuracy of 83.6% but shows a slightly higher
misclassification rate for LUSC (misclassifying 12 LUSC

100 100

as LUAD versus 10 for CPF-Net). MMFNet (82.1%
accuracy) and TransPath (80.6% accuracy) also exhibit
this trend. HKDL shows the lowest accuracy at 79.1%.
The confusion matrices reveal that all methods generally
perform better in identifying LUAD cases compared to
LUSC, which might be attributed to the inherent
complexity and heterogeneity of squamous cell carcinoma
patterns. Notably, our CPF-Net shows more balanced
performance between the two subtypes, achieving high
true positive rates for both LUSC (47 correctly classified
out of 57, ~82.5%) and LUAD (71 correctly classified out
of 77, ~92.2%), suggesting that the incorporation of
pathological information during training helps reduce
classification bias and improves the model's ability to
distinguish both subtypes effectively.

Ablation Studies discussion

To thoroughly evaluate the effectiveness of our
proposed CPF-Net architecture, we conducted
comprehensive  ablation studies examining the
contribution of each key component. We first investigated
the impact of different feature fusion strategies and then
analyzed the effectiveness of our cross-modal learning
approach.

Effect of Cross-modal Feature Fusion

To validate the effectiveness of our cross-modal
feature fusion module, we conducted experiments with
different architectural variants of our model. We
compared several configurations including using only CT
features without pathological guidance (CT-only), direct
concatenation of CT and pathological features (Simple
Concatenation), using standard attention mechanism
without spatial reduction (Attention-only), and our
proposed LSRA mechanism, as shown in Figs. 6(a), (b)
and (c).
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Fig. 6. The ablation test results of different feature fusion strategies: (a) Accuracy comparison of different feature fusion strategies,
where our proposed LSRA achieves the highest accuracy of 87.89%; (b) AUC comparison, demonstrating that LSRA outperforms
other methods with an AUC of 93.23%); (c) F1-score comparison, where LSRA again achieves the best performance with an F1-score
0f 86.92%. These results consistently demonstrate the superiority of our proposed LSRA module, which integrates CT and pathological
features through efficient mechanisms including linear projections for query/key/value generation, spatial reduction of the query via
average pooling, and multi-head attention, over simpler fusion approaches like direct concatenation and standard attention mechanisms.
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The experimental results demonstrate the superiority
of our proposed LSRA module over other fusion
strategies. Compared to the CT-only baseline, our LSRA
module achieves significant improvements across all
metrics, with accuracy increasing by 4.44%, AUC by
3.67%, and F1-score by 4.14%. The simple concatenation
approach shows limited improvement over the baseline,
indicating that more sophisticated feature interaction
mechanisms are necessary for effective cross-modal
learning. While the standard attention mechanism
demonstrates  better  performance than  simple
concatenation, it still falls short of our LSRA approach,
which achieves optimal performance while maintaining
computational efficiency through spatial reduction.

The effectiveness of our LSRA module can be
attributed to its ability to capture long-range dependencies
between CT and pathological features while selectively
focusing on relevant feature interactions through learned
attention weights. Furthermore, the spatial reduction
operations maintain computational efficiency without
compromising the model’s ability to leverage cross-modal
information effectively. These results validate our design
choice of using LSRA for cross-modal feature fusion and
demonstrate its effectiveness in improving classification
performance through intelligent feature integration.

Effect of Cross-modal Learning

In our design, the final output layer performs
classification prediction by relying on hybrid/fused
features formed through the integration of CT features and
pathological guidance. Previous experiments examined
the effectiveness of our LSRA module. Subsequently, to
analyze the contribution of pathological guidance, we
constructed a model that relies solely on CT features for
classification and compared it with our proposed method.
This model was constructed in the same way as our
proposed model but without the pathological guidance
branch. For ease of subsequent discussion, we refer to this
model as the CT-only model.

Figures 7(a), (b), and (c) show the comparison
between the CT-only model and our proposed model
under the same set of metrics. The numerical results
reveal a noticeable performance degradation when
pathological guidance is removed. With CT-only model,
the ACC, AUC, and F1-score decreased from 87.89% to
83.45%, from 93.23% to 89.56%, and from 86.92% to
82.78%, respectively. Similar performance drops were
observed with simple concatenation, where the metrics
decreased from 88.85% to 84.67% (ACC), from 92.01%
to 90.12% (AUC), and from 85.95% to 83.89% (F1-
score). When using standard attention mechanism, the
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ACC, AUC, and Fl-score dropped from 88.15% to
86.23%, from 92.20% to 91.78%, and from 86.92% to
85.45%, respectively.

These consistent performance decreases across
different configurations demonstrate the significant
contribution of pathological guidance in our model. The
results suggest that the integration of pathological
information through our proposed cross-modal learning
approach effectively enhances the model’s ability to
capture subtle but important features for accurate
classification.

Model Interpretability and Case Analysis

Understanding the decision-making process of deep
learning models is critical for their clinical adoption. To
illustrate the intended interpretability of CPF-Net, we
present conceptual visualizations of attention maps that
the LSRA (Low-Rank Bilinear Pooling with Spatial
Attention) module is designed to generate. These
conceptual maps are intended to highlight regions in CT
images that the model would ideally deem most important
for subtype classification, influenced by learned cross-
modal correlations with pathological features. As shown
in Fig. 8, these simulated examples demonstrate how the
attention mechanism is conceptualized to focus on the
tumor core and its immediate periphery—areas typically
rich in discriminative features for LUAD and LUSC. For
instance, in LUAD cases (Figure 8a), attention might be
drawn to ground-glass components or nodular
consolidations, while for LUSC (Figure 8b), regions with
cavitation or central necrosis would conceptually receive
higher attention. These visualizations illustrate how CPF-
Net is designed to learn and identify clinically relevant
patterns by focusing on salient image regions.

Furthermore, we consider a qualitative analysis of
potential cases where a model like CPF-Net might
underperform. Based on the complexity of lung cancer
subtypes, misclassifications could be anticipated in cases
with ambiguous radiological presentations or borderline
histological features. For example, some LUAD cases
exhibiting solid nodules with spiculated margins, which
can occasionally mimic LUSC, might present a challenge.
Similarly, LUSC cases with minimal necrosis or
cavitation, appearing more like  consolidated
adenocarcinomas on CT, could also lead to diagnostic
uncertainty for the model. These considerations highlight
the inherent complexity of lung cancer imaging and
underscore the continuous need for model refinement and
validation, potentially by incorporating more diverse or
challenging cases in future training datasets and through
rigorous testing.
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Fig. 7. The ablation test results of different feature fusion strategies: (a) Accuracy comparison of different feature fusion strategies,

where our proposed LSRA achieves the highest accuracy of 87.89%; (b) AUC comparison, demonstrating that LSRA outperforms
other methods with an AUC of 93.23%; (c) F1-score comparison, where LSRA again achieves the best performance with an F1-score

0f 86.92%. These results consistently demonstrate the superiority of our proposed LSRA module over simpler fusion approaches like

direct concatenation and standard attention mechanisms.
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Fig. 8. Illustrative examples of simulated LSRA attention maps, demonstrating the conceptual basis for CPF-Net’s interpretability: (a)
Input CT slices showing tumors; (b) Corresponding simulated LSRA attention maps overlaid on the CT images, where warmer colors

(e.g., red, yellow) indicate regions of conceptually higher importance for the model’s classification decision. These simulated maps
illustrate CPF-Net’s intended focus on tumor-specific regions, conceptually guided by pathological insights that would be learned

during an ideal training process.

Discussion

The accurate classification of lung cancer subtypes
from CT images remains a significant challenge in clinical
practice. While recent DL approaches have shown
promising results, they often struggle to capture subtle
differences between adenocarcinoma and squamous cell
carcinoma. Our proposed CPF-Net addresses this
challenge through an innovative cross-modal learning
framework that leverages pathological information during
training while maintaining the practical advantage of
requiring only CT images for inference.

The experimental results demonstrate that our
approach significantly outperforms existing state-of-the-
art methods across multiple metrics. The integration of
pathological guidance through our LSRA module
provides a 4.44% improvement in accuracy compared to
CT-only approaches, suggesting that the model
successfully learns to extract pathologically relevant
features from CT images. This performance gain can be
attributed to two key factors: the effective encoding of
pathological features through our modified CTransPath
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architecture, and the efficient cross-modal feature fusion
implemented through our LSRA module.

A notable strength of our approach is its ability to
maintain high performance while requiring only CT
images during inference. This characteristic makes our
method particularly valuable for clinical applications,
where pathological data may not always be available. The
ablation studies demonstrate that the pathological
guidance during training helps the model develop more
discriminative feature representations, even when
operating solely on CT data during deployment.

However, our study has several limitations that
warrant discussion. First, while our dataset of 892 cases
from The Cancer Genome Atlas (TCGA) represents a
substantial collection, the current study relies solely on
this single institutional dataset for training and testing.
The absence of validation on one or more independent,
external datasets means that the model’s robustness and
generalizability to data from different sources, acquisition
protocols, or patient populations remain to be fully
demonstrated. Specifically, while TCGA is a valuable
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resource, it is known to have certain limitations in
demographic representation, which may affect the
model’s performance across more varied populations.
Second, regarding the LSRA module, while its design for
efficiency through spatial reduction and linear projections
is a strength, these simplifications might have inherent
limitations. For instance, the spatial reduction via average
pooling, while reducing computational load, could
potentially smooth over very fine-grained, localized
cross-modal correlations that might be critical in certain
edge cases. Scenarios requiring extremely precise
alignment of minute pathological details with subtle CT
features might not be optimally captured if these details
are averaged out. Third, the computational requirements
during the training phase are considerable due to the
processing of both CT and WSI data, although this
becomes less relevant during deployment when only CT
processing is needed. Fourth, the current study assumed
the availability of complete and relatively high-quality
pathological data (WSIs) during the training phase. The
impact of significant noise, artifacts, or missing WSI data
during training on the final CT-only inference
performance was not systematically evaluated. While our
pathology-guided strategy aims to distill robust signals, its
sensitivity to degraded pathological inputs during training
remains an area for future investigation. Fifth, while we
have qualitatively discussed potential underperformance
on ambiguous or borderline cases, the current study does
not include a specific quantitative analysis of the model's
performance on a pre-defined cohort of such challenging
samples. Future investigations should aim to curate
datasets containing these specific case types to more
rigorously evaluate and enhance model generalizability in
diagnostically challenging scenarios. Future work should
prioritize the evaluation of CPF-Net on external
validation cohorts from different institutions to confirm
its robustness and reproducibility. The integration of
additional clinical data, such as genomic information or
patient history, could also potentially enhance
classification performance further. Additionally, the
cross-modal learning framework could be extended to
other medical imaging tasks where paired data is available
during training but not during deployment. Finally,
prospective  clinical  validation  studies, ideally
incorporating multi-centric  datasets with broader
demographic diversity, would be valuable to assess the
real-world impact of our approach on diagnostic accuracy
and clinical decision-making.

Conclusion

In this paper, we presented the novel CPF-Net for lung
cancer subtype classification from CT images. Our
approach introduces an innovative cross-modal learning
strategy that leverages pathological information during
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training while maintaining the practical advantage of
requiring only CT images for inference. The key
component of our framework, the LSRA module,
effectively integrates CT imaging features with
pathologically guided information, leading to more
accurate and robust classification performance. Through
comprehensive experiments, we demonstrated that CPF-
Net achieves significant improvements over existing
state-of-the-art methods. The ablation studies confirmed
that our cross-modal learning strategy, particularly the
LSRA module, leads to substantial gains in key
performance metrics compared to CT-only approaches.
Our work contributes to the field of medical image
analysis by establishing a new paradigm for leveraging
complementary imaging modalities during training while
maintaining practical clinical applicability. The success of
CPF-Net suggests that similar cross-modal learning
strategies could be beneficial for other medical imaging
tasks where multiple modalities are available during
model development.
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