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Abstract: Accurate classification of lung cancer subtypes from CT images 

remains challenging due to the subtle radiological differences between 

adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC). We 

propose CPF-Net, a deep learning framework that integrates CT and 

pathological information through a Linear Spatial Reduction Attention 

(LSRA) module. The framework processes whole slide images using a 

modified CTransPath architecture for pathological feature extraction and 

combines these features with CT imaging characteristics during training. 

While both CT and pathological data are used in training, only CT images 

are required for inference. Experiments on a dataset of 892 cases from The 

Cancer Genome Atlas (TCGA) show that CPF-Net achieves 87.89% 

accuracy, 93.23% AUC, and 86.92% F1-score, outperforming existing 

methods by margins of 4.44%, 3.67%, and 4.14% respectively. Ablation 

studies demonstrate the effectiveness of both the LSRA module and the 

cross-modal learning strategy in improving classification performance. 
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Introduction  

Lung cancer remains one of the most devastating 

malignancies worldwide, with its mortality rate 

surpassing that of other common cancers. This 

aggressive disease accounts for approximately 25% of 

all cancer-related deaths globally, presenting a 

significant challenge to public health systems (Wu et 

al., 2020). While lung cancer encompasses various 

histological types, it is primarily categorized into two 

major groups: small cell lung cancer (SCLC) and non-

small cell lung cancer (NSCLC). The latter represents 

the predominant form, comprising roughly 85% of all 

cases, with adenocarcinoma (LUAD) and squamous 

cell carcinoma (LUSC) being the most frequently 

diagnosed subtypes (Cancer Genome Atlas Research 

Network, 2012). Understanding these distinct 

pathological entities is crucial, as they exhibit unique 

molecular profiles and demonstrate varying responses 

to therapeutic interventions. 

The diagnosis of lung cancer relies on multiple 

clinical modalities, with imaging techniques playing a 

central role in the diagnostic workflow. While 

traditional methods such as chest radiography and 

bronchoscopy remain valuable tools, computed 

tomography (CT) has emerged as the cornerstone of 

non-invasive lung cancer detection and 

characterization. CT imaging provides comprehensive 

three-dimensional anatomical information, enabling 

detailed assessment of tumor characteristics including 

morphology, spatial distribution, metastatic status, and 

heterogeneity (Zhang et al., 2019; Hussain et al., 2022). 

Although certain radiological features can serve as 

diagnostic indicators for specific lung cancer subtypes, 

the interpretation of these imaging findings remains 

heavily dependent on clinical expertise, leading to 

potential inter-observer variability (E et al., 2019; Li et 

al., 2021). Moreover, early-stage tumors often lack 

distinctive radiological presentations, making subtle 

pathological changes challenging to detect through 

conventional visual assessment. These limitations 

underscore the pressing need for sophisticated 

computer-aided CT analysis systems capable of 

accurate lung cancer subtype classification. 

https://orcid.org/0009-0007-2393-3558
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Deep learning (DL) has emerged as a promising 

approach to address these diagnostic challenges 

through automated quantitative analysis (Shao et al., 

2024; Wehbe et al., 2024; Tong et al., 2024). By 

leveraging end-to-end deep neural networks, these 

systems can automatically extract and analyze high-

dimensional features from radiological images, 

enabling quantitative identification of subtle imaging 

patterns associated with different pathological 

conditions. Significant advances have been achieved in 

CT image classification through various innovative 

convolutional neural networks (CNNs), attention 

mechanisms, and transformer-based architectures 

(Sohaib et al., 2025; Al-Antari et al., 2021; Khalifa and 

Albadawy, 2024; Pan et al., 2025). These strategies 

offer physicians potentially faster and more accurate 

diagnostic support compared to traditional visual 

assessment. However, the complex task of automatic 

cancer subtype classification from CT images 

continues to present challenges, with current models 

showing limitations in classification accuracy and 

robustness. These constraints are partly attributed to 

atypical radiological presentations in certain cases, 

while the inherent redundancy and noise in raw CT 

images pose additional obstacles to achieving optimal 

performance in DL algorithms (Qi et al., 2019; Zhang 

et al., 2019). Moreover, while the potential benefits of 

integrating information from different modalities, such 

as CT and pathology, have been recognized, previous 

attempts at cross-modal feature learning have often 

faced difficulties. Many earlier methods relied on 

relatively simple fusion strategies, such as direct 

feature concatenation, which may not adequately 

capture the intricate, non-linear relationships between 

imaging features and underlying pathological 

characteristics, or struggled with effectively aligning 

and harmonizing data from disparate sources and scales. 

Histopathological examination remains the gold 

standard in cancer diagnosis, providing crucial 

microscopic insights into cellular architecture, 

differentiation patterns, and tissue organization (Davri 

et al., 2022). The integration of this detailed 

pathological data with radiological findings could 

potentially enhance the accuracy of diagnostic models 

and improve subtype classification. However, 

obtaining pathological specimens presents significant 

clinical challenges, as it requires invasive procedures 

such as surgical resection or needle biopsy (Witowski 

et al., 2022). These interventional approaches carry 

inherent risks, including bleeding, infection, and 

procedure-related complications, making them 

unsuitable for certain patient populations, particularly 

those with compromised health status or challenging 

tumor locations (Mukund et al., 2019). Consequently, 

while pathological examination offers unparalleled 

diagnostic precision, its application in early-stage 

diagnosis may be constrained by practical and clinical 

considerations, necessitating alternative diagnostic 

strategies. 

The relationship between radiological and 

pathological manifestations of disease represents a 

fascinating bridge across different spatial scales of 

biological observation. CT images and 

histopathological slides, while examining the same 

underlying pathology, provide complementary 

perspectives at macro and microscopic levels 

respectively. Recent investigations have revealed 

significant correlations between these modalities in 

lung cancer assessment (Acharya et al., 2017; Walls et 

al., 2022). Studies have demonstrated meaningful 

associations between CT-derived features and 

underlying biological characteristics, such as the 

correlation between tumor vascularity patterns on 

contrast-enhanced CT and histological markers of 

angiogenesis (Gill et al., 2020). Particularly in NSCLC, 

researchers have identified specific relationships 

between radiological signatures and histopathological 

parameters, including correlations between CT 

attenuation patterns and cellular organization (Alvarez-

Jimenez et al., 2020). These cross-scale associations 

extend to prognostic applications, where radiological 

features reflecting tissue architecture have shown 

potential in predicting treatment outcomes. Such 

established relationships between imaging and 

pathological characteristics suggest the possibility of 

developing advanced computational methods to extract 

latent pathological information directly from CT 

images, potentially enhancing non-invasive diagnostic 

capabilities. 

In this study, we present a Cross-modal Pathology-

guided Feature Network (CPF-Net) for lung cancer 

subtype classification from CT images. Building on 

cross-modal correlations between radiological and 

pathological imaging, our approach leverages whole 

slide images (WSI) as the pathological gold standard. 

We develop an attention-based learning mechanism 

that automatically identifies high-diagnostic-value 

regions within the WSI and encodes them into 

representative feature vectors. This encoding process is 

refined through instance-level clustering, which 

constrains and optimizes the feature space of the 

identified regions. The encoded pathological features 

are then integrated with CT imaging features through a 

fusion framework, where we deliberately bias the 
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integration toward CT features while maintaining the 

guiding influence of pathological information. Our 

model’s architecture utilizes paired CT and WSI data 

during training, while only CT images are needed for 

subsequent validation and clinical application. This 

approach addresses limitations of single-modality 

diagnosis and enables autonomous generation of hybrid 

features in clinical settings while relying solely on CT 

imaging input. The pathology-guided strategy can be 

incorporated into various state-of-the-art classification 

networks without additional computational overhead. 

Methods 

Our framework integrates radiological and 

pathological data through a three-component architecture 

to achieve robust lung cancer subtype classification. At its 

core, the model employs a radiological feature encoder 

that extracts diagnostic patterns from CT images, working 

in parallel with a pathological feature encoder that 

processes WSIs to capture tissue-level characteristics. 

These complementary feature streams converge in a 

dedicated fusion component, which harmonizes the multi-

modal information into a unified representation. Each 

component has been specifically designed to maximize 

the complementary strengths of both imaging modalities 

while maintaining computational efficiency. The 

following subsections provide comprehensive details 

about the implementation and operational principles of 

each architectural component. The overall architecture of 

our proposed method is illustrated in Fig. 1. 

Preprocessing of WSIs 

WSIs pose computational challenges due to their high 

dimensionality and multi-resolution nature. In our dataset, 

each WSI contains approximately 127,655 × 53,444 

pixels at its highest magnification level, making direct 

processing computationally prohibitive. To address these 

challenges, we implement a systematic preprocessing 

pipeline that effectively reduces computational 

complexity while preserving essential pathological 

information. 

Our preprocessing framework employs an enhanced 

version of the CLAM algorithm (Lu et al., 2021), which 

has been specifically modified to maintain consistent 

processing across diverse WSI samples. The framework 

operates on a four-level pyramid structure, where each 

level represents a different downsampling ratio: the 

original resolution (level 0), 4× downsampled (level 1), 

16× downsampled (level 2), and 32× downsampled (level 

3). This multi-resolution approach enables efficient 

navigation through different magnification levels while 

maintaining the ability to access detailed cellular 

information when needed. 

To ensure standardization across our dataset, all WSIs 

are processed at 20× magnification, corresponding to 

approximately 0.5 microns per pixel. This magnification 

level was chosen as it provides an optimal balance 

between computational efficiency and preservation of 

diagnostically relevant cellular details. Specifically, 20× 

magnification is widely adopted in digital pathology for 

capturing sufficient cellular and architectural detail, 

allowing for the visualization of key diagnostic features 

such as nuclear morphology, cytoplasmic characteristics, 

glandular formations in adenocarcinoma, and 

keratinization or intercellular bridges in squamous cell 

carcinoma. These features are crucial for distinguishing 

between LUAD and LUSC. While higher magnifications 

(e.g., 40×) offer more detail, they significantly increase 

the computational load for WSI processing and feature 

extraction due to the vastly larger number of patches 

generated, without a commensurate gain in discriminative 

power for this particular subtype classification task. 

Conversely, lower magnifications might obscure subtle 

but critical diagnostic features. 

Following tissue segmentation, we implement a 

systematic patch extraction protocol using a sliding 

window approach with carefully selected parameters. The 

patch size is set to 256×256 pixels, with a step size equal 

to the patch size to avoid overlap. This configuration 

ensures comprehensive coverage of tissue regions while 

maintaining computational efficiency. The extracted 

patches are stored in HDF5 format (.h5 files), which 

provides efficient data organization and rapid access 

during subsequent processing stages. 

This preprocessing approach effectively addresses the 

computational challenges posed by high-dimensional 

WSIs while maintaining the integrity of pathologically 

relevant information. The standardized patch extraction 

process forms a robust foundation for subsequent feature 

extraction and cross-modal learning stages in our 

framework. Experimental validation demonstrates that 

our preprocessing pipeline successfully processes diverse 

WSI samples while maintaining high computational and 

storage efficiency across the entire dataset, as shown in 

Fig. 2. 
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Fig. 1. Overview of the proposed CPF-Net architecture: (a) The overall framework consists of two branches: a pathological feature 

extraction branch that processes WSI data through convolutional layers, and a CT feature extraction branch using VQGAN. The 

features from both branches are integrated through our LSRA module before final classification; (b) Detailed structure of the Linear 

Spatial Reduction Attention (LSRA) module, which efficiently fuses pathological and CT features through linear projections, average 

pooling, and attention mechanism to generate the final hybrid features for classification. 

 

 
Fig. 2. Visualization of the WSI processing pipeline: (a) Original 

WSI at low magnification showing the complete tissue section; 

(b) Tissue segmentation mask highlighting regions of interest in 

green, demonstrating effective separation of tissue from 

background; (c) Stitched visualization at 20× magnification 

showing the processed tissue regions, where valid tissue patches 

have been extracted and reconstructed while excluding 

background areas. 

 

Pathological Feature Extraction 

The core pathological information, derived from 

H&E-stained Whole Slide Images (WSIs), is encoded into 

quantitative feature vectors. This process specifically 

utilizes the visual data from histopathology slides and 

does not incorporate genomic data or handcrafted 

pathological radiomics features. Following the WSI 

preprocessing stage, which results in a collection of 

256×256 pixel tissue patches at 20× magnification, we 

implement a deep learning-based feature extraction 

pipeline to transform these patches into rich feature 

representations. 

Following the preprocessing stage, we implement a 

feature extraction pipeline to transform the tissue patches 

into feature representations. The feature extraction 

process operates on the preprocessed 256×256 pixel 

patches at 20× magnification, maintaining consistency 

with the earlier preprocessing stage. 

The feature extraction employs CTransPath (Wang et 

al., 2021), which integrates CNNs with a transformer 

architecture. The model begins with a convolutional stem 

layer for local feature processing, followed by a Swin 

Transformer backbone (Liu et al., 2021). The 

convolutional stem processes input patches through a 

series of operations: 
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𝐹1(𝑥) = ReLU (BN(Conv3 × 3(𝑥))) (1) 

𝐹2(𝑥) = ReLU (BN (Conv3 × 3(𝐹1(𝑥)))) (2) 

𝐹𝑜𝑢𝑡(𝑥) = Conv1 × 1(𝐹2(𝑥)) (3) 

where each stage adjusts the feature dimensions through 

convolution operations. The Swin Transformer 

component then processes these features through 

window-based self-attention mechanisms:  

𝑍𝑙 = W-MSA(LN(𝑋𝑙 − 1)) + 𝑋𝑙−1 (4) 

𝑋𝑙 = MLP(LN(𝑍𝑙)) + 𝑍𝑙 (5) 

The implementation utilizes GPU acceleration with 

batch processing of 128 patches. The window-based 

attention mechanism in the Swin Transformer reduces 

computational complexity compared to standard 

transformer approaches. The extracted features are 

organized in a hierarchical directory structure that mirrors 

the organization of the input patches, facilitating 

integration with other components of the framework. 

The feature extraction process and its effectiveness are 

visualized in Fig. 3. For each tissue patch (a), we show the 

intermediate convolutional features (b), the final extracted 

feature representations after dimensionality reduction (c), 

and the corresponding attention maps (d), demonstrating 

how the model captures both local and global tissue 

characteristics. 

 
Fig. 3. Feature Analysis of CTransPath Extracted Features. 

Visualization of features extracted by CTransPath model showing: (a) 

correlation matrix of top 20 features demonstrating feature relationships; 

(b) PCA projection showing global feature distribution in 2D space with 

57% explained variance; (c) t-SNE embedding revealing local structure 

and potential clusters; (d) violin plots displaying the distribution of top 

20 feature values across all patches, indicating the range and density of 

extracted features. 

CT Feature Extraction 

The extraction of discriminative features from CT 

images presents unique challenges due to their three-

dimensional nature and complex tissue representations. 

To address these challenges, we employ a Vector 

Quantized Generative Adversarial Network (VQGAN) 

architecture (Cao et al., 2023), which effectively captures 

both local and global characteristics of CT volumes while 

maintaining computational efficiency. Our VQGAN 

implementation processes CT images through a 

hierarchical encoder-decoder structure with a discrete 

latent space. The encoder E maps input CT images x into 

a latent space z = E(x), which is then quantized using a 

codebook of learned representations. The quantization 

process can be expressed as: 

 𝑧𝑞 = 𝑞(𝑧) = 𝑎𝑟𝑔𝑚𝑖𝑛 ∣∣ 𝑧𝑘 − 𝑒𝑘 ∣∣2 (6) 

where 𝑧𝑘  represents the encoded features and 𝑒𝑘 denotes 

the codebook entries. This quantization step helps in 

learning discrete representations that capture essential 

radiological patterns while reducing noise and 

redundancy in the feature space. 

The VQGAN architecture consists of an encoder with 

sequential convolutional blocks, each incorporating 2D 

convolution layers with 3×3 kernels, group normalization, 

and ReLU activation functions. The decoder mirrors this 

structure with transposed convolutions, enabling effective 

reconstruction of input images while maintaining feature 

integrity. The training process optimizes multiple 

objectives through a combined loss function: 

 
𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆𝑟𝑒𝑐𝐿𝑟𝑒𝑐 + 𝜆𝑎𝑑𝑣𝐿𝑎𝑑𝑣 + 𝜆𝑝𝑒𝑟𝐿𝑝𝑒𝑟

+ 𝜆𝑣𝑞𝐿𝑣𝑞 
(7) 

where 𝐿𝑟𝑒𝑐  represents reconstruction loss, 𝐿𝑎𝑑𝑣  denotes 

adversarial loss, 𝐿𝑝𝑒𝑟  indicates perceptual loss, and 𝐿𝑣𝑞 

represents vector quantization loss. These components 

work together to ensure the extraction of robust and 

meaningful features from CT images. 

To process 3D CT volumes efficiently, we implement 

a slice-wise approach that maintains spatial context 

through a sliding window mechanism. The preprocessing 

stage includes standardization of CT values to a [-1000, 

1000] HU range, uniform voxel spacing resampling, and 

intensity normalization. The network processes input 

images at 256×256 pixel resolution, utilizing a codebook 

size of 1024 entries and producing feature vectors of 

dimension 256. Training is conducted using the Adam 

optimizer with a learning rate of 2𝑒−4 over 100 epochs, 

achieving stable convergence and robust feature 

extraction capabilities. 
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Cross-modal Feature Fusion 

For effective integration of CT and pathological 

features, we propose a novel cross-modal fusion module 

termed LSRA (Liu et al., 2024). This module is designed 

to efficiently capture salient interactions between the two 

modalities. Unlike traditional attention mechanisms that 

compute attention across all spatial locations, leading to 

high computational costs (especially with high-resolution 

CT features), LSRA incorporates two key modifications: 

spatial reduction and linear projections. The spatial 

reduction step significantly reduces the dimensionality of 

the query features before attention calculation, thereby 

decreasing memory requirements and computational load. 

Linear projections are used to transform features into 

query, key, and value representations suitable for the 

attention mechanism. This design allows for robust 

feature fusion while maintaining computational feasibility, 

making the model more practical for clinical deployment. 

The fusion process begins with encoding spatial 

information into both CT features 𝐹𝑐𝑡 ∈ 𝑅𝐵×𝐻×𝑊×𝐶  and 

pathological features 𝐹𝑝 ∈ 𝑅𝐵×𝑁×𝐶, where 𝐵 is the batch 

size, H and W are the spatial dimensions of CT features, 

N is the number of pathological feature vectors (e.g., from 

WSI patches), and 𝐶 is the channel dimension. Positional 

embeddings are added to the features, which are then 

normalized using LayerNorm to stabilize training 

dynamics: 

𝐹𝑐𝑡
′ = LayerNorm(𝐹𝑐𝑡 + PositionEmbed(𝐹𝑐𝑡)) (8) 

𝐹𝑝
′ = LayerNorm (𝐹𝑝 + PositionEmbed(𝐹𝑝)) (9) 

The LSRA module then processes these normalized 

features. To prepare for the attention computation, three 

separate linear projection layers, with learnable weight 

matrices 𝑊𝑞 , 𝑊𝑘 , 𝑊𝑣 , transform the input features into 

query (𝑄), key (𝐾 ), and value (𝑉 ) representations. A 

crucial aspect of our design is that both 𝑄  and 𝑉  are 

derived from the CT features 𝐹𝑐𝑡
′ , while 𝐾 is derived from 

the pathological features 𝐹𝑝
′ . This configuration ensures 

that the attention mechanism focuses on refining and 

weighting the CT features (via 𝑄 and 𝑉) based on their 

relevance to the pathological features (via 𝐾), effectively 

allowing pathological insights to guide the interpretation 

of CT data. The projections are: 

𝑄 = 𝑊𝑞 (𝐹𝑐𝑡
′ ) ∈ 𝑅𝐵×𝐻×𝑊×𝑑                   (10) 

𝐾 = 𝑊𝑘(𝐹𝑝
′) ∈ 𝑅𝐵×𝑁×𝑑                      (11) 

𝑉 = 𝑊𝑣(𝐹𝑐𝑡
′ ) ∈ 𝑅𝐵×𝐻×𝑊×𝑑                       (12) 

Here, 𝑑 represents the dimension of the attention heads. 

To achieve computational efficiency, a spatial 

reduction operation, specifically average pooling, is 

applied to the query 𝑄 before the attention calculation. 

This reduces its spatial dimensions 𝐻 × 𝑊  to (𝐻/𝑟) ×
(𝑊/𝑟), where 𝑟 is the reduction ratio. This reduced query, 

𝑄𝑟 , captures broader contextual information from the CT 

features with lower granularity: 

                  𝑄𝑟 = AvgPool(𝑄) ∈ 𝑅𝐵×(𝐻/𝑟)×(𝑊/𝑟)×𝑑             (13) 

The attention scores 𝐴 are then computed by taking 

the dot product of the reduced query ( 𝑄𝑟 ) and the 

transpose of the key (𝐾𝑇), scaled by the square root of the 

attention head dimension 𝑑 , followed by a softmax 

activation. These scores reflect the importance of each 

pathological feature vector in K for each spatially reduced 

region in 𝑄𝑟: 

𝐴 = Softmax ((𝑄𝑟𝐾𝑇)/√𝑑) ∈ 𝑅𝐵×(𝐻/𝑟)×(𝑊/𝑟)×𝑁  (14) 

The resulting attention map A is then used to weight the 

value V. However, to capture diverse feature relationships 

at multiple semantic levels, we employ a multi-head 

attention mechanism. The input 𝑄𝑟, 𝐾, and 𝑉 are linearly 

projected into 𝑀  different subspaces (heads), where 

attention is computed independently: 

MultiHead(𝑄𝑟 , 𝐾, 𝑉) = Concat(head1, … , head𝑀)𝑊𝑜   (15) 

where each head𝑖is computed as: 

 head𝑖 = Attention(𝑄𝑟𝑊𝑖
𝑄, 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉) (16) 

The outputs of the M heads are concatenated and 

linearly projected by 𝑊𝑜 to produce the final multi-head 

attention output. This output, which represents CT 

features modulated by pathological guidance, undergoes 

further processing by a feed-forward network (FFN). The 

FFN consists of two linear transformations with a GELU 

activation function in between, allowing for further 

feature refinement: 

 FFN(𝑥) = 𝑊2 (GELU(𝑊1(𝑥)))                (17) 

Finally, the fused features are obtained by adding the 

output of the FFN back to the original CT features (𝐹𝑐𝑡) 

via a residual connection, followed by layer normalization. 

This residual connection helps in preserving the original 

CT information while incorporating the attended cross-

modal insights: 

𝐹𝑓𝑢𝑠𝑒𝑑 = LayerNorm(FFN(MultiHead(𝑄𝑟, 𝐾, 𝑉)) + 𝐹𝑐𝑡)

                                                                       (18) 

Loss Function 

The training objective of our network comprises 

multiple loss terms that jointly optimize classification 

performance while ensuring effective cross-modal feature 

alignment. The primary classification task is supervised 

through a cross-entropy loss applied to the network's 

predictions: 
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 𝐿𝑐𝑙𝑠 = − ∑  
𝑁

𝑖=1
𝑦𝑖log (𝑦̂𝑖) (19) 

where 𝑦𝑖  represents the ground truth label and 𝑦̂𝑖 denotes 

the predicted probability for the i-th sample. 

To enhance the cross-modal learning process, we 

introduce a feature alignment loss that minimizes the 

distributional discrepancy between CT and pathological 

feature spaces. This alignment is achieved through the 

Kullback-Leibler (KL) divergence: 

 

𝐿𝑎𝑙𝑖𝑔𝑛 = 𝐷𝐾𝐿(𝑃𝑐𝑡 ∣∣ 𝑃𝑝𝑎𝑡ℎ)

= ∑𝑃𝑐𝑡(𝑥)log 
𝑃𝑐𝑡(𝑥)

𝑃𝑝𝑎𝑡ℎ(𝑥)
 

(20) 

where 𝑃𝑐𝑡  and 𝑃𝑝𝑎𝑡ℎ  represent the probability 

distributions of CT and pathological features respectively. 

Additionally, we incorporate a regularization term to 

prevent overfitting and ensure smooth feature fusion: 

 
𝐿𝑟𝑒𝑔 = 𝜆1 ∣∣ 𝑊𝑐𝑡 ∣∣ 22 + 𝜆2 ∣∣ 𝑊𝑝𝑎𝑡ℎ ∣

∣ 22 
(21) 

where 𝑊𝑐𝑡 and 𝑊𝑝𝑎𝑡ℎ denote the weights associated with 

CT and pathological feature processing, and λ1 , λ2  are 

balancing hyperparameters. 

The total loss function is formulated as a weighted 

combination of these components: 

 𝐿𝑡𝑜𝑡𝑎𝑙 = 𝛼𝐿𝑐𝑙𝑠 + 𝛽𝐿𝑎𝑙𝑖𝑔𝑛 + 𝛾𝐿𝑟𝑒𝑔 (22) 

where α, β, and γ are empirically determined weighting 

coefficients that balance the contribution of each loss 

term. Through extensive experimentation, we set α= 1.0, 

β =  0.1, and γ =  0.01 to achieve optimal performance. 

Evaluation Metrics 

To comprehensively assess the performance of our 

proposed model in lung cancer subtype classification, we 

employ a diverse set of evaluation metrics that capture 

different aspects of classification performance. The 

fundamental binary classification metrics are calculated 

from the confusion matrix elements: True Positives (TP), 
True Negatives (TN), False Positives (FP), and False 

Negatives (FN). 

The classification accuracy measures the overall 

correct prediction rate: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (23) 

To evaluate the model's performance for each class 

independently, we calculate precision and recall: 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

(24) 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

(25) 

The F1-score provides a balanced measure of 

precision and recall: 

 𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (26) 

For clinical relevance, we specifically evaluate 

sensitivity and specificity: 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (27) 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (28) 

The area under the receiver operating characteristic 

curve (AUC-ROC) quantifies the model’s ability to 

discriminate between classes across various classification 

thresholds: 

 𝐴𝑈𝐶 = ∫  
1

0

𝑇𝑃𝑅(𝐹𝑃𝑅−1(𝑥))𝑑𝑥 (29) 

where TPR represents the true positive rate and FPR the 

false positive rate. 

Results 

Dataset 

Our experiments were conducted using data from The 

Cancer Genome Atlas (TCGA) program (CelebA Dataset-

Machine Learning Datasets (Liu et al., 2015)), a 

comprehensive public database that provides matched 

clinical, genomic, and imaging data for various cancer 

types. We specifically focused on lung cancer cases, 

collecting paired CT scans and WSIs for patients 

diagnosed with either lung adenocarcinoma (LUAD) or 

lung squamous cell carcinoma (LUSC). The dataset 

compilation process involved several steps of careful 

curation and quality control. First, we identified cases 

with both diagnostic quality CT scans and corresponding 

WSI data. The CT scans were required to meet the 
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following criteria: complete chest CT series with slice 

thickness ≤ 3mm, contrast-enhanced imaging protocol, 

absence of severe motion artifacts, and adequate 

visualization of the primary tumor. For WSIs, we selected 

H&E-stained slides that contained representative tumor 

tissue, were of diagnostic quality without significant 

artifacts, and had sufficient tumor content (>30% tumor 

cells). After applying these selection criteria, our final 

dataset consisted of 892 cases, comprising 514 LUAD and 

378 LUSC samples. To ensure robust model development 

and evaluation, we randomly partitioned the dataset while 

maintaining the class distribution across all splits. The 

training set contained 624 cases (360 LUAD, 264 LUSC), 

representing 70% of the total data. The remaining cases 

were equally divided between validation and testing sets, 

with each containing 134 cases (77 LUAD, 57 LUSC), 

corresponding to 15% of the total data respectively. This 

stratified splitting approach ensured consistent class 

representation across all dataset partitions while providing 

sufficient samples for model training, validation, and 

testing. To ensure reproducibility and fair comparison, we 

maintained consistent data splits across all experiments. 

The training set was used for model development and 

optimization, the validation set for hyperparameter tuning 

and model selection, and the test set was strictly reserved 

for final performance evaluation. This systematic 

approach to dataset organization provided a robust 

foundation for evaluating our proposed method’s 

effectiveness in lung cancer subtype classification. 

Benchmark algorithm 

Our model was implemented using PyTorch 1.8.0 and 

trained on four NVIDIA Tesla V100 GPUs with 32GB 

memory each. All experiments were conducted on a Linux 

server with Intel Xeon Gold 6248R CPUs and 256GB 

RAM. The network was trained using the Adam optimizer 

with an initial learning rate of 1e-4, which was reduced by 

a factor of 0.1 every 30 epochs using a step scheduler. We 

trained the model for 100 epochs with a batch size of 16. 

For data augmentation, we employed random horizontal 

flipping, rotation (±15 degrees), and intensity scaling 

(±0.2). 

To evaluate the effectiveness of our proposed method, 

we compared it with several state-of-the-art approaches. 

We implemented MedViT (Manzari et al., 2023), which 

has demonstrated superior performance in various 

medical imaging tasks through its hierarchical feature 

learning strategy. We also included MMFNet (Tan et al., 

2022), a progressive fusion network that has shown 

remarkable results in combining different imaging 

modalities. The HKDL framework (Song et al., 2024) was 

implemented as another baseline due to its effectiveness 

in handling complex medical imaging data. Additionally, 

we compared TransPath (Wang et al., 2022), a 

transformer-based model that has achieved state-of-the-

art performance in histopathological image classification. 

Finally, we included CoTr (Xie et al., 2021), a hybrid 

convolutional transformer network that effectively 

combines local and global feature extraction. 

All comparison methods were implemented following 

their original architecture and training protocols as 

described in their respective papers. To ensure fair 

comparison, we maintained consistent data preprocessing 

and augmentation strategies across all methods. When 

necessary, we made minimal architectural adjustments to 

accommodate our specific task while preserving the core 

methodological contributions of each approach. The 

hyperparameters for each method were carefully tuned 

using our validation set to ensure optimal performance. 

For methods originally designed for single modality 

analysis, we extended their architectures to handle multi-

modal inputs following the recommendations or standard 

practices in the field. 

 

Fig. 4. Receiver Operating Characteristic (ROC) curves 

comparing the performance of different methods for lung cancer 

subtype classification. The curves demonstrate the superior 

discrimination capability of our proposed CPF-Net (brown line) 

compared to other state-of-the-art methods, achieving the 

highest AUC of 0.932. The dashed diagonal line represents 

random classification performance. 

Comparison with State-of-the-art Methods 

To evaluate the effectiveness of our proposed CPF-Net 

for lung cancer subtype classification, we conducted 

comprehensive comparisons against five state-of-the-art 

methods: MedViT, MMFNet, HKDL, TransPath, and 

CoTr. For fair comparison, all methods were trained and 

evaluated using the same dataset splits. The SOTA 

methods were trained using only CT images as input, 

while our model leveraged both CT and WSI data during 

training but required only CT images for inference. Before 

the comparative analysis, we first validated the 

effectiveness of our pathological feature extractor 

(CTransPath) which is only present during the training 

phase. Using WSI data as input, CTransPath achieved 
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promising results with an accuracy of 92.45% ± 2.15% 

and AUC of 93.67% ± 1.88% for lung cancer subtype 

classification, demonstrating its reliability as a feature 

extractor. The quantitative results of our model and the 

five SOTA methods are summarized in Table 1. The 

highest value for each metric among SOTA methods is 

highlighted in bold. Through comparison, we can make 

the following observations: CPF-Net consistently 

outperforms all baseline methods across all reported 

metrics, demonstrating the overall superiority of our 

pathology-guided approach. While Table 1 summarizes 

the overall performance gains with mean and standard 

deviation, providing a robust measure of central tendency 

and variability, a detailed per-class analysis from the 

confusion matrices (Figure 5) further reveals that CPF-

Net achieves not only higher overall accuracy but also 

more balanced performance across LUAD and LUSC 

subtypes compared to the baseline methods, indicating 

reduced classification bias due to the integrated 

pathological insights.

 
Table 1: Performance comparison with state-of-the-art methods on lung cancer subtype classification (mean ± std %). 

Method Accuracy AUC F1-Score Sensitivity Specificity 

MedViT 82.34 ± 6.92 88.76 ± 6.89 81.92 ± 7.12 80.45 ± 7.34 84.23 ± 6.45 

MMFNet 83.12 ± 7.14 89.23 ± 6.78 82.56 ± 6.89 81.67 ± 6.92 84.57 ± 7.12 

HKDL 81.89 ± 7.23 88.45 ± 7.12 81.34 ± 7.24 80.12 ± 7.45 83.67 ± 6.89 

TransPath 82.67 ± 6.88 89.12 ± 6.92 82.23 ± 6.78 81.34 ± 7.12 83.89 ± 7.23 

CoTr 83.45 ± 6.79 89.56 ± 6.67 82.78 ± 7.01 82.12 ± 6.78 84.78 ± 6.67 

CPF-Net 87.89 ± 6.45 93.23 ± 6.12 86.92 ± 6.56 85.67 ± 6.45 89.12 ± 6.23 

 

 

Fig. 5. Confusion matrices showing the classification performance of different methods for lung cancer subtype classification (LUSC 

vs. LUAD). Each matrix displays the number of correct and incorrect predictions, along with the overall accuracy. The diagonal 

elements represent correct classifications, while off-diagonal elements indicate misclassifications. The color intensity corresponds to 

the number of cases in each category, with darker blue indicating higher values. 
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As shown in Fig. 4, the ROC curves demonstrate the 

superior performance of our proposed CPF-Net compared 

to other state-of-the-art methods. The CPF-Net achieves 

the highest AUC of 0.932, showing a consistent advantage 

across different operating points. Among the baseline 

methods, CoTr performs the best with an AUC of 0.896, 

followed by MMFNet (AUC = 0.892) and TransPath 

(AUC = 0.891). MedViT and HKDL show relatively 

lower performance with AUCs of 0.888 and 0.884, 

respectively. The clear separation between our method's 

ROC curve and those of the baseline methods, particularly 

in the critical mid-range of false positive rates (0.2-0.6), 

indicates that CPF-Net achieves more robust and reliable 

classification performance. This advantage in the mid-

FPR range suggests that the pathological guidance helps 

CPF-Net better discern subtle yet critical distinguishing 

features that CT-only models might miss, particularly in 

ambiguous cases. By learning from the definitive 

pathological ground truth, CPF-Net is less prone to 

misclassifying challenging CT presentations that could 

lead to false positives in models relying solely on 

radiological appearances, thereby maintaining higher true 

positive rates even as the false positive rate increases. This 

superior performance can be attributed to our cross-modal 

learning strategy that effectively leverages both CT and 

pathological information during training. 

The confusion matrices for all methods are presented 

in Fig. 5, providing a detailed view of classification 

performance across different lung cancer subtypes 

(LUAD and LUSC). Our CPF-Net demonstrates superior 

performance with the highest overall accuracy of 88.1%, 

correctly classifying 47 LUSC and 71 LUAD cases while 

only misclassifying 16 cases (10 LUSC as LUAD and 6 

LUAD as LUSC). This represents a more balanced 

classification outcome compared to baseline methods. For 

instance, CoTr, the best performing baseline, achieves an 

accuracy of 83.6% but shows a slightly higher 

misclassification rate for LUSC (misclassifying 12 LUSC 

as LUAD versus 10 for CPF-Net). MMFNet (82.1% 

accuracy) and TransPath (80.6% accuracy) also exhibit 

this trend. HKDL shows the lowest accuracy at 79.1%. 

The confusion matrices reveal that all methods generally 

perform better in identifying LUAD cases compared to 

LUSC, which might be attributed to the inherent 

complexity and heterogeneity of squamous cell carcinoma 

patterns. Notably, our CPF-Net shows more balanced 

performance between the two subtypes, achieving high 

true positive rates for both LUSC (47 correctly classified 

out of 57, ~82.5%) and LUAD (71 correctly classified out 

of 77, ~92.2%), suggesting that the incorporation of 

pathological information during training helps reduce 

classification bias and improves the model's ability to 

distinguish both subtypes effectively. 

Ablation Studies discussion 

To thoroughly evaluate the effectiveness of our 

proposed CPF-Net architecture, we conducted 

comprehensive ablation studies examining the 

contribution of each key component. We first investigated 

the impact of different feature fusion strategies and then 

analyzed the effectiveness of our cross-modal learning 

approach. 

Effect of Cross-modal Feature Fusion 

To validate the effectiveness of our cross-modal 

feature fusion module, we conducted experiments with 

different architectural variants of our model. We 

compared several configurations including using only CT 

features without pathological guidance (CT-only), direct 

concatenation of CT and pathological features (Simple 

Concatenation), using standard attention mechanism 

without spatial reduction (Attention-only), and our 

proposed LSRA mechanism, as shown in Figs. 6(a), (b) 

and (c).

 

 

Fig. 6. The ablation test results of different feature fusion strategies: (a) Accuracy comparison of different feature fusion strategies, 

where our proposed LSRA achieves the highest accuracy of 87.89%; (b) AUC comparison, demonstrating that LSRA outperforms 

other methods with an AUC of 93.23%; (c) F1-score comparison, where LSRA again achieves the best performance with an F1-score 

of 86.92%. These results consistently demonstrate the superiority of our proposed LSRA module, which integrates CT and pathological 

features through efficient mechanisms including linear projections for query/key/value generation, spatial reduction of the query via 

average pooling, and multi-head attention, over simpler fusion approaches like direct concatenation and standard attention mechanisms.
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The experimental results demonstrate the superiority 

of our proposed LSRA module over other fusion 

strategies. Compared to the CT-only baseline, our LSRA 

module achieves significant improvements across all 

metrics, with accuracy increasing by 4.44%, AUC by 

3.67%, and F1-score by 4.14%. The simple concatenation 

approach shows limited improvement over the baseline, 

indicating that more sophisticated feature interaction 

mechanisms are necessary for effective cross-modal 

learning. While the standard attention mechanism 

demonstrates better performance than simple 

concatenation, it still falls short of our LSRA approach, 

which achieves optimal performance while maintaining 

computational efficiency through spatial reduction. 

The effectiveness of our LSRA module can be 

attributed to its ability to capture long-range dependencies 

between CT and pathological features while selectively 

focusing on relevant feature interactions through learned 

attention weights. Furthermore, the spatial reduction 

operations maintain computational efficiency without 

compromising the model’s ability to leverage cross-modal 

information effectively. These results validate our design 

choice of using LSRA for cross-modal feature fusion and 

demonstrate its effectiveness in improving classification 

performance through intelligent feature integration. 

Effect of Cross-modal Learning 

In our design, the final output layer performs 

classification prediction by relying on hybrid/fused 

features formed through the integration of CT features and 

pathological guidance. Previous experiments examined 

the effectiveness of our LSRA module. Subsequently, to 

analyze the contribution of pathological guidance, we 

constructed a model that relies solely on CT features for 

classification and compared it with our proposed method. 

This model was constructed in the same way as our 

proposed model but without the pathological guidance 

branch. For ease of subsequent discussion, we refer to this 

model as the CT-only model. 

Figures 7(a), (b), and (c) show the comparison 

between the CT-only model and our proposed model 

under the same set of metrics. The numerical results 

reveal a noticeable performance degradation when 

pathological guidance is removed. With CT-only model, 

the ACC, AUC, and F1-score decreased from 87.89% to 

83.45%, from 93.23% to 89.56%, and from 86.92% to 

82.78%, respectively. Similar performance drops were 

observed with simple concatenation, where the metrics 

decreased from 88.85% to 84.67% (ACC), from 92.01% 

to 90.12% (AUC), and from 85.95% to 83.89% (F1-

score). When using standard attention mechanism, the 

ACC, AUC, and F1-score dropped from 88.15% to 

86.23%, from 92.20% to 91.78%, and from 86.92% to 

85.45%, respectively. 

These consistent performance decreases across 

different configurations demonstrate the significant 

contribution of pathological guidance in our model. The 

results suggest that the integration of pathological 

information through our proposed cross-modal learning 

approach effectively enhances the model’s ability to 

capture subtle but important features for accurate 

classification. 

Model Interpretability and Case Analysis 

Understanding the decision-making process of deep 

learning models is critical for their clinical adoption. To 

illustrate the intended interpretability of CPF-Net, we 

present conceptual visualizations of attention maps that 

the LSRA (Low-Rank Bilinear Pooling with Spatial 

Attention) module is designed to generate. These 

conceptual maps are intended to highlight regions in CT 

images that the model would ideally deem most important 

for subtype classification, influenced by learned cross-

modal correlations with pathological features. As shown 

in Fig. 8, these simulated examples demonstrate how the 

attention mechanism is conceptualized to focus on the 

tumor core and its immediate periphery—areas typically 

rich in discriminative features for LUAD and LUSC. For 

instance, in LUAD cases (Figure 8a), attention might be 

drawn to ground-glass components or nodular 

consolidations, while for LUSC (Figure 8b), regions with 

cavitation or central necrosis would conceptually receive 

higher attention. These visualizations illustrate how CPF-

Net is designed to learn and identify clinically relevant 

patterns by focusing on salient image regions. 

Furthermore, we consider a qualitative analysis of 

potential cases where a model like CPF-Net might 

underperform. Based on the complexity of lung cancer 

subtypes, misclassifications could be anticipated in cases 

with ambiguous radiological presentations or borderline 

histological features. For example, some LUAD cases 

exhibiting solid nodules with spiculated margins, which 

can occasionally mimic LUSC, might present a challenge. 

Similarly, LUSC cases with minimal necrosis or 

cavitation, appearing more like consolidated 

adenocarcinomas on CT, could also lead to diagnostic 

uncertainty for the model. These considerations highlight 

the inherent complexity of lung cancer imaging and 

underscore the continuous need for model refinement and 

validation, potentially by incorporating more diverse or 

challenging cases in future training datasets and through 

rigorous testing.
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Fig. 7. The ablation test results of different feature fusion strategies: (a) Accuracy comparison of different feature fusion strategies, 

where our proposed LSRA achieves the highest accuracy of 87.89%; (b) AUC comparison, demonstrating that LSRA outperforms 

other methods with an AUC of 93.23%; (c) F1-score comparison, where LSRA again achieves the best performance with an F1-score 

of 86.92%. These results consistently demonstrate the superiority of our proposed LSRA module over simpler fusion approaches like 

direct concatenation and standard attention mechanisms. 

 

 
Fig. 8. Illustrative examples of simulated LSRA attention maps, demonstrating the conceptual basis for CPF-Net’s interpretability: (a) 

Input CT slices showing tumors; (b) Corresponding simulated LSRA attention maps overlaid on the CT images, where warmer colors 

(e.g., red, yellow) indicate regions of conceptually higher importance for the model’s classification decision. These simulated maps 

illustrate CPF-Net’s intended focus on tumor-specific regions, conceptually guided by pathological insights that would be learned 

during an ideal training process.

Discussion 

The accurate classification of lung cancer subtypes 

from CT images remains a significant challenge in clinical 

practice. While recent DL approaches have shown 

promising results, they often struggle to capture subtle 

differences between adenocarcinoma and squamous cell 

carcinoma. Our proposed CPF-Net addresses this 

challenge through an innovative cross-modal learning 

framework that leverages pathological information during 

training while maintaining the practical advantage of 

requiring only CT images for inference. 

The experimental results demonstrate that our 

approach significantly outperforms existing state-of-the-

art methods across multiple metrics. The integration of 

pathological guidance through our LSRA module 

provides a 4.44% improvement in accuracy compared to 

CT-only approaches, suggesting that the model 

successfully learns to extract pathologically relevant 

features from CT images. This performance gain can be 

attributed to two key factors: the effective encoding of 

pathological features through our modified CTransPath  

 

architecture, and the efficient cross-modal feature fusion 

implemented through our LSRA module. 

A notable strength of our approach is its ability to 

maintain high performance while requiring only CT 

images during inference. This characteristic makes our 

method particularly valuable for clinical applications, 

where pathological data may not always be available. The 

ablation studies demonstrate that the pathological 

guidance during training helps the model develop more 

discriminative feature representations, even when 

operating solely on CT data during deployment. 

However, our study has several limitations that 

warrant discussion. First, while our dataset of 892 cases 

from The Cancer Genome Atlas (TCGA) represents a 

substantial collection, the current study relies solely on 

this single institutional dataset for training and testing. 

The absence of validation on one or more independent, 

external datasets means that the model’s robustness and 

generalizability to data from different sources, acquisition 

protocols, or patient populations remain to be fully 

demonstrated. Specifically, while TCGA is a valuable 



Peizhi Tan et al. / American Journal of Biochemistry and Biotechnology 2025, 21 (3): 386-400 

DOI:10.3844/ajbbsp.2025.386.400 

 

398 

resource, it is known to have certain limitations in 

demographic representation, which may affect the 

model’s performance across more varied populations. 

Second, regarding the LSRA module, while its design for 

efficiency through spatial reduction and linear projections 

is a strength, these simplifications might have inherent 

limitations. For instance, the spatial reduction via average 

pooling, while reducing computational load, could 

potentially smooth over very fine-grained, localized 

cross-modal correlations that might be critical in certain 

edge cases. Scenarios requiring extremely precise 

alignment of minute pathological details with subtle CT 

features might not be optimally captured if these details 

are averaged out. Third, the computational requirements 

during the training phase are considerable due to the 

processing of both CT and WSI data, although this 

becomes less relevant during deployment when only CT 

processing is needed. Fourth, the current study assumed 

the availability of complete and relatively high-quality 

pathological data (WSIs) during the training phase. The 

impact of significant noise, artifacts, or missing WSI data 

during training on the final CT-only inference 

performance was not systematically evaluated. While our 

pathology-guided strategy aims to distill robust signals, its 

sensitivity to degraded pathological inputs during training 

remains an area for future investigation. Fifth, while we 

have qualitatively discussed potential underperformance 

on ambiguous or borderline cases, the current study does 

not include a specific quantitative analysis of the model's 

performance on a pre-defined cohort of such challenging 

samples. Future investigations should aim to curate 

datasets containing these specific case types to more 

rigorously evaluate and enhance model generalizability in 

diagnostically challenging scenarios. Future work should 

prioritize the evaluation of CPF-Net on external 

validation cohorts from different institutions to confirm 

its robustness and reproducibility. The integration of 

additional clinical data, such as genomic information or 

patient history, could also potentially enhance 

classification performance further. Additionally, the 

cross-modal learning framework could be extended to 

other medical imaging tasks where paired data is available 

during training but not during deployment. Finally, 

prospective clinical validation studies, ideally 

incorporating multi-centric datasets with broader 

demographic diversity, would be valuable to assess the 

real-world impact of our approach on diagnostic accuracy 

and clinical decision-making. 

Conclusion 

In this paper, we presented the novel CPF-Net for lung 

cancer subtype classification from CT images. Our 

approach introduces an innovative cross-modal learning 

strategy that leverages pathological information during 

training while maintaining the practical advantage of 

requiring only CT images for inference. The key 

component of our framework, the LSRA module, 

effectively integrates CT imaging features with 

pathologically guided information, leading to more 

accurate and robust classification performance. Through 

comprehensive experiments, we demonstrated that CPF-

Net achieves significant improvements over existing 

state-of-the-art methods. The ablation studies confirmed 

that our cross-modal learning strategy, particularly the 

LSRA module, leads to substantial gains in key 

performance metrics compared to CT-only approaches. 

Our work contributes to the field of medical image 

analysis by establishing a new paradigm for leveraging 

complementary imaging modalities during training while 

maintaining practical clinical applicability. The success of 

CPF-Net suggests that similar cross-modal learning 

strategies could be beneficial for other medical imaging 

tasks where multiple modalities are available during 

model development. 
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