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Abstract: The cultivation of Dictamnus dasycarpus Turcz (DdT) is
expensive and difficulty associated with growing, making its root bark the
only commonly used medicinal part, while other parts are discarded.
Therefore, in order to improve the limited utilization of resources, the new
medicinal parts were screened from polysaccharide-rich aqueous extracts.
The samples were the purified polysaccharides from the aerial part on
ground of Dictamnus dasycarpus stems and leaves (PDAP) and dry root
bark of DAT (PDBP) by hot water extraction and Diethylaminoethyl
Cellulose purification. Then, their physicochemical properties and structural
characterization were evaluated. The results of physicochemical properties
showed that both had great similarity. However, PDAP contained higher
uronic acid content. Furthermore, PDAP exhibited higher antioxidant
activity than PDBP in scavenging OH radicals (IC5,: 4.73+0.03 mg/mL
versus 5.29+0.01 mg/mL), ABTS radicals (IC5(: 0.23£0.01 mg/mL versus
5.34+£0.01 mg/mL) and DPPH radicals (IC50: 2.08+0.02 mg/mL versus
8.52+0.03 mg/mL). Both showed strong enhanced activity, while PDAP was
more prominent than PDBP in phagocytosis activity. Meanwhile, PDAP
possessed higher pro-coagulant activity than PDBP, as evidenced by
shortening the clotting time of PT and APTT, while PDBP appeared to exert
pro-coagulant activity through shortening the clotting time of TT and
elevating the content of FIB. PDAP's efficacy surpasses that of conventional
PDBP, offering a scientific foundation for utilizing the medicinal benefits of
DdT's aerial part.
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Introduction

Dictamnus dasycarpus Turcz (DdT), a persistent
botanical specimen within Rutaceae, exhibits broad
dispersion across numerous Chinese territories. These
encompass Heilongjiang, Jilin, Liaoning, plus Inner
Mongolia (Gao et al., 2011; Guo et al., 2016). In
traditional Chinese medicine, the dry root bark from DdT
(DB) is frequently used to address conditions like
rheumatism, itching, bleeding, and various skin ailments.
Practitioners utilize DB confronting rheumatism,
pruritus, hemorrhagic conditions, alongside dermal
afflictions (Lv et al., 2015). However, the aerial part on
ground of Dictamnus dasycarpus stems and leaves (DA)
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are usually discarded, leading to a waste of resources.
Some studies have been conducted to compare the
structure and antioxidant activity of the main chemical
components in six parts of the DT, including the aerial
part and roots, and found that the highest activity in the
leaves and the essential oil of the aerial part show
significant inhibitory effect on Candida albicans,
suggesting that the aerial part have potential as a
medicinal part (Tian et al, 2019; Cao et al., 2022).
Hence, uncovering and applying the medicinal benefits
of the DA is crucial.

Polysaccharides are considered to be a kind of
polymer material with the advantages of low price, few
side effects and biodegradability, and have been widely
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employed as highly valuable biomaterials in medical and
experimental research (Liu et al., 2015; Zhao et al.,
2019). Polysaccharides demonstrate intimate correlations
with multifarious biological functions encompassing
antioxidative, antineoplastic, coagulative, and
immunomodulatory functions (Chen et al., 2018a; Wang
et al, 2017). Contemporary pharmacological
investigations reveal DB contains numerous bioactive
entities—limonoids, quinolone alkaloids, sesquiterpenes,
coumarins, and steroids—which form the basis of its
pharmacological effects: anticancer, anti-inflammatory,
antimicrobial, immunoregulatory, antiplatelet
aggregation, and radical-scavenging capacities (Chang et
al., 2001; Choi et al., 2016, 2019; Han ef al., 2015; Kim
et al., 2013). Nevertheless, polysaccharides isolated from
DB or DA remain inadequately characterized.

Consequently, this investigation procured crude
polysaccharides from DA/DB via aqueous extraction-
ethanol  precipitation  methodologies. =~ Subsequent
purification employed Diethylaminoethyl Cellulose
(DEAE-52), yielding purified DA polysaccharides
(PDAP) and DB polysaccharides (PDBP). Structural
elucidation entailed UV-visible (UV-vis)
spectrophotometry, Fourier Transform Infrared (FT-IR)
spectroscopy, Second-Derivative Infrared (SD-IR)
spectroscopy, and High-Performance Liquid
Chromatography (HPLC). Moreover, the biological
activities including antioxidant, immunoenhancement
and coagulation activities of PDAP and PDBP were
assessed. This paper aims to identify new medicinal parts
of DAT to improve the limited utilization of resources.

Materials and Methods

Materials

DA and DB specimens originated from Zhongxin
Farmer Specialized Cooperative Society for Chinese
Medicinal Materials Cultivation within Liuhe County,
Jilin Province, China. Authentication was performed by
Xue Jianfei, Jilin University of Chemical Technology
associate professor. DEAE-52 procurement occurred
through Yuan Ye Biotechnology Co., Ltd. (Shanghai,
China).

Fucose (Fuc), Mannose (Man), Glucosamine (GIuN),
Galactose (Gal), Ribose (Rib), Arabinose (Ara), Glucose
(Glu), Glucuronic acid (GluA), Galacturonic acid
(GalA), Rhamnose (Rha), and Xylose (Xyl) were
sourced from Shanghai Aladdin Bio-Chem Technology
Co., Ltd. (Beijing, China). RAW264.7 denoted a murine
macrophage lineage. Sodium pyruvate, penicillin, and
streptomycin derived from Chinese Academy of Sciences
culture repositories (Shanghai, China). Standard human
plasma (SFDA prospective 2006, 3401635) for coagulant
capacity assessment was procured from Dade Behring
Marburg Gmbh (Marburg, Hesse, Germany). Activated
Partial Thromboplastin Time (APTT), Thrombin Time
(TT), Prothrombin Time (PT), and Fibrinogen (FIB)
quantification kits were furnished by SINNOWA
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Medical Science & Technology Co., Ltd. (Nanjing,
Jiangsu, China).

Extraction and Purification

One kilogram DA or DB desiccated powder
commenced aqueous immersion twice employing
distilled water, maintaining a 1:12 solid-liquid
proportion. Thermal extraction ensued at 100°C across
120 minutes. The resultant slurry underwent filtration
followed by pressurized concentration. This concentrate
amalgamated with quadruple volumes of 95% ethanol at
4°C, undergoing nocturnal quiescence. Subsequent
rotational isolation transpired at 5000 r-min ' for 300
seconds. The sediment underwent cryodesiccation
yielding crude polysaccharides. Crude polysaccharide
solution (10 mg/mL) received application upon DEAE-
52 preconditioned vitreous columns (40 x Scm). Low-
molecular-weight contaminants underwent elution via
deionized aqueous passage succeeded by 0.5 M NaCl
irrigation, sustaining 1.0 mL/min flux, and each eluate is
collected. This was followed by dialysis with flowing
water for 24 hours. Ultimately, the primary segments
were collected, subjected to dialysis, and freeze-dried to
obtain PDAP and PDBP (Li et al., 2020) for further
analytical examination.

Physicochemical Property

Total carbohydrate quantification employed phenol-
sulfuric acid methodology. Calibration conformed to ¥ =
7.09x - 0.0602 (r = 0.9998; Y = absorbance; x =
polysaccharide concentration mg/mL; linear span: 0.02—
0.lmg/mL) (Dubois et al., 1956). Uronic acid levels
underwent meta-hydroxydiphenyl analysis.
Standardization yielded Y = 8.8625x - 0.042 (r = 0.9998;

Y = absorbance; x = polysaccharide concentration
mg/mL; operational scope: 0.016-0.08 mg/mL)
(Blumenkrantz et al., 1973). Protein determination
utilized  Bradford assay  protocol.  Reference

characterization produced Y = 7.23x - 0.0022, (r =
0.9999; Y = absorbance; x protein concentration
mg/mL; applicable domain: 0.02—0.1 mg/mL) (Bradford,
1976).

UV-vis, FT-IR and SD-IR

UV-vis and FT-IR assessments were executed as
derived from previous investigations (Liu et al., 2021;
Nie et al., 2018). SD-IR data underwent computational
management per Han ef al.’s delineated protocol (2024).

Monosaccharide Compositions

After pre-column derivatisation as exhibited in
previous research (Hu et al, 2018), monosaccharide
composition was analyzed using HPLC.

Molecular Weight

The molecular weight was demonstrated by HPSEC-
RID based on the previous research (Hu et al., 2019).
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For molecular weight approximation, calibration curves
generated via dextran standards (Choi et al., 2016; 2019)
were referenced.

Antioxidant Activity

The average value of the 50% free radical inhibition
concentration calculated based on vitamin C positive
control.

Scavenging capacities toward DPPH radicals (Zhang
et al, 2018) and ABTS radicals underwent distinct
quantification (Nie et al, 2017). Respective
commingling of 0.1 mL specimen with 2.9 mL DPPH
methanolic solution and ABTS' solution preceded
absorbance recording at 517 nm and 734 nm.

Hydroxyl radical neutralization potency assessment
proceeded pursuant to Tang et al. (2014). Combination of
0.1 mL specimen with 0.05 mL FeSO4 (9 mmol/L) and
0.1 mL salicylic acid-ethanol solution (9 mmol/L)
occurred, succeeded by 0.1 mL H,O, (8.8 mmol/L)
addition. The absorbance was measured at 510 nm.

Immunomodulatory Activity

Building upon current methodologies, an MTT assay
assessed PDAP and PDBP’s influence upon RAW264.7
cells (Hu et al, 2020). Specimens (100 pL) were
introduced into cellular suspensions, establishing
concentrations spanning 25-800 pg/mL. The entire
medium, devoid of any polysaccharide, served as the
control for the blank. Absorbance quantification occurred
at 490 nm.

Concurrently, phagocytic activity and nitric oxide
(NO) generation underwent assessment, precisely
documented per Shi et al. (2014) and Lv et al. (2016).
Respective absorbance measurements transpired at 490
nm and 540 nm.

Coagulation Activity

Coagulation activity was tested as described in the
reference (Zhai et al., 2021). 100 pL plasma and 100 pL
specimen underwent commingling followed by 37°C
incubation. Clotting time was recorded separately, and
normal saline was used as a blank control. Yunnan
Baiyao—a century-renowned Chinese hemostatic agent
—served as positive reference within the investigation
(Tang et al., 2009).

Statistical Analysis

Three parallel experiments were performed for each
sample. SPSS 17.0 (SPSS Inc., Chicago, IL, USA)
facilitated analytical procedures, with outcomes rendered
as mean + SD. Intergroup differences underwent
evaluation via one-way ANOVA. Probability thresholds
beneath 0.05 signified statistical consequence.

Results and Discussion

Extraction and Content Determination

Table 1 delineates polysaccharide, uronic acid, and
protein  constituents within PDAP and PDBP:

222

59.82+0.015% contrasted with 64.57+0.012%;
7.51£0.013% versus 6.90+0.011%; and 11.25+0.016%
against 9.74+0.017%, respectively. These measurements
suggest polysaccharides constitute principal bioactive
elements in both polymers, with PDAP demonstrating
diminished polysaccharide content relative to PDBP.
Furthermore, uronic acid and protein manifested elevated
concentrations in PDAP compared to PDBP.

Table 1: Physicochemical properties of PDAP and PDBP

Name PDAP PDBP
Polysaccharide (%) 59.82+0.015% 64.57+0.012%
Uronic acid (%) 7.51£0.013% 6.90+0.011%
Protein (%) 11.25+0.016% 9.74+0.017%

a 3

Absorbance (A)

— PDBP

Time(se)

Fig. 1: Structural identification of PDAP and PDBP. (a)
UV-vis spectra of PDAP and PDBP. IR spectra (b)
second-derivative IR spectra (c) of PDAP and PDBP. (d)
Monosaccharide composition of PDAP and PDBP. (e)
Molecular Weights of PDAP and PDBP

Analysis of Structural Characterization

As can be seen from Figure 1a, an obvious absorption
peak of PDAP was detected around 260 nm to 280 nm,
manifesting that the protein content of PDAP was higher
than PDBP, which was the same as the determination of
protein content by physicochemical property.

In addition, although the FT-IR of PDAP and PDBP
were similar and generally consistent, there were some
differences as shown in Figure 1b. PDAP exhibited a
pronounced absorption peak at 1632 em” !, conferred
upon C=0 bond eclongation. The 1415 cm” ! signal
intensity originated from C—H dissymmetrical stretching
vibrations (Chen et al., 2018b). An unequivocal spectral
feature near 1264 cm | within PDAP signified S=0
tensile vibration absorption (Wang et al, 2018a).
Pyranose ring tensile oscillation materialized circa 759
cm ! in PDBP (Liu et al., 2018).

SD-IR spectroscopy is the way that can distinguish
the overlapping peaks for more detailed comparison. As
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observed in Figure lc, the peak intensities of PDAP at
1249 and 1016 cm-1 were higher than those of PDBP
due to the typical absorption peaks of polysaccharides
containing pyranose rings (Zhang et al, 2015).
Conversely, PDBP exhibited heightened intensity at 1157
cm”! plus the 760-770 cm”! range versus PDAP. This
signifies angular oscillations within C-O bonds and
symmetrical C-O-C vibrations, respectively, attributable

to the D-glucopyranosyl ring (Liu et al, 2018;
Tommonaro et al., 2007).
As shown in Figure 1d and Table 2, the

monosaccharide composition (Man, GluN, Rib, Rha,
GluA, GalA, Glu, Gal, Xyl, Ara, Fuc) of PDAP and
PDBP at a molar ratio was 5.62: 0.72: 2.22: 4.20: 1.96:
5.88:23.46: 14.60: 1: 20.76: 1.74 and 6.01: 0.44: 12.82:
4.60: 0.95: 5.00: 186.01: 2.40: 1: 8.08: 0.77, respectively.
Remarkably, the proportion of Gal and Ara in PDAP was

higher than in PDBP, while PDBP possessed a higher
proportion of Glu and Rib than PDAP. Figure le showed
that the molecular weight of PDAP and PDBP was
6.3x10% Da and 6.7x10° Da, respectively.

Analysis of Biological Activities

First, as shown in Figure 2a to 2d, both PDAP and
PDBP exhibited weaker antioxidant activity than VC
group, while PDAP possessed stronger capacity than
PDBP in scavenging OH radicals (4.7340.03 mg/mL
versus 5.29+0.01 mg/mL), ABTS radicals (0.23+0.01
mg/mL versus 5.34+0.01 mg/mL) and DPPH radicals
(2.08+0.02 mg/mL versus 8.52+0.03 mg/mL). The
disparity in the impact of PDAP versus PDBP on the
elimination of DPPH and ABTS radicals was markedly
significant, evidenced by a p-value less than 0.001, and
similarly, the effect on OH radical scavenging was also
noteworthy with a p<0.01.

Table 2: Molar ratio of monosaccharide composition of PDAP and PDBP

Monosaccharide Man GluN Rib Rha GluA GalA Glu Gal Xyl Ara Fuc
PDAP 5.6159 0.7169 2.2215 42032 19573 58763 234601 14.6027 1 20.7572  1.7395
PDBP 6.0064 04432 12.8227 4.6044 09542 5.001 186.0101 2.3975 1 8.0836 0.7719

2 exhibits superior immunomodulatory capabilities over
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Fig. 2: DPPH radicals (a), OH radicals (b), ABTS radicals (c)
and IC 50 value (d) of PDAP and PDBP. (*) expressed
significantly different from the control

Next, as can be seen from Figure 3a and 3b, PDAP
and PDBP could facilitate the proliferation of RAW264.7
cells within the range of 25-800 pg/mL compared to the
blank control. In addition, Figure 3¢ and 3d showed, in
contrast to the blank control, PDAP and PDBP could
remarkably enhance phagocytosis activity. However, the
concentrations of PDBP between 400 and 800 pg/mL did
not remarkably enhance phagocytosis activity, although
it showed an upward trend than blank control The ability
of both PDAP and PDBP to produce NO secreted by
RAW264.7 was clearly demonstrated in Figure 3e and 3f
macrophages in the 25-800 pg/mL concentration range in
comparison to the blank control. To sum up, PDAP

PDBBP, potentially due to its elevated uronic acid levels
(Georgiev et al., 2017; Wang et al., 2018b)

>
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Fig. 3: MTT assay of PDAP (a) and PDBP (b); phagocytosis
activity of PDAP (c) and PDBP (d); NO production of
PDAP (e) and PDBP (f). (*) expressed significantly
different from the blank control
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Last, results as demonstrated in Figure 4a and 4b,
PDAP possessed higher pro-coagulant activity than
PDBP, as evidenced by shortening the clotting time of
PT and APTT. However, PDBP appeared to exert pro-
coagulant activity through shortening the clotting time of
TT and elevating the content of FIB. That is to say,
PDAP exerted its pro-coagulant activity via the
coagulation pathway of extrinsic and intrinsic (Cao et al.,
2019; Sun et al., 2018). while PDBP exerted its pro-
coagulant activity via the common coagulant pathways
and regulation of fibrinolytic systems (Song ef al., 2019;
Zhai et al., 2021).

PT

o

a APTT
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8 8
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@

0
°
&V
o

& O P P P P P
AR
\Jep*@ oo
&

<
&
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Fig. 4: Coagulant activity was detected by PDAP and PDBP.
(*) expressed significantly different from the blank
control

Antioxidant activity reduces oxidative damage to
damaged tissues by reactive oxygen species (ROS),
delays cell necrosis and indirectly enhances immune
function (Yu, 1994). Immunomodulation accelerates the
removal of necrotic tissue by activating macrophages,
inhibits the risk of infection and promotes tissue repair
after haemostasis (Li, 2023). PDAP is functionally
similar to existing pharmaceutical polysaccharides, such
as Bletilla striata polysaccharides, which have
antioxidant, immunomodulatory and haemostatic effects
(Chen et al., 2021), and can be widely used as a kind of
plant polysaccharides with rich and significant
pharmacological effects in clinical applications. The ICx
values of Bletilla striata polysaccharides against DPPH,
ABTS and OH radicals were 2.601, 3.157 and 6.532
mg/mL, respectively. Compared with the literature,
PDAP was more effective in scavenging DPPH, ABTS
and OH radicals than Bletilla striata polysaccharides.
However, its structure is diverse and not fully analyzed,
and the mechanism of action has not been clarified, so
that its biological activity is still at the surface stage, and
further in-depth research is needed.

Conclusion

In this paper, PDAP and PDBP were prepared by hot
water extraction method, followed by preliminary

224

structural identification and biological activity analyses.
It could be clearly seen that PDAP exhibited antioxidant,
immunomodulatory and pro-coagulant and all these
activities were superior to those of PDBP. PDAP may
serve as become a new and potential resource for
pharmaceutical applications, alleviating the over-reliance
on root bark. It promotes the broader exploitation and
utilization of DdT for future applications such as trauma
and post-operative repair, to close wounds through
haemostatic function, while reducing oxidative damage
to tissues and accelerating healing by utilising
antioxidant properties.
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