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Abstract: Background and purpose: Bisphenol A (BPA) is a pervasive 

environmental toxicant with known adverse effects on human immune 

system and nervous system et al. Although, BPA is widely known to affect 

endocrine function in animals, the linkage between human exposure to BPA 

and human reproductive function is still not clearly clarified. Results: 

Systematic review of all articles about BPA and human reproductive function 

identified in SCOPUS and PubMed. Literature was summarized in narrative 

form and results are presented per category. Some observational surveys 

investigating the relationship between BPA exposure and human 

reproductive and/or endocrine function are inconsistent. Conclusion: Our 

review integrates the studies of BPA on reproductive and/or endocrine 

system in recent years, mainly explains the effects of BPA on these systems 

and provides the basis for subsequent studies on BPA. 

 

Keywords: Bisphenol A, Endocrine Disruptor, Reproductive Hormone, 
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Introduction 

The monomer bisphenol A is a synthetic phenolic 

compound widely utilized for the manufacturing of 

polycarbonate and epoxy resins dedicated to food 

containers, such as cans and water dispensers. Global 

demand growth for BPA is expected to approximate 6–

10%/y (Wright-Walters et al., 2011). Today, it is one of 

the highest-yield chemicals in the world, produced with 

more than 8 billion pounds yearly and sent roughly 100 

tons into the atmosphere per year (Rubin 2011). Everyone 

is exposed to BPA through skin and inhalation; besides, 

these polymers can release BPA into water and food 

(Hernandez et al., 2019) and, it can be detectable in urine 

from the vast majority of Americans (Schug et al., 2011). 

Endocrine Disrupting Chemicals (EDCs) are widely 

distributed in the environment, both natural or synthetic 

compounds can disrupt the endocrine system though 

imitating or antagonizing the endogenous hormones 

(Bhandari et al., 2015). BPA, as one of the most 

widespread and plentiful EDCs, can stimulate natural 

hormones to alter the reproductive endocrine system, 

which bring a negative effect on reproductive 

physiological functions (Caserta et al., 2011) and eventually 

influence entire populations (Yuan et al., 2015) Fig. 1.  

Up to now, the effects of EDCs on reproductive 

physiology and endocrine system has not been 

systematically clarified. Thus, given such critical effect on 

reproductive and endocrine systems, we summarize briefly 

the regulatory role of BPA in reproductive related factors.  

Materials and Methods 

Our studies was conducted by systematic literature 

retrieval in Medline, Web of Science and PubMed 

databases. We identified the following search terms: 

“Bisphenol A” AND “reproduction” OR “endocrine” OR 

“androgen” OR “estrogen” OR “exposure” OR 

“hormone” OR “estradiol” OR “testosterone” OR “sperm” 

OR “sperm function” OR “spermatogenesis” OR semen 

quality OR “sexual function” and searched out the relevant 

literature. All data involved in related studies of animal as 

well as human and relevant reviews on the linkage between 

BPA and reproductive, endocrine systems were included in 

our study. Data were categorized and summarized 

according to the various aspects on which BPA may effect, 
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such as effects on hormones and its influencing 

mechanisms. The list of the genes, enzymes and 

hormones involved throughout the whole paper is listed 

with their acronyms and full title in Table 1. The genes 

mentioned is presented in lowercase italics.  

BPA Effects Endocrine and Reproductive 

There is evidence that BPA has similar chemical 

structure to estrogen and may be involved in the actions 

towards estrogen and androgen receptor system at fairly 

low doses by acting as agonists or antagonists for 

Estrogen Receptor α (ERα) and Estrogen Receptor β (ERβ) 

(Kinch et al., 2015). Accumulating evidence including 

rodent and in vitro studies supports that BPA is able to 

bind to androgen receptor or estrogen receptor so that it 

has estrogenic as well as anti-androgenic impacts 

(Alonso-Magdalena et al., 2012; Melzer et al., 2011). 

BPA interferes with hormone biosynthesis and 

metabolism through the role of endogenous ligands, 

leading to unbalance of endocrine system       

(Diamanti-Kandarakis et al., 2009), which proved that 

BPA may influence reproductive function via various 

hormone-mediated mechanisms. BPA may intervene with 

human cellular steroidogenesis by means of strong 

combination to human ER (Takeuchi et al., 2006) and 

influence the production of steroid hormones by intervening 

the expression of steroid synthetase (Zhou et al., 2008), 

change levels of steroid hormone and induce reproductive 

and embryo toxic effects (Mlynarčíková et al., 2005).  

In addition, it has been demonstrated in animal studies 

that BPA has the unfavorable impacts on male reproductive 

health, which is evidenced by obstacle of spermatogenesis 

and steroidogenesis, poor sperm quality, male infertility and 

sex disorders (Peretz et al., 2014). There are also some 

studies showing that BPA reduces production of testosterone 

during male development, induces prostate diseases, affects 

spermatogenesis (Yeung et al., 2011) and results in 

apoptosis of male germ cells and Sertoli cells (Li et al., 

2009; Qian et al., 2014). Therefore, aberrant hormone levels 

could be one crucial mechanism. Below we will respectively 

introduce the effects of BPA on related hormones, proteins or 

genes and their mechanisms of action Fig. 2. 

BPA Effects Testosterone  

Effect of BPA on Testosterone in Human body 

Adequate studies have found a long-term decline in 

human testosterone levels (Andersson et al., 2007; 

Travison et al., 2007). From the perspective of working 

exposure, evidenced the negative relationship between 

serum Free Testosterone (FT) levels and urinary BPA 

levels on occupational BPA exposure (Zhou et al., 2013). 

From the angle of infertility, Den Hond et al. (2015) 

discovered the inverse relationship between testosterone 

levels in infertile male and urinary and blood plasma BPA 

concentrations (Den Hond et al., 2015). Likewise, the 

adverse association between free androgen index (an 

indicator for FT) and urinary BPA concentrations was 

detected in men diagnosed as infertile (Meeker et al., 2010).  
Many experiments in humans have shown that BPA 

reduces the production of AD that a upstream molecular 
of T. There is a cross-sectional study on 592 men from 
China, which revealed the correlation between a high BPA 
exposure and a reduced AD level in blood (Liu et al., 
2015). A study recruited 281 male workers exposed to 
epoxy resin from 4 factories and also discovered that BPA 
concentrations measured in serum were adversely 
correlated with AD level (Zhuang et al., 2015). 

Instead, in a Lassen's study, it was indicated that BPA 
was positively linked with serum TT (total testosterone) 
and FT in urinary of young men (Lassen et al., 2014) and 
Galloway’s findings also agree with another experiments 
of adult Italian, which suggested that BPA had a positive 
correlation with testosterone (Galloway et al., 2010). 

At the same time, some experiments have shown that 

BPA exposure has no relationship with testosterone. In a 

human study, no adverse correlation with testosterone was 

discovered (Liang et al., 2017), although as assessed by 

serum Gonadotropins (Gn), including LH and FSH, BPA 

concentrations in urinary is linked to testicular 

dysfunction. Based on an epidemiology study, Mendiola 

and his colleagues found that BPA may affect the levels of 

Sex Hormone Binding Globulin (SHBG) and FAI instead 

of TT levels (Mendiola et al., 2010) and conjectured that 

the signal of increased LH and FSH may not suffice to 

induce the alteration of serum TT level. In a research 

of exposure to BPA diglycidyl ether and mixed organic 

solvents, it was indicated that urinary BPA was barely 

related with FT (Hanaoka et al., 2002).  

Effect of BPA on Testosterone in Animal (Non-

Human) 

Besides, similar results were existed in animals 

experiments as well, there are studies indicating that 

pre- and postnatal BPA exposure can reduce 

testosterone levels in male offspring (Cardoso et al., 

2011; Ma et al., 2017; Tanaka et al., 2006). Regarding 

pre-pubertal or pubertal exposures, the obvious drop in 

testosterone (Wisniewski et al., 2015) and epididymal 

sperm counts have been observed in rodent studies after 

BPA exposure (Herath et al., 2004). Rats are one of the 

best models for medical research. In adult male rats, 

Tohei et al. (2001) confirmed the decline of plasma 

testosterone levels in male adult rats after treatment by 

BPA in contrast with control group. Gurmeet et al. 

(2014) had proved that extremely low doses of BPA at 

which the adverse effects are not observed can 

negatively influence spermatogenesis, deprive 

seminiferous tubules of sperm and decrease levels to 

plasma testosterone significantly. At the same time, 

there is a study expressing that prenatal BPA exposure 
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didn't alter testosterone levels of prepuberal male rats 

(Gámez et al. 2014).  

Mechanism of BPA Influencing Testosterone 

The main source of testosterone is Leydig cells, 

followed by adrenal cortex reticular bands. Leydig 

cells secrete testosterone Hypothalamus-Pituitary-

Gonad Axis (HPGA). As for the later form, testosterone 

is synthesized from cholesterol and the specific process 

of testosterone synthesis is shown in Fig. 3. BPA can 

affect testosterone secretion in Leydig cells by acting 

on several key enzymes, such as steroidogenic acute 

Regulatory protein (StAR), cytochrome P450 11A1 

(CYP11A1), aromatase cytochrome P450 

(CYP19/P450arom), cytochrome P450 17A1 

(CYP17A1) and 3β-hydroxysteroid dehydrogenase (3-

β-HSD).in two forms: Basal secretion and 

gonadotropin-induced secretion regulated by the  

 

 
 

Fig. 1: The ways of BPA exposure through alimentary tract, respiratory tract and skin and its adverse effects on the human body 

 

 
 
Fig. 2: Effect of BPA on reproductive endocrine system. BPA could make influences in the testis and ovary, then affect the hormone 

levels, have negative effects on reproductive endocrine system. Acronyms: Luteinizing Hormone (LH) and Follicle Stimulating 

Hormone (FSH) 
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Fig. 3: The action sites of BPA exposure on pathway of testosterone production. BPA could influence the production of testosterone 

through changing the expression of related genes and steroidogenic enzymes. The BPA action sites were marked in red font a 

and the red arrows were used to define the impacts (The same as in the following figures). Acronyms: Luteinizing Hormone 

(LH), Luteinizing Hormone Receptor (LHR), GTP binding protein (G), Adenylate Cyclase (AC), Protein Kinase A (PKA), 

Phosphodiesterase (PDE), cAMP-Response Element Binding protein (CREB), Steroidogenic Acute Regulatory Protein 

(StAR), Cytochrome P450 11A1 (CYP11A1), 3β-Hydroxysteroid dehydrogenase (3-β-HSD), Estradiol 17-β-dehydrogenase 1 

(HSD17B1), Cytochrome P450 17 (CYP17), Androstenedione (AD), Dehydroepiandrosterone (DHEA) 

 

Table 1:  Abbreviations Table 

Acronym Full title Acronym Full title 

3-β-HSD 3β-Hydroxysteroid dehydrogenase G GTP binding protein 

ABCA1 ATP binding cassette subfamily A member 1 HPGA Hypothalamus-pituitary-gonad axis 

AC Adenylate cyclase HSD17B1 Estradiol 17-β-dehydrogenase 1 

AD Androstenedione INB Inhibin B 

AHR Aryl hydrocarbon receptor IVF In-vitro fertilization 

CREB cAMP-response element binding protein LH Luteinizing hormone 

CYP11A1 Cytochrome P450 11A1 LHR Luteinizing hormone receptor 

CYP17A1 Cytochrome P450 17A1 PDE Phosphodiesterase 

CYP19 Aromatase cytochrome P450 PKA Protein Kinase A 

DHEA Dehydroepiandrosterone ROS Reactive oxygen species 

E2 Estradiol SHBG Sex hormone binding globulin 

Erα Estrogen receptor α StAR Steroidogenic acute regulatory protein 

Erβ Estrogen receptor β SOD Superoxide dismutase 

FSH Follicle stimulating hormone T Testosterone 

FSHR Follicle stimulating hormone receptor TT Total testosterone 

FT Free testosterone 
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StAR 

StAR, a transporter protein localized on the outer 

mitochondrial membrane, is a necessary regulator of 

steroid hormone biosynthesis, mainly to mediate transport 

of cholesterol into the mitochondrial inner membrane and 

present it to P450scc (CYP11A1), which is also a rate-

limiting enzyme regulating synthesis of the related 

hormones (Ho et al., 2018; Selvaraj et al., 2015). 

Transportation of cholesterol in Leydig cells is mediated 

by StAR, which carriages it from the outer membrane 

of the mitochondria to the inner membrane.  

The results of (Ma et al., 2017) and Yang et al. 

(2019) respectively found that, in male offspring of 

mice and pup, the mRNA expression level of star in 

BPA-treated was considerably declined in comparison 

with the result in the control group. Another study 

involving the model organism C. elegans, also 

demonstrated BPA exposure negatively impacted the 

expression of StAR (Chen et al., 2019). A reasonable 

explanation is that BPA can regulate phosphorylation 

of StAR, inhibiting its activation. Therefore, it can be 

concluded that BPA inhibits the transport of cholesterol 

by decreasing the expression of StAR, thereby 

inhibiting testosterone production. 

CYP11A1 

Several significant enzymes participate in 

steroidogenesis and convert cholesterol to testosterone in 

the form of catalysis. P450scc, the enzyme encoded by 

cyp11a1, regulates the first step of steroidogenesis. The 

over-expression of cyp11a1 partly exists in endocrine 

cells, including adrenal cortical cells, Leydig cells and 

ovarian follicular membrane cells (Hu et al., 2004).  

It is widely known that P450 enzyme is one of the 

important targets of BPA (Sanderson 2006) and it has 

been shown that BPA has the ability to activate 

steroidogenic genes via the JNK/c-Jun signaling 

pathway, thus disrupting the testicular hormone 

environment (Lan et al., 2017). On maternal BPA 

exposure, it is demonstrated that CYP11A1 expression 

of male pup germ cell was obviously lower than the 

control group (Yang et al., 2019). Similarly, several 

studies validated that BPA exposure throughout the 

entire pregnancy in mice has effects on down-

regulating the expression of CYP11A in male offspring 

(Lv et al., 2019; Ma et al., 2017). 

CYP19 

Aromatase (P450 arom) encoded by cyp19 is another 

vital enzyme in steroidogenesis. P450 arom has abilities 

of aromatizing androgen into estrogen. Thus, it acts as the 

main enzyme involved in biosynthesis of estrogen and 

androgen (Li and Rahman, 2008). 

In male zebrafish adults, mRNA levels of cyp19 were 

found reduced in comparison with the blank group 

(Wang et al., 2019). In rat Leydig cells, Akingbemi et al., 

(2004) similarly validated that cyp17 and cyp19 are also 

down expression by 0.01 nM BPA. 

CYP17A1 

CYP17A1 has both 17α-hydroxylase and 17,20-

talyzes this conversion reaction, which can catalyze the 

conversion of progesterone to 17α-

hydroxyprogesterone or the conversion of 

pregnenolone to 17α-hydroxyprogesterone. The 

reaction involves 17α-hydroxylation and C17-20 

testosterone can be produced by a few steps of the 

reaction. 

Earlier research showed that BPA causes the inhibition 

of CYP17 expression in testis, thereby decreasing 

testosterone production (Ye et al., 2011; Zhang et al., 

2011). Gonçalves et al. (2018) have shown that in TM3 

murine Leydig cells exposed to low BPA 

concentrations, the related gene cyp17a1 and cyp19a1 

were downregulated when the testosterone 

biosynthesis was inhibited. 

3-β-HSD 

In the process of the production of androgens, 

Dehydroepiandrosterone (DHEA) is converted into AD 

by 3-β-HSD. BPA exposure can inhibit the AD level by 

decreasing the expression of 3-β-HSD (Qiu et al., 

2013), thereby further affecting the production of 

testosterone adversely. Another study also showed that 

CYP11A1 and 3-β-HSD were down-expressed in male 

mice treated by BPA (Liu et al., 2021). Pregnancy 

exposure of BPA could reduce the expression of 3-β-

levels and germ cell apoptosis. 

Generally, it has been observed that BPA may suppress 

testicular functions of rodents in different growth 

periods via changing the expression of steroidogenic 

related enzymes (Nanjappa et al., 2012), which then 

influences synthesis of steroid hormones and circulating 

steroid levels. A majority of studies support that BPA exposure 

may reduce production of testosterone by means of 

downregulating the related genes, star, cyp11a and cyp19. In 

addition, the testicular histology changes influenced by BPA 

may similarly be linked to the down-regulation of such 

important enzymes’ expression (Goncalves et al., 2018). 

Effect of BPA on Estradiol (E2) 

Effect of BPA on Estradiol in Human Body 

In a survey about infertile women, Mok-Lin have 
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revealed that the BPA levels of urinary were adversely 

associated with the level of serum E2 (Mok‐Lin et al., 

2010). And after BPA exposure, several studies also 

supported a significant decrease in peak serum estradiol 

levels prior to oocyte extraction in women undergoing in 

vitro fertilization (IVF) (Bloom et al., 2011; Ehrlich et al., 
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 (2020) discovered that 10 μM BPA treatments on human 

ovarian granulosa cell line led to an obvious reduction in 

progesterone biosynthesis.  

Unlike mentioned above, Miao et al. (2015) suggested 

that women exposed to BPA had higher levels of E2 in 

their urine by contrast with unexposed. The study of 

Minatoya recruited 514 participants and showed that the 

BPA level in cord blood was weakly positive associated 

with E2 (Minatoya et al., 2017). Meanwhile, in an 

experiment on the correlation between maternal urinary 

phenol concentration and umbilical cord steroid hormone 

levels, no obvious correlation was revealed between BPA 

and estradiol level (Liu et al., 2016), which was in 

accordance with two small-scale surveys (n = 41 and n = 74) 

(Takeuchi and Tsutsumi, 2002; Takeuchi et al., 2004), 

showing serum BPA concentrations had no association 

with estradiol among women. 

Effect of BPA on Estradiol in Animal (Non-Human) 

Lee et al. (2014) discovered a significant decrease of 

female rats serum concentration of E2 after BPA exposure 

and proved its disturbance on the maintenance of normal 

ovarian functions. Moreover, in female zebrafish, the 

concentrations of E2 considerably descended following the 

BPA exposure concentration (Fang et al., 2016; 

Villeneuve et al., 2012). In addition, Peretz’s study, 

concerning exposure of BPA in rat vitro antral follicle, had 

also proved this pollutant had the ability to inhibit the 

production of E2 (Peretz et al., 2011), which can bear 

a resemblance to the study from Qi et al. (2020) 

Samardzija et al. (2018) found that 100 μM BPA 

exposure concentration on granulosa cells of immature 

rat resulted in an obvious reduction in progesterone 

biosynthesis. In the female offspring of mice exposed 

to BPA, Ma’s study also showed an increase of serum 

E2 concentration in offspring of mice (Ma et al., 2017). 

Mechanism of BPA Influencing E2 

Estrogen is synthesized by granulosa cells and intimal 

cells (the placenta also secretes estrogen) in female and by 

Leydig cell in male and the specific mechanism in female 

is shown in Fig. 4. The decrease in estrogen secretion 

level indicates that the hormonal synthesis function of 

granulosa cells and intimal cells is impaired.  

It has been found that high concentrations of BPA in 

the urine samples from infertile women are closely 

correlated with the reduced number of primordial follicles 

(Silvestris et al., 2017). BPA can interfere with follicular 

development (Chen et al., 2017; Zhu et al., 2018) and can 

significantly suppress the proliferation of mouse 

granulosa cells and the effect was in a dose dependent 

manner (Xu et al., 2002). Yu et al. (2018) too found 

that BPA interfered with the formation of primordial 

follicles through the estrogen receptor pathway in 
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Adult female rats of long-term BPA exposure can lead 

to a decrease in expression of StAR and P450 aromatase 

(Lee et al., 2013). Studies on production of steroid 

hormone in the ovarian granulosa cells from pigs showed 

that the key genes of steroidogenesis (star, cyp11a1, 3-β-

hsd) were significantly down-regulated after BPA 

exposure (Mlynarcikova and Scsukova 2018). Similar to 

the above study, Peretz et al. (2011b) proved that the 

mRNA levels of star, 3-β-hsd and cyp11a1 were reduced 

in isolated follicles after BPA exposure. In a study about 

parental rare minnow, parental BPA exposure can inhibit 

offspring ovarian development via decreasing the number 

of mature oocytes and significantly affect the steroid 

genes cyp11a1, cyp17a1, cyp19a1 and star at the 

transcriptional level (Zhu et al., 2021). And several studies 

about rat ovary also concluded that BPA trends to disturb the 

steroidogenesis process via its suppression effect on StAR 

and P450 aromatase, thereby blocking E2 production 

(Lee et al., 2013; Peretz et al., 2011; Ziv-Gal et al., 2013). 

And it was proved that down-regulation of cyp19 

transcription also exists in the placental cell line JEG-3 

(Xu et al., 2019). Altered expression levels in these 

enzymes and genes are fundamentally crucial for 

steroidogenesis. On the contrary, in human granulosa 

cells, Qi et al. (2020) found that low dose BPA treatment 

dramatically reduced the expression of StAR and have a 

negative effect on progesterone biosynthesis via the 

upregulation of ATP binding cassette subfamily A 

member 1 (ABCA1) which is a reverse cholesterol 

transport that mediates its export. And though 

experiments concerning granulosa cells from immature 

mice showed that BPA can elevate the expression of 

StAR, CYP11A1 and 3-β-HSD, Samardzija et al. (2018) 

observed that exposure to BPA can break up cholesterol 

homeostasis so that decrease the basal and the FSH-

stimulated progesterone production, which further affects 

estrogen production. 

Aromatic Hydrocarbon Receptor (AHR) is a  

ligand-dependent transcription factor (Ichihara et al., 

2019). It had been shown that various environmental 

poisons can activate AHR which is largely distributed 

among the cytoplasm (Barouki et al., 2012). And it has 

been demonstrated that AHR is essential, both 

physiologically and pathologically (Zhao et al., 2020). 

AHR was proved to regulate cyp19 expression when 

decrease level of ovarian estrogen (Baba et al., 2005). 
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Ziv-Gal et al. (2013) designed the experiments to explore 

the influences of BPA on follicle function, observing 

BPA could act on AHR and influence the expression of 

Bcl2, an anti-apoptotic factor closely related to 

follicular atresia. They thought BPA can influence AHR 

signaling pathway and development of follicles to 

affect the endocrine system including reducing E2 

levels. Further, Lee et al. (2013) observed a decline in 

E2 levels of ovarian follicular cells after BPA 

treatment, discovered an elevated count in apoptotic 

caspase-3 positive cells at the same time, which were 

able to cause follicular atresia and luteal degeneration. 

Contrasting with the above mechanism, there are 

still a large amount of surveys showing that exposure 

to BPA is positively correlated with E2 concentration. 

As mentioned above, the Déchaud et al. (1999) ’s study 

is different from the result mentioned here. 

Furthermore, since it own the structure similar to E2, 

BPA has estrogenic activity and could competitively 

bind to SHBG to increase the E2 concentration in the 

serum. These arguments supported experiments in 

which BPA is positively correlated with E2, perhaps 

these are why some experiments back positive 

correlations. Similarly, the studies in which BPA has 

nothing to do with E2 can also be understood.  

Effect of BPA on Semen Quality and Male Sexual 

Function 

It is acknowledged that inhibin can be synthesized in 

Sertoli cells and its concentration functions as an indicator 

which can rate the Sertoli function of Sertoli cell. 

Compared with fertile men, it is observed that the 

expression of Inhibin B (INB) are greatly decreased in 

men with fertility disorders (Kumanov et al., 2006), 

which was in accordance with earlier studies that revealed 

BPA exposure was associated with abnormal sperm 

morphology and reduced sperm density (Li et al., 2011). 

BPA could reduce testosterone production and affect 

the function of prostate and testis as well as 

spermatogenesis (Yeung et al., 2011). From the 

perspective of BPA work exposure, in several studies of 

men occupationally exposed to BPA, outcome was found 

that the exposure is related with declining sperm quality, 

concentration, motility and male sexual dysfunction, 

including reduced libido or erectile dysfunction, etc. 

(Adoamnei et al., 2018; Cariati et al., 2019; Li et al., 

2010a; 2010b; 2011). 

In addition, animal experiments have also found the 

negative influences of BPA on male reproductive health 

(Liu et al., 2021; Peretz et al., 2014). Several 

toxicological surveys have suggested prenatal or 

perinatal exposure to BPA in rodents results in varieties 

of disadvantageous reproductive consequences, 

including epididymal weight loss, reduced daily sperm 

production (Salian et al., 2009a, b) and increased prostate 

weight (Nagel et al., 1997). Experiments about 

prepubertal rat testis also showed the outcome that 

exposure to BPA is confirmed to reduce sperm counts 

and quality and alter the testicular histology (Balci et al., 

2020). Therefore, abnormal hormone levels may be one 

significant mechanism. 

However, there are still some studies that do not match 

the above. One cohort studies (Goldstone et al., 2015) 

assessed the correlation between BPA and semen quality 

among reproductive aged men and found little evidence 

showing that BPA reduced the semen quality of the 

population tested. One cross-sectional study (Mendiola et al., 

2010) showed no significant correlation between any 

semen parameters and BPA concentrations in urine. A 

study of maternal exposure to BPA showed that testicular 

function does not adversely affect testicular function in 

adulthood even if there is a potentially weak positive 

correlation with certain testicular function parameters 

detected (Hart et al., 2018). 

It is widely known that Sertoli cells are crucial to 

maintain male reproductive functions. Previous 

experiments have demonstrated that BPA can induce 

apoptosis in Sertoli cells and male germ cells, thereby 

inhibiting sperm production (Li et al., 2009; Qian et al., 

2014). Studies examined on rat Sertoli cells have 

shown that BPA can inhibit their vitality and induce 

apoptosis (Qiu et al., 2013; Wang et al., 2015). Wang et al. 

(2015) observed that BPA exposure could induce 

apoptosis of Sertoli cells mediated by the Pten/Akt 

signaling pathway Fig. 5. In turn, Qi et al. (2014) 

confirmed that BPA also induces Sertoli cell apoptosis 

via activating the JNKs/ P38 pathway. In early puberty, 

BPA disrupts sperm production and changes the 

spermatogenic tubule epithelial morphology, it can 

increase Reactive Oxygen Species (ROS) production 

while decreasing the antioxidant activity of catalase 

and Superoxide Dismutase (SOD) enzymes    

(Abubakar et al., 2020; Ullah et al., 2019). There are also 

studies supporting BPA to induce apoptosis in Sertoli 

cells by causing excessive ROS production and 

mitochondrial dysfunction (Wang et al., 2017). which 

was also in accordance with the study of Barbonetti et 

al. (2016) that pro-oxidative/apoptotic mitochondrial 

dysfunction can influence sperm integrity, as well. The 

toxicity of BPA on male reproductive showed that 

DNA/histone methylation change make contribution to 

the decreased of sperm quality (Zhu et al., 2020). 
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Fig. 4: Effect of BPA exposure on pathway of estrogen synthesis. BPA could influence the synthesis of estrogen through 

changing the expression of related genes and steroidogenic enzymes. The signaling pathway molecules highlighted in 

red are BPA sites of action. Acronyms: Luteinizing Hormone (LH), Luteinizing Hormone Receptor (LHR), Follicle 

Stimulating Hormone (FSH), Follicle Stimulating Hormone Receptor (FSHR), GTP binding protein (G), Adenylate 

cyclase (AC), Protein Kinase A (PKA), Phosphodiesterase (PDE), cAMP-response element binding protein (CREB), 

Steroidogenic Acute Regulatory Protein (StAR), Cytochrome P450 11A1 (CYP11A1), 3β-Hydroxysteroid 

Dehydrogenase (3-β-HSD), Estradiol 17-β-Dehydrogenase 1 (HSD17B1), Cytochrome P450 17 (CYP17), Aromatase 

cytochrome P450 (CYP19/P450arom), Androstenedione (AD), Dehydroepiandrosterone (DHEA). 

 

 

 

Fig. 5: As described in’s findings. BPA could induce the apoptosis of rat Sertoli cells through Pten/Akt signaling pathway 

(Wang et al., 2015) 

 

Conclusion 

There is no doubt that BPA as an environmental 

interferer has an adverse effect on human endocrine and 

reproduction. This review gathers some researches 

articles, concludes the impacts of BPA on reproductive 

hormone, sperm quality, male sexual function and 

discusses their generation and change mechanisms. There 

are differences in the results of studies, the reasons for 

which are various. First, people are differences in 
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lifestyle, eating habits, education levels, age, gender, etc. 

of subjects in different studies and experimental animal 

also have disparity in dose, method of administration 

and time of exposure to interferers. Second, people may 

be exposed to a variety of EDCs in their living 

environment, often in a state of “co-exposed” and some 

studies suggest that “co-exposure” may amplify the 

health effects of BPA (Vandenberg et al., 2007), 

therefore, the study of the impact of BPA on human 

health needs to consider the impact of other EDCs that 

may exist. Third, some studies have a small sample size 

and some studies do not consider the effects of 

confounding factors. In addition, several surveys assessed 

the impacts of BPA exposure on the reproductive system by 

testing serum, urine BPA levels even semen parameters of 

different sorts of samples, which may explain inconsistent 

results (Vitku et al., 2016). All of these factors may be the 

reasons why the experimental results are inconsistent. In 

general, BPA inhibits spermatogenesis by the direct effect of 

disturbing the Sertoli cells function and the indirect influence 

of reducing testosterone production. 

Further summary of the endocrine and reproduction have 

made in this review according to the recent literature. 

Meanwhile, Due to the ubiquity of BPA in the environment, 

we can only provide some theories of BPA toxicity, but still 

cannot solve the effects of BPA on the body. Next, on the 

basis of BPA toxicity as a causative factor of the endocrine 

and reproductive system abnormalities, proposed a new 

prospective that if we can research a new biomarker to detect 

the occurrence of abnormalities. 
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