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Abstract: The dynamics of a discrete-time food chain model with strong 
pressure on preys is investigated. The types of equilibria of the system are 

analyzed using stability theory and bifurcation theory. The route to chaos 

via Neimark-Sacker bifurcation followed by period-doubling bifurcations 

of invariant curves is found for some parameter values through numerical 

simulation. Moreover, the chaos is controlled on the stable periodic period-

1 orbit by the improvement of OGY method. It is shown that the number of 

iterations used to control chaotic motion on a stable periodic orbit is 

difference, when the selected regulator poles are different. Numerical 

simulations are presented to illustrate our results based on the theoretical 

analysis and show the effect of the control method. 
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Control, OGY Method 

 

Introduction 

The dynamics in species was studied in the late 

1990’s (Costantino et al., 1997; Dennis et al., 2001). 

More and more researchers have studied the dynamic 
behavior of discrete ecosystems. These ecological systems 

have complex dynamics behaviors and many valuable 

results have been obtained (May, 1976; Hastings and 

Powell, 1991). The dynamics of three species discrete-time 

food chain models was investigated (Elsadany, 2012; 

Zhang and Zhao, 2009; Alba-Pérez and Macias-Diaz, 2019; 

Asheghi, 2014) studied discrete food chain systems with a 

functional response of Beddington-DeAngelis. 

Ott et al. (1990) proposed a method to control 

chaos. The early research idea is to use the existing 

dynamics control strategies and destroy the conditions 

for the occurrence of chaotic motion. Pyragas (1995; 

Shinbrot et al., 1993; Kacarev and Parlitz, 1996) have 

put forward different improvement measures 

according to various situations and further developed 

the OGY method, which has laid a good foundation 

for the application of chaos.  

Guo et al. (2014a; 2014b) studied the chaos control 

of the Lauwerier mapping: 
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By the OGY method. The chaotic motions of 

Equation (1 and 2) are both controlled on periodic-1 and 
periodic-2 orbits. Feng et al. (2018) studied the chaos 
control of two degree of freedom collision vibration 
system through OGY method. A four-dimensional 
discontinuous system is studied. The chaotic motion is 
controlled on periodic-1 and periodic-2 orbits. 

Recently, the chaos control in biological systems has 
been studied. Many chaos control methods can be applied 
to population dynamics and play nontrivial evolutionary 
roles in ecology (Bešo et al., 2020; 2019; Din, 2017; 
Din et al., 2018; Din, 2018a; 2018b; Kapçak et al., 2013). 

The three-dimensional model explored in this paper 
introduces a top predator species that consumes the 
predator and interferes in the growth of the preys. The 
system has a chaotic attractor when a = 2.1, b = 3.36, c = 
7.4. The chaotic dynamics of this system is investigated 
and the chaos is controlled. The unstable point is 
controlled on the period-1orbit. It is shown that the 
control times depend on the adjustment values. 

The aim of this paper is to control the chaotic motion 
of a three-dimensional food model use the OGY method. 
The process of realizing the control is only a small 
continuous disturbance to the parameters. The dynamic 
properties of the original system are kept. Other control 
methods change the balance point of the system and the 
fixed point of the control is no longer the original system. 
This method is not studied in the previous literature. 
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In biology or ecology, the chaotic behavior of this 

model shows the relations of the different species, 

including the number population, birth rate and survival 

rate, whether they can survive in a balanced state or 

makes the population develop in disorder or chaos. This 
research can provide theoretical basis and help for the 

research in biology or ecology. 

This paper is organized as follows. In section 2, we 

discuss the existence and stability of fixed points of the 

system (3). We present numerical simulations, which 

exhibit the complex dynamical behaviors such as Neimark-

Sacker bifurcation and chaotic sets. In section 3, chaos is 

controlled to an unstable fixed point using the OGY control 

method. A brief discussion is given in section 4. 

The Equilibria and the Dynamics Analysis 

of a Three-Species Food Chain Model  

We consider a three-species food chain model 

described by the nonlinear difference equations: 
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 (3) 

 
This model describes the insects group of three fully 

different insects. The parameters a, b, c are positive. In 
the absence of predation, preys grow logistically with an 
intrinsic reproduction rate a. However, preys’ 
reproduction is decreased by the action of predation from 
both predators y and z. Parameter b is the growth rate of 
predators y, which is proportional to the consumption of 
preys. c is the growth rate of predators z due to the 
consumption of species y. Notice that predator z also 
predates (interferes) on x, but it is assumed that the 
increase in reproduction of the top predator z is mainly 
given by the consumption of species y. 

In order to find out the equilibria of this system and 

study its dynamic properties. Equation (3) is written: 
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where, f(x,y,z) = ax(1-x-y-z), g(x,y,z) = by(x-z), h(x,y,z) = 

cyz. The Equation (3) has four equilibria: 
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Assume that,  , ,iE x y z    (i = 1, 2, 3, 4) is positive 

and denote equilibrium point of the Equation (3). 

To carry out linear stability analysis, the Taylor series 

expansion of Equation (3) may be written as: 
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Using Equation (4) and (5), one can obtain the 

following: 
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Consider the matrix: 
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The characteristic equation is: 
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Which may be rewritten in the form: 

 
3 2

1 2 3 0c c c       (11) 

 
where: 
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 1 11 22 33

2 11 22 12 21 11 33 13 31 22 33 23 32

3 11 22 33 11 23 32 12 21 33 12 23 31 13 21 32 13 22 31

c P P P

c P P P P P P P P P P P P

c P P P P P P P P P P P P P P P P P P

   

     

      

 (12) 

 

For the parameter values a = 2.1, b = 3.36, c = 7.4, 

the eigenvalues can be obtained for the four equilibria, 

so we can judge the type of each equilibrium point: 

 

(i) The eigenvalues are 11 = a, 12 = 13 = 0 at E1, so 

E1 is a saddle point 

(ii) The eigenvalues are 21 = -0.9, 22 = 1.76, 23 = 0 at 

E2, so E2 is a saddle point 

(iii) The eigenvalues are 31 = 1.674, 32 = 

0.6651+0.6143i, 33 = 0.6651-0.6143i at E3, so E3 is 

an unstable spiral-sink node source 

(iv) The eigenvalues are 41 = 0.3923, 42 = 0.9329-

0.6313i, 43 = 0.9329-0.6313i at E4, so E4 is a 

locally asymptotically stable sink of spiral node 

 

Alsedà et al. (2012) made a detailed analysis of the 

equilibria of the system. Different parameter ranges were 
given to make the four equilibria (E1, E2, E3, E4) of the 

system stable or unstable. Let us explore the dynamics of 

the system focusing on the strength of predation, 

parametrized by constant c. Without loss of generality, 

we take a = 2.1, b = 3.36 and assume that c changes from 

5.5 to 7.4. Under the assumption of such parameter 

values, the dynamics behavior of this system is mainly 

studied by numerical analysis. 

The bifurcation diagrams of Equation (3) is shown in 

Fig. 1a to c for each species x, y and z with a = 2.1, b = 

3.36, as the parameter c changes from 4 to 8. We now 

discuss the salient features of the bifurcation diagram. 

The bifurcation diagrams computed in Fig. 1 seem to 

indicate that after a Neimark-Sacker bifurcation, the new 

invariant curves undergo period-doublings. 

When the reproduction rate c changes between 4 and 

8, Equation (3) generates complicated features. The 

equilibria E4 is a positive fixed point that is 

asymptotically stable for 5<c<5.67. The phase portraits 

of various c corresponding to Fig. 1a are plotted in Fig. 

2a and at c = 5.67, a Neimark-Sacker bifurcation 

appears. When the parameter c changes from 5.67 to 

6.58, there is one invariant circle in the system. With the 

change of parameters for 6.58<c<7.15, a period-

doubling bifurcation appears and there are two invariant 

circles in the system.  

 

 
 

Fig. 1: The bifurcation diagrams of Equation (3) for each species x, y and z with a = 2.1, b = 3.36, as the parameter c changes from 4 to 8. 
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Fig. 2: The phase diagrams of Equation (3) with a = 2.1, b = 3.36, as the different parameters c: ((a)5<c<5.67, (b) 5.67<c<6.58, (c) 

6.58<c<7.15, (d) 7.15<c<7.25, (e) 7.25<c<7.4, (f) c = 7.4)) 
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With the increase of parameter c changing from 7.15 to 

7.25, the system appears a period-doubling bifurcation, 

there are four invariant circles. With the increase of 

parameter c changing from 7.25 to 7.4, the system appears a 

period-doubling bifurcation, there are eight invariant circles. 
When the parameter c>7.4, the system appears chaotic 

dynamic behavior. The phase portraits of various c 

corresponding to Fig. 1a are plsotted in Fig. 2b to 2f. 

When the parameter c passes through the range (7.28, 

7.29) and (7.37, 7.29) Fig. 1a, the Equation (3) goes 

through a quasi-periodic region (wide periodic windows 

and frequency locking which appear as a collapse of the 

invariant circle to a periodic orbit). Then, chaos appears 

after period-doubling bifurcation. 

The Chaos Control of the Three-Species 

Food Chain Model  

As shown in Fig. 3, for a = 2.1, b = 3.36, when c = 

7.4, the dynamics behavior of the system is chaotic. 
Moreover, there exists a chaotic attractor which is the 

closure of the unstable manifolds of the saddle points and 

there are an infinite number of unstable periodic orbits in 

the chaotic attractor. In particular, there are unstable period-

1 orbits embedding in the chaotic attractor. 

The chaotic motion of the three-species food chain 

model is controlled to the stable periodic period-1 orbit 

through the improvement of OGY method. Control 

parameter c is perturbed slightly depending times. When 

the unstable point wanders to the neighborhood of the 

periodic-1 orbit, the control parameter is perturbed. 
Write the system (?) in the following form: 

 

  3

1= , , ,i i iW F W c W R c R    (13) 

 

where, F is sufficiently smooth, c is an externally 

adjustable real parameter. That is required c c   at 

some time and c is a rated value. Let the control parameter 

c be a variable parameter near the rated value =7.4.c  For a 

= 2.1, b = 3.36, by the Equation (4), the equilibrium point 

E4 is  , ,iE x y z    = (0.3474, 0.1266, 0.0498). 

Now the aim is to change the parameter such that the 

chaotic attractor involves almost all of the initial 

conditions, so that the dynamics behavior of the system 

converges to the desired periodic orbit in the attractor. 

Through the OGY method, due to the ergodicity of the 

chaotic motions, when the state orbit enter the vicinity of 

the unstable periodic orbit to be stabilized, a feedback 

control law is applied to control the trajectory to move to 
the desired unstable periodic orbit. 

Denoted by  W c  the unstable fixed point E4. By 

the first-order Taylor expansion, Equation (13) can be 

written as: 

      1 A Bi iW W c W W c c c        (14)  

 

Find out the matrices A and B at  W W c  and 

=c c , where A is the partial derivative matrix of F(w, c) 

to w  and w is the variable set of (x, y, z), A = Dw F(w,c): 

 

 

 

1-2
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0

a x y z ax ax

by b x z by
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 (15) 

 

and B is the partial derivative matrix of F(w, a) to a, 

B = Dc F(w,c): 

 

 

(1 )

B= 0

0

x x y z   
 
 
 
 

 (16) 

 

Bring the equilibrium point E4 (x*,y*,z*) = (0.3474, 

0.1266, 0.0498) into the matrixes A and B: 

 

0.2705 0.7295 0.7295 0.1654

A 0.4254 1 0.4254 B 0

0 0.3884 0.9875 0

    
   

     
   
   

 (17) 

 

The time dependent control parameter c is in the form 

of a linear function with respect to the variable: 

 

  T= K ic c W W c    (18)  

 

Substituting Equation (18) into Equation (14): 
 

      T

1 = A BKi iW W c W W c      (19)  

 

So as long as the matrix A-BKT is asymptotically 

stable, that is, if the modulus of its eigenvalues are less 

than 1, the equilibrium point  W c  is stable. The 

following key question is how to determine the matrix 

KT, which can stabilize the chaotic motion at a stable 

periodic point. The pole assignment is solved 

according (Ogata, 1990). The matrix C33 is 

controllable matrix: 
 

 2

0.1654 0.0447 0.0392

C= B AB A B 0 0.0704 0.0894

0 0 0.0273

 
 

  
 
 

 (20) 
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The solution of pole assignment is given by KT = (3 

- 3 - 2 - 2 - 1 – a1), where T = CQ and Q is a matrix 

of order 3: 

 

2 1

1

1

Q= 1 0

1 0 0

a a

a

 
 
 
 
 

 (21) 

 

ai (i = 1, 2, 3) are the coefficients of the characteristic 

polynomial of the matrix A, that is: 

 

  3 2

1 2 3det I A a a a         (22) 

 

Substituting the matrix A into Equation (22): 
 

 

0.2705 0.7295 0.7295

det I A det 0.4254 1 0.4254

0 0.3884 0.9875



 



 
 

    
   

 

 
3 22.2580 2.001 0.4977        (23) 

 

yields, a1 = -2.2580, a2 = 2.001, a3 = -0.4977.  

Assume that 1, 2, 3 are the coefficients of the 

characteristic polynomial det(A-BKT), that is: 

  

  T 3 2

1 2 3det I A BK =s s s s        (24) 

 

0.1654 0.0447 0.0392 2.001 2.2580 1

T CQ 0 0.0704 0.0894 2.2580 1 0

0 0 0.0273 1 0 0

0.1908 0.3288 0.1654

0.0696 0.0704 0

0.0273 0 0

   
  

    
  
  

 
 

  
 
 

(25) 

 

1

0 0 36.6300

T 0 14.2045 36.1946

6.0459 28.2350 29.6833



 
 

  
 
 

 (26) 

 

The eigenvalues of the matrix A at the equilibrium 

point (x*, y*, z*) = (0.3474, 0.1266, 0.0498) are: 
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2

0.3923,

0.9329+0.6313i,
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Assume 1, 2, 3 are the coefficients of the 

characteristic polynomial of the matrix A-BKT. The 

assumed characteristic roots 1, 2, 3 are called the 
adjustment values, that is: 

    

 

T 3 2

1 2 3

1 2 2 3 1 3 1 2 3

det I A BK = + +

+ +

s s s

s

  

        

  

 
 (27) 

 

The relation between the roots and the coefficients is 
given by: 

 

 1 1 2 3 2 1 2 2 3 1 3 3 1 2 3+ + , + + ,                    (28) 

 

From Ogata (1990) and Equation (13), the matrix 

KT is not unique. As long as the matrix KT is obtained 

with the values 1, 2 and 3, it can make the matrix 

A-BKT be asymptotically stable, the modulus of their 

eigenvalues are less than 1, so we can take (1, 2, 3) 

= (-|s|,-s|,0) and obtain: 

 

 

 

 

T 1

3 2 1K = 0 T

0 0 36.6300

= 0.4977 2.3933 1.8657 0 14.2045 36.1946

6.0459 28.2350 29.6833

11.2799 18.6824 13.0138

s sa a a      

 
 

  
 
 

 

 (29) 

 

when, KT is found,   TK iW W a    is obtained by 

c c    and the Equation (14). There is a region whose 

width is:  

 
T2 K  

 

when, Wi in this region, the parameter is controlled, 

otherwise the parameter is not controlled. The control 

rate is given by the following formula: 

 

      T T= K , K ,i ic c W W c u Z Z c        (30) 

 

where: 

 

 
0, 0

1, 0
u







 


 (31) 

 

As shown in Fig. 4, when 1 = 0.3923, 2 = 

0.3923, 3 = 0, the chaotic motion can be controlled 

to the period-1 orbit at n = 820 Fig. 4a to 4c). When 

1 = 0.256, 2 = 0.465, 3 = 0.210, the chaotic motion 

can be controlled on the period-1 orbit at n = 2400 

Fig. 4d to 4f. When the values of 1, 2, 3 are 

different from the previous ones, the number of the 

Equation (3) iterations is different to control chaos. 
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Fig. 3: The chaotic attractor of food chain model with an unstable fixed point (a = 2.1, b = 3.36, c = 7.4) 
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Fig. 4: Control of period-1 of food chain model 
 

Conclusion 

The dynamics of a discrete-time food chain model 

with strong pressure on preys is investigated. The types 

of equilibria of the system are analyzed. The chaos is 

achieved via a Neimark-Sacker bifurcation followed by 

period-doubling bifurcations of invariant curves for 

some parameter values. The chaotic motion is controlled 

to the stable periodic period-1 orbit using the 

improvement of OGY method. It is shown that the 

number of iterations used to control chaotic motion on a 

stable periodic orbit is difference, when the selected 

regulator poles are different. The process of realizing the 

control is only a small continuous disturbance to the 

parameters, which keeps the dynamic properties of the 

original system. 

Numerical simulations are presented to illustrate our 

results with the theoretical analysis and show the effect 

of the control method.  

The chaotic behavior of this model shows the 

relations of the different species, including the number 

population, birth rate and survival rate, whether they can 

survive in a balanced state or makes the population 

develop in disorder or chaos. This research provides 

some theoretical basis and may be helpful for the 

research in biology or ecology. 

When the parameters of the system take a different 

set of values, what more complex dynamic behavior the 

system will have and whether the OGY method can 

realize the chaos control of the system in this period? 

These problems will be very interesting and need further 

research and discussion. 
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