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Abstract: To determine optimal artificial signal peptide candidates for the 

possibility of creating high levels of secretion of heterologous proteins, 

substitution and redesign of amino acid sequences in the H-domain of the 

signal peptide was theoretically attempted. The method was based on 

comprehensive score matrix and Markov transfer matrix, which can make 

the artificial sequences maintain the structural characteristics and original 

polarity of signal peptides. For the artificial sequence, the feature vector of 

Structural Fusion Degree (SFD) is first extracted to quantitatively describe 

the compatibility of artificial cleaved region, then by comparing with 

highly secreted natural samples; tendencies of specific substitutions in the 

amino acid sequence can be identified at certain locations. These 

substitutions may represent the key amino acids that influence the secretion 

and expression levels of heterologous proteins.  

 

Keywords: Markov Transition Matrix, Signal Peptide, Feature Vector, 
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Introduction 

Proteins that can be exported to other cellular sites 

from their site of synthesis by traversing the cytoplasmic 

membrane are generally referred to as secreted proteins. 

Successful secretion of proteins depends on the presence 

of a signal peptide, which is generally located at the N-

terminus of the amino acid chain and is composed of 15 

to 60 amino acids (Nielsen et al., 2011). Under the 

direction of a signal peptide, the synthesized protein is 

transported through the protein channel and secreted to a 

targeted destination, following which the signal peptide 

is cleaved by specific signal peptidases to form the 

mature protein. It remains a great challenge to 

industrially synthesize different kinds of poorly secreted 

natural proteins in organisms.  
Should an identifiable artificial signal peptide be 

designed using bioengineering technology, thus making 
proteins more highly able to be directly secreted into the 
culture medium, it will require approaches that exceed the 
properties of the natural protein resource. A bioengineering 
approach will only substitute or artificially design the signal 
peptide in specific host bacteria to guide the heterologous 
protein as one that is secreted. More importantly, it can 
maintain an unaltered mature protein sequence and will not 
have any effect on the biological functions of the 
synthesized protein. Therefore studies aiming at artificial 

signal peptide will contribute important technological 
advances in the industrial production of important natural 
proteins (Cai et al., 2016; Pournejati et al., 2014; 
Romána et al., 2014). One important factor that should 
be taken into account is that the main chain of the protein 
must retain that found for natural protein after the 
original signal peptide of the heterologous protein is 
replace by an artificially synthesized signal peptide. 
Thus, there must be a high degree of similarity between 
the artificial sequence and the original sequence, but the 
secretion and expression levels might be considerably 
different. Thus, it presents a great challenge to analyze 
highly similar sequences, including the degree of 
compatability between the artificial signal peptide and the 
main chain and some important amino acids that will 
significantly affect the secretion of the protein and the 
design of appropriate artificial signal peptides. 

According to previous work done in Bacillus subtilis 

as the host bacteria, some heterologous samples with the 

artificial signal peptide have successfully achieved high 

levels of secretion and expression. However, others are 

poorly secreted. For example, the sequence of Bacillus 

licheniformis α-amylase (AMY_BACLI) consists of 512 

amino acid residues (29 residues are present within the 

signal peptide), when its original signal peptide is 

replace by signal peptide SacB (SACB_BACSU), alpha-

amylase is non- or poorly secreted. By contrast, when 
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replace by the signal peptide AprE (SUBT_BACSU), the 

protein achieves a higher level of secretion (Sloma et al., 

1988). It should be pointed out that the natural protein 

SacB and AprE both show high levels of secretion in 

Bacillus subtilis. Clearly, the heterologous protein in the 

host bacterial strain Bacillus subtilis can achieve high 

levels of secretion and expression. Thus, the possible 

reason might be as a consequence of the mature protein of 

Bacillus licheniformis α-amylase exhibiting no 

compatibility with the artificial signal peptide SacB. Such 

results inform us that the optimal design for the non/poorly 

secreted signal peptide should take into account the 

property of compatibility of the cleaved region. 

Previous studies have shown that sometimes just a 

few key amino acids in the signal peptide affect the level 

of secretion of heterologous proteins, which are 

significantly different if replacing 2 ~ 3 or even one 

amino acid residue in the signal peptide sequence 

(Nijland et al., 2007). Thus, it is highly and theoretically 

possible, to increase the secretion levels of heterologous 

proteins if the signal peptide sequence is adjusted or 

somewhat redesigned. 

With the rapid development of computational 

technology, many intelligent algorithms have been 

developed and applied to the prediction of the signal 

peptide (Zhang and Wood, 2003; Gao et al., 2013; 

Zheng et al., 2012; Tsirigos et al., 2015; Zhang et al., 

2014), such as the Neural Network (NN) (Nielsen et al., 

2011), the Hidden Markov (HMM) method and the signal-

BNF method (Zheng et al., 2012) etc. These methods 

mainly focus on natural protein sequences and there is 

currently no artificial sample that has undergone 

replacement or design of a new signal peptide. One 

research (Gao et al., 2010) proposed a Structural Fusion 

Degree (SFD) feature extraction method and established 

a mathematical model that took into consideration the 

signal peptide that was fused into the targeted region of 

the heterologous protein. The feature vector extracted 

from the mathematical model could be used to 

distinguish and characterize the ability of the artificially 

synthesized proteins to be secreted. 

In this research, aiming at designing signal peptides 

in Gram-positive bacteria, we have developed an 

optimized design strategy and technique for creating 

artificial signal peptides based on the characteristics of 

the Structural Fusion Degree (SFD). By studying the 

substitution principle and the metastatic pattern of amino 

acids, we actively redesigned and optimized signal 

peptide sequences that were otherwise unable to be 

secreted or were inefficiently secreted. We studied and 

identified the amino acid assignment trends present on 

different positions of the signal peptide, with the aim of 

finding the optimal signal peptide candidate, which 

could be applied to achieve high levels of secretion and 

expression of the targeted heterologous protein. 

Materials and Methods 

In the case of not knowing the key amino acid 

positions, it is unfeasible to attempt all possible 

replacement options, even with the use of available 

computer tools. From a theoretical viewpoint of the 

biological functions of signal peptide and the 

characteristics of each amino acid, we will design and 

analyze the artificial sequence from the following steps: (i) 

Construct a reasonable comprehensive substitution matrix 

of the amino acid, (ii) Build a general Markov transition 

frequency matrix, (iii) Design the artificial sequence 

according to the above defined matrices, (iv) Extract SFD 

features of the artificial sequence in an attempt to 

quantitatively describe the compatibility information  and 

(v) Compare similarity with samples exhibited high levels 

of secretion in an attempt to determine the sequence of the 

candidate exhibiting high levels of secretion.  

In this paper, we have attempted to adjust/replace 

partial amino acids of the signal peptide SacB in the 

permissibility range and connected the artificial signal 

sequence to the main chain of Bacillus licheniformis α-

amylase. By a series of intelligent analyses, we wished 

to find the amino acid assignment trends of different 

positions in the signal peptide. It is worthwhile realizing 

that the optimized design technique will be the same for 

other signal peptides, depending of course on the 

different targeted protein. 

Construct Comprehensive Score Matrix 

The rule of amino acid substitutions in the 
evolutionary process remains unclear and as a 
consequence, the determination method of the key amino 
acid cannot easily be given. However, the signal peptide, 
as a special segment of protein sequences, possesses a 
key biological function, which is to guide the target 
protein and assist its transportation through the 
protein channel. Accordingly, only if the artificial 
sequence persists the same characteristic structure and 
polarities as the natural signal peptide will it be 
possible to possess its biological function.  

BLOSUM 62 matrix (refer to Appendix 1) and 

hydrophobic matrix (refer to Appendix 2) are frequently-

used score matrices in the sequence alignment of protein. 

The BLOSUM 62 matrix is a statistical pattern based on a 

likelihood method by estimating the occurrence of each 

possible pair wise substitution from blocks database. 

Those pair wise with high score are so called 

‘conservative substitution’ in the evolution and such 

substitution has higher probability to maintain the protein 

function than ‘random substitution’. Hydrophobic matrix 

presents the similarity between amino acids from another 

viewpoint, in which the substitution with high score will 

cause a small change in hydrophobicity. H-domain is the 

functional region of signal peptide which primarily consist 

of hydrophobic amino acids, therefore substitution based 
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on this matrix advantageously persists the characteristic 

structure of a signal peptide. 

So we constructed a comprehensive score matrix 

based on the amino acid Blosum 62 substitution matrix 

and Hydrophobic matrix. Firstly, the matrix with 

different measurement must be standardized to conform 

to the unified norm. Standardized methods of the 

Blosum 62 matrix and the hydrophobic matrix are 

designed according to the following Equation 1: 
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In which xkh (k = 1,...,20; h = 1,...,20) is the original 

data and ykh (k = 1,...,20; h = 1,..., 20) is the subsequent 
standardized data. Then the substitution score can be 
calculated based on the standardized matrix. 

We define the expression of score function as 
Equation 2, which can indicate the proportion in the 
different matrix for each substitution amino acid. The 
hypotheses of the method is that the ‘conservative 
substitution’ and “persists hydrophobicity structure” are 
of equal importance, then we set w1 = 0.5 and w2 = 0.5 in 
our research. In fact, for different species of protein 
sequences, w1 and w2 may be set at different weight 
values. For example, signal peptides from Gram- 
bacteria are not so much various as that from Gram+ 
bacteria, in other words, they are more conservative, in 
this case the Blosum 62 matrix can be a little more 
important. Then in Gram- bacteria, the specific gravity 
of Blosum 62 matrix can be 60% (w1 = 0.6) and the 
gravity of hydrophobic matrix can be 40% (w2 = 0.4): 
 

1 2ij ij ijf w a w b= +  .                                (2) 

 
where, aij, bij respectively represent the elements in the i-
th row and the j-th column of the standardized Blosum 62 
matrix and hydrophobic matrix, accordingly, fij represent 
the elements in the comprehensive score matrix. We 
obtain a substitution score matrix as in Table 1.  

Construct the General Markova Matrix 

Abundant natural signal peptides from one species as 
a colony generally contain a disciplined pattern of amino 
acids, including discrepancies, transfer and assignment 
order and so forth. Under the direction of such patterns, 
we can adequately utilize prior knowledge to design 
reasonable artificial signal peptides. Markov chain is a 
widely applied mathematic model that reveals the 
collection of state distributions on a peptide sequence. 
Typically, the signal peptides are described using limited 
symbols to denote 20 kinds of natural amino acids. 
Should these residues on the chain be regarded as state 
parameters, it follows that the sequences of the amino 

acids will express a series of transition states. In this 
way, a finite stationary Markov model can be 
constructed based on symbol distribution to reflect the 
intrinsic relationship and further to detect the 
comprehensive information of signal peptide sequence.  

Let Θ be a set of complete amino acid symbols in 
alphabetical order:  Θ = 
{A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y}, which 
can be used as the state set. Given a signal peptide 
sequence containing n amino acid residues: Q = 
{R1R2R3R4R5R6R7...Rn}, where Ri (i = 1, 2, 3…n) denotes 
one of the residue in set Θ. In order to quantitatively 
describe the transition behavior state on Q, we defined a 
20×20 Markov matrix whose rows and columns were 
denoted by amino acids to represent the frequency of 
occurrence of each dipeptide. Assume that M(i, j) = {(Ri, 
Rj), z}, That is to say in the frequency matrix M, the 
element value in the i-th row (denoted by amino acid Ri), 
j-th column (denoted by amino acid Rj) is numerical z. 
Where in Ri is the previous residue of a dipeptide and Rj 
is the latter, z is the transition frequency from Ri to Rj 
through the full sequence. Thus, we find that the pair-
wise residues (Ri,Rj) in the matrix M correspond to their 
respective denotations and give the assignment M(i, j) = 
z. Thus, the Markov matrix that reflects the composition 
of the dipeptide and the series of state relations in 
sequence Q can be obtained.  

The general Markov transfer frequency matrix can be 
constructed if the metastatic behaviors of a large number 
of signal peptide sequences have had statistical 
measurements made. Since Bacillus subtilis as the host 
bacteria belongs to the Gram-positive class of bacteria, 
we thus chose a 140 signal peptide dataset of the 
secreted protein sequence of Gram positive bacteria in 
the benchmark dataset 
(http://www.cbs.dtu.dk/ftp/signalp). The following Table 
2 shows the calculated general Markov frequency 
matrix. So the general characteristic (similarity) among 
all sequences in the set can be reflected by the statistical 
value in the matrix. For example, the value 0 appears in 
the row “K” column “C”, which suggests the inexistence 
that Cysteine followed Lysine in the set. Then according 
the similarity in Table 2, the reasonable artificial 
sequences should exclude such occurrence of '…KD…' 

Artificial Sequence Designation 

Most signal peptides consist of three functional domains 

(Fan et al., 2013): A positively charged N-terminal (N-

domain) which is called the alkaline amino terminal; a 

hydrophobic segment (H-domain) which mainly contains 

neutral amino acids, can form a section of α-helical 

structures and is generally viewed as the major functional 

domain; and a long negatively charged C-terminal (C-

domain) which is comprised mainly of small molecule 

amino acids, is the “cutting area” of the signal peptide, often 

referred to as the processing zone. Here the major 

functional H-domain is selected and will be redesigned. 
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Table 1. Comprehensive score matrix for amino acid substitutions 

 R K D E S N Q G T H A C M P V L I Y F W 

R 0.63 0.45 0.15 0.27 0.06 0.12 0.18 -0.05 0.01 0.07 0.01 -0.17 -0.09 -0.15 -0.22 -0.15 -0.22 -0.20 -0.32 -0.37 

K 0.43 0.62 0.20 0.32 0.11 0.11 0.17 -0.07 -0.00 -0.00 -0.00 -0.18 -0.10 -0.10 -0.17 -0.17 -0.23 -0.22 -0.33 -0.38 

D 0.17 0.22 0.62 0.42 0.16 0.15 0.10 0.05 -0.00 -0.00 -0.05 -0.10 -0.16 -0.06 -0.16 -0.27 -0.22 -0.22 -0.27 -0.38 
E 0.25 0.31 0.42 0.58 0.14 0.08 0.19 -0.03 -0.03 0.03 -0.03 -0.19 -0.14 -0.08 -0.14 -0.25 -0.25 -0.19 -0.31 -0.36 

S -0.17 -0.09 -0.01 -0.01 0.52 0.31 0.24 0.24 0.23 0.08 0.23 0.00 0.00 -0.08 -0.15 -0.15 -0.15 -0.24 -0.24 -0.48 

N -0.09 -0.09 -0.04 -0.09 0.30 0.55 0.25 0.25 0.16 0.21 0.06 -0.07 -0.02 -0.02 -0.15 -0.15 -0.15 -0.19 -0.24 -0.45 
Q -0.03 -0.03 -0.10 0.03 0.24 0.24 0.55 0.11 0.09 0.15 0.09 -0.12 0.07 0.01 -0.14 -0.14 -0.20 -0.16 -0.28 -0.39 

G -0.27 -0.27 -0.12 -0.17 0.33 0.33 0.23 0.63 0.13 0.13 0.23 -0.02 -0.02 0.03 -0.02 -0.17 -0.17 -0.22 -0.22 -0.27 

T -0.30 -0.30 -0.30 -0.30 0.25 0.17 0.10 0.03 0.63 0.13 0.28 0.10 0.10 0.00 0.07 0.00 0.00 -0.17 -0.17 -0.37 
H -0.24 -0.29 -0.29 -0.24 0.11 0.20 0.16 0.07 0.17 0.62 0.17 0.02 0.07 0.07 -0.08 -0.08 -0.08 0.05 -0.09 -0.33 

A -0.29 -0.29 -0.37 -0.29 0.25 0.03 0.11 0.18 0.28 0.13 0.56 0.18 0.11 0.11 0.08 0.01 0.01 -0.17 -0.17 -0.44 
C -0.37 -0.37 -0.28 -0.32 0.04 -0.03 -0.03 -0.03 0.13 0.05 0.16 0.59 0.21 0.05 0.13 0.13 0.13 0.00 0.00 -0.25 

M -0.36 -0.36 -0.41 -0.35 -0.00 -0.06 0.06 -0.13 0.07 0.01 0.07 0.14 0.52 0.08 0.27 0.26 0.20 -0.00 0.06 -0.07 

P -0.35 -0.30 -0.23 -0.23 -0.02 0.01 0.06 0.01 0.06 0.08 0.13 0.04 0.15 0.56 0.15 0.04 0.04 0.04 -0.08 -0.15 
V -0.46 -0.39 -0.39 -0.31 -0.10 -0.17 -0.10 -0.10 0.11 -0.10 0.11 0.11 0.33 0.11 0.54 0.33 0.47 0.11 0.04 -0.17 

L -0.36 -0.36 -0.48 -0.42 -0.07 -0.13 -0.07 -0.20 0.06 -0.06 0.06 0.13 0.32 0.01 0.33 0.52 0.39 0.13 0.20 -0.00 

I -0.41 -0.41 -0.41 -0.41 -0.13 -0.13 -0.13 -0.19 0.07 -0.06 0.07 0.14 0.26 0.01 0.46 0.40 0.52 0.14 0.20 -0.06 
Y -0.36 -0.36 -0.34 -0.29 -0.11 -0.11 -0.06 -0.16 -0.04 0.16 -0.04 0.02 0.07 0.03 0.13 0.13 0.13 0.59 0.39 0.22 

F -0.39 -0.39 -0.34 -0.34 -0.07 -0.12 -0.12 -0.12 -0.01 0.04 -0.01 0.05 0.15 -0.05 0.10 0.20 0.20 0.41 0.56 0.25 

W -0.30 -0.30 -0.29 -0.25 -0.10 -0.14 -0.07 -0.02 -0.02 -0.02 -0.05 0.03 0.11 0.01 0.05 0.13 0.10 0.26 0.28 0.66 

 
Table 2. Markov transfer frequency matrix of Gram-positive bacteria 

 R K D E S N Q G T H A C M P V L I Y F W 

R 36 28 3 2 12 4 1 8 13 4 24 2 3 5 11 17 9 4 13 3 
K 31 65 0 5 12 17 12 11 18 6 25 0 9 3 22 24 23 3 12 4 
D 3 6 1 2 1 2 0 2 3 0 5 0 0 0 4 3 2 1 2 0 
E 2 6 0 0 3 3 2 1 4 0 13 0 1 3 6 1 3 1 2 0 
S 17 12 2 2 25 11 6 16 28 2 51 4 9 13 36 72 34 2 13 1 
N 8 15 4 2 8 6 3 2 15 1 15 1 3 7 8 8 6 3 4 1 
Q 3 5 4 2 7 5 8 1 6 3 26 0 2 5 2 0 4 2 1 0 
G 7 5 0 2 19 6 4 16 24 1 62 1 8 8 27 51 14 1 9 1 
T 8 9 5 5 25 5 7 16 23 0 90 1 4 11 28 46 14 4 13 2 
H 2 2 1 1 4 1 2 0 5 0 12 0 1 2 1 3 0 1 2 1 
A 15 19 6 7 58 13 13 58 48 10 111 4 8 25 59 90 23 3 31 4 
C 0 2 0 0 4 0 0 3 0 0 2 2 2 2 5 9 5 0 3 0 
M 20 55 1 7 22 17 6 5 12 4 22 1 3 7 11 27 11 3 11 0 
P 7 3 1 3 13 6 2 6 12 1 32 0 7 7 16 21 6 4 7 0 
V 10 15 4 4 37 6 7 36 18 2 52 5 15 15 35 57 26 7 20 1 
L 14 16 1 3 62 8 4 53 50 2 101 9 16 28 59 98 34 5 37 3 
I 13 18 0 2 26 5 4 21 22 1 32 6 7 7 21 30 21 1 19 0 
Y 1 4 2 2 9 4 0 4 0 1 8 1 1 1 1 4 0 0 2 0 
F 8 18 1 2 16 2 6 11 15 3 30 2 5 5 18 37 19 1 10 3 
W 0 1 1 0 1 0 0 1 1 0 5 0 1 0 5 5 2 0 1 0 

 

We first ascertained the distribution range of three 

domains of natural signal peptide SacB using signal P 

3.0-HMM (http://www.cbs.dtu.dk/services/SignalP/). 

According to the online analysis of the results, the H-

domain is located in the position 11-22 and then these 12 

amino acid residues will be redesigned artificially. We 

selected the threshold f ≥ 0.28 in comprehensive score 

matrix and f ≥ 12 in Markov transition matrix. The 

feasible substituted amino acids in each position were 

filtered and shown in Table 3. 

According to Table 3, there are several cadidate 

amino acids in positions 12, 13, 19, 20, 22. Thus 432 

(3×4×3×4×3) artificial signal peptide sequences can be 

obtained according to these substitutions. Suppose the 

amino acid V replaced by V in positions 12, but original 

amino acids changed in other positions, then a new 

different sequence can be obtained. Only when all of the 

amino acids in 5 positions replaced by themselves, the 

original sequence can be obtained. That means there is 

just one orginal sequence in the 432 artificial sequences. 

In this way, we have significantly reduced the number of 

candidate signal peptide sequences. Thus the intelligent 

analysis and identification of key amino acids will be 

possible by numerical experiments done with the aid of 

computer programs. 

Extract Numerical Features 

From a mathematical viewpoint, the interaction 

between the artificial signal peptide and neighboring 

residues in the cleaved region were analyzed. 
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Table 3. The amino acid can be replaced in the H-domain of signal peptide SacB 

Position 11 12 13 14 15 16 17 18 19 20 21 22 

Original amino acids T V L T F T T A L L A G 
Replaced amino acids T VLI MV L I T F T T A VLI MV L I A SNG 

 

By considering a mathematical approach (Gao et al., 
2010), suppose the sequence length of the artificial 
signal peptide is l and suppose we extend the sequence 
of the signal peptide by adding 15 additional amino acids 
from its nearest downstream neighbors (as is shown in 
Fig. 1. Accordingly, the length of the extended signal 
peptide is l+15, which means it contains 15 adjacent 
amino acids in the chain. 

Then the information set of the extended signal 

peptide was constructed, which contained all the sub-

sequences of the signal peptide fragment. When the 

extending length is 15, the sub-sequence distribution set 

is: Ω = (U
1
 U

2
 ... U

15
 U

16
). 

Where: 
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where, Ri(i = 1,2,3…l + 15) represents one of the 20 
natural amino acids, obviously, U

1
 simply represent the 

signal peptide and U
16 

is the extended signal peptide. 
Each sequence will contain one additional residue than 
the former and such elongation might contain 
discrepancies and interactions among this subsequence. 
For each sub-sequence in set Ω, a 20-dimensional amino 
acid component feature vector can be extracted and a 
total of 16 feature vectors can be obtained. All of these 
vectors together form a matrix of extended signal 
peptide, which is denoted as A = [V1 V2 … V16]. 

Where V1 = [v1,1 v1,2 … v1,20]
T
 is the feature vector of 

subsequence U
1
, V2 = [v2,1 v2,2 … v2,20]

T 
is the feature 

vector of subsequence U
2
 and so on. 

There is some overlap between the subsequence in 

set Ω, so that the related analysis of matrix A is described 

using different variable covariance. Assume that C is the 

covariance matrix: 
 

1,1 2,1 20,1

1,2 2,2 20,2

1,20 2,20 20,20

     ...   

     ...  

...

  ... 

c c c

c c c
C

c c c

 
 
 =
 
 
  

 

 
Matrix C is symmetrical, where the element in the 

position of the subscript (i, j) is the covariance between 

the row vectors of the ith component and jth component 
rows in matrix A. For the convenience of computing and 
the need to not to lose any of the information contained in 
the covariance matrix, a substitution matrix D consisting 
of the eigenvectors of matrix C is used to formulate the 
relationship DX = B. Where B is the feature vectors of the 
entire protein chain. The unknown vector X = [x1 x2 … 
x20]

’
 represents the requisite features of SFD. 
If D

-1 
exists, then the solution vector is X = D

-1
B, 

otherwise least squares method can be used to obtain the 
solutions. Therefore, a one-to-one corresponding feature 
vector between an extended signal and a protein chain 
can be obtained. These extracted numerical features 
contain local features and integrated information of the 
cleaved region, on which the subsequent intelligent 
analysis of the artificial sequences can be performed. 

Numerical Experiments and Results Analysis 

We respectively connected signal peptide sequence 
with the main chain of Bacillus licheniformis α-amylase 
to derive artificial samples. Next, we extracted the 
numerical SFD features by the method introduced in 
materials and methods above and finally we used these 
numerical vectors to analyze and find the amino acid 
assignment trend in different positions. 

Similarity Analysis of Artificial Sequences 

The method needs a reference criterion to evaluate 
the possible level of secretion of artificial sequences, 
which is the mean center of all high secreted proteins in 
the literature (Gao et al., 2010). We calculated the 
similarity distance between the artificial sample and the 
high secretory protein using kernel-induced metric as 
shown in Equation 3 (Zhang and Chen, 2003): 
 

(x,y) (x) (y) 2(1 (x, y))d Kϕ ϕ= − = −       (3)  

 
In Equation 3, suppose x indicates the numerical SFD 

feature of artificial sequence, y indicates the mean center of 
high secretory proteins. The smaller the distance d(x,y) is, 
the more similar between x and y and the higher possibility 
of the artificial sequence with high level of secretion.   

The function φ: p ∈ OS → φ(p) ∈ HS is a continuous 
smooth nonlinear mapping function, by which the 
difference among samples can be extended in the 
mapped space. Where p denotes an element in the input 
data space OS and φ(p) is the corresponding element in 
the high-dimensional mapped space HS. Here, the most 
commonly used Gaussian kernel function was adopted: 
 

2

2

x y
(x,y) exp( )K

σ

− −

=  (4) 
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Fig. 1. Extended signal peptide which contains some near downstream neighbors 
 

 
 

Fig. 2. The similarity of the artificial samples with secreted protein Center 
 

Those unknown samples with smaller distance values 
will have a high possibility of achieving a high level of 
secretion. According to the values of distance, we found 
some sequences with small distances and analyzed their 
sequence structure. Finally we found that some amino 
acids have obvious biased assignment trends in different 
positions.  For example, the biased assignment in 
position 12 is L (leucine) and the biased assignment in 
position 22 is S (serine) and N (asparagine amide), 
especially in position 12. The unknown samples and the 
secreted center, have high similarity with the substitution 
amino acid L. Such results suggested that the above two 
positions might represent the key amino acid location. 
Thus we subsequently substituted the original amino 
acid with the biased amino acids in these two positions 
and obtained the artificial sequence SacB-2, then further 
analyzed the structural characteristic of SacB-2. 

Structure Analysis of Artificial Sequences  

Wavelet transform is a type of time-frequency 
analysis method for signals that have been viewed as a 
"Mathematical microscope", which can provide 

information of the protein structure which itself is 
obtained from the wavelet coefficients that can be used 
to analyze and estimate the H-domain of signal peptides 
(Li et al., 2008). We performed one-dimensional 
continuous wavelet decomposition for the signal peptide 
sequences using db2 filter in scale (1:30) and obtained 
the structural information as shown in Fig. 3. 

As the initial segment of a protein sequence, the 
signal peptide has a certain structure. Therefore, the 
artificial sequence after redesigning should also maintain 
the peculiar structure as a signal peptide. As can be seen 
from the results Fig. 3, the structure of the artificial 
sequence SacB-2 and the natural high secretion signal 
peptide SacB are almost consistent. This means that 
there will be a high probability for SacB-2 to be 
compatible with the transfer channel of Bacillus subtilis. 
Simultaneously, according to the results of similarity 
analysis based on the Structural Fusion Degree (SFD), 
SacB-2 is also compatible with the main chain of 
Bacillus licheniformis α-amylase so that it is likely to 
achieve both high secretion and expression of the 
targeted or chosen heterologous proteins. 
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 (a) 
 

 
 (b) 
 

Fig. 3. (a) Natural signal peptide SacB (b) Artificial signal peptide SacB-2 Signal peptide structure obtained by wavelet transform 
 
Table 4. Prediction about the artificial sequences by Signal P 3.0 

 P12 = L P12 = L P12 = L P12 = V P12 = V P12 = V P12 = I P12 = I P12  = I 
Substitutions P22 = S P22 = N P22 = G P22 = S P22 = N P22 = G P22 = S P22 = N P22  = G 

Signal peptide probability 0.995 0.990 0.983 0.993 0.985 0.975 0.991 0.980 0.968 
 

Analysis by Successful Software Signal P 3.0 

 As the currently most popular prediction method for 

secreted proteins, Signal P 3.0 (Bendtsen et al., 2004) 

has been benchmarked against other available methods 

and performs significantly better than most prediction 

schemes. Therefor we use Signal P 3.0 to justify our 

artificial sequences with substitutions in Fig. 2, which 

are the biased assignment in position 12 and position 22. 

The software analyzes the input data (such as artificial 

sequence: Mnikkfakqatlltfttallasgatqafa) based on hidden 

Markov models from Gram-positive prokaryotes and 

then output the signal peptide probability about the input 

sequence. All the artificial sequences in Fig. 2 were input 

and the prediction results as Table 4. 
The analyses from Signal P 3.0 suggest that these 

artificial sequences have very high possibility to be 
signal peptide. Especially, when the substitution in 
position 12 is L (leucine) and in position 22 is S (serine), 
the Signal peptide probability is up to 0.995. In short, it 
seems that some biased assignment exist in the two 
positions, which is also in line with the results of Fig. 2. 
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Conclusion 

In this research, the H-domain of signal peptide 
sequences have theoretically redesigned and some key 
amino acids are determined, located in different 
positions that have displayed biased assignments. Signal 
peptide candidates have also been identified that have 
shown a high degree of possibility to exhibit high levels 
of secretion and expression of heterologous proteins. 
This provides a conceptual and theoretical framework 
that can guide subsequent trials for more efficient 
biological secretion and expression studies. Without 
evaluating the key amino acid positions, it is unfeasible 
to attempt biological experiment, because that all the 
possible replacement options are enormous. For 
example, when redesigning the sequence 
‘TVLTFTTALLAG’, there are 20 replacement options 
for each position and there will be 2012 candidate 
sequences! It is impossible for biological experiment, 
therefore most of the sequences should be excluded by 
the evaluation method in advance. 

In addition, it deserved to be mentioned that the 
comprehensive score matrix and the general Markov 
transition matrix allow for the artificial sequence to 
possess the same characteristic structure and polarities as 
the natural signal peptides and the extracted SFD feature 
vector can distinguish and characterize the compatibility 
and similarity of artificial cleaved region. The method 
based on the 140 signal peptides dataset can get a statistical 
measurement, at the same time it used the mean center of 
high secreted proteins as the criterion of evaluation. All of 
this prior knowledge enables the method to design 
reasonable artificial signal of SacB, even more the method 
is suitable for the design of other signal peptides. 

Obviously, there are many methods for the 
optimization of the design of signal peptides, in addition 
to substituting amino acids in the fixed position, we can 
also insert or delete several amino acid residues in the 
signal peptide sequence. Moreover, the amino acid 
substitution might not be limited to the H-domain, the 
key amino acid affecting heterologous protein secretion 
might also be present in other regions. In the future we 
aim to further broaden the dynamic design range of 
optimized signal peptides by combining with relevant 
biological knowledge of the targeted protein. 
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Appendix 1 

Appendix table 1 Blosum 62 amino acid substitution matrix 

 C S T P A G N D E Q H R K M I L V F Y W 

C 9 -1 -1 -3 0 -3 -3 -3 -4 -3 -3 -3 -3 -1 -1 -1 -1 -2 -2 -2 
S -1 4 1 -1 1 0 1 0 0 0 -1 -1 0 -1 -2 -2 -2 -2 -2 -3 
T -1 1 5 -1 0 -2 0 -1 -1 -1 -2 -1 -1 -1 -1 -1 0 -2 -2 -2 
P -3 -1 -1 7 -1 -2 -2 -1 -1 -1 -2 -2 -1 -2 -3 -3 -2 -4 -3 -4 
A 0 1 0 -1 4 0 -2 -2 -1 -1 -2 -1 -1 -1 -1 -1 0 -2 -2 -3 
G -3 0 -2 -2 0 6 0 -1 -2 -2 -2 -2 -2 -3 -4 -4 -3 -3 -3 -2 
N -3 1 0 -2 -2 0 6 1 0 0 1 0 0 -2 -3 -3 -3 -3 -2 -4 
D -3 0 -1 -1 -2 -1 1 6 2 0 -1 -2 -1 -3 -3 -4 -3 -3 -3 -4 
E -4 0 -1 -1 -1 -2 0 2 5 2 0 0 1 -2 -3 -3 -2 -3 -2 -3 
Q -3 0 -1 -1 -1 -2 0 0 2 5 0 1 1 0 -3 -2 -2 -3 -1 -2 
H -3 -1 -2 -2 -2 -2 1 -1 0 0 8 0 -1 -2 -3 -3 -3 -1 2 -2 
R -3 -1 -1 -2 -1 -2 0 -2 0 1 0 5 2 -1 -3 -2 -3 -3 -2 -3 
K -3 0 -1 -1 -1 -2 0 -1 1 1 -1 2 5 -1 -3 -2 -2 -3 -2 -3 
M -1 -1 -1 -2 -1 -3 -2 -3 -2 0 -2 -1 -1 5 1 2 1 0 -1 -1 
I -1 -3 -1 -3 -1 -4 -3 -3 -3 -3 -3 -3 -3 1 4 2 3 0 -1 -3 
L -1 -2 -1 -3 -1 -4 -3 -4 -3 -2 -3 -2 -2 2 2 4 1 0 -1 -2 
V -1 -2 0 -2 0 -3 -3 -3 -2 -2 -3 -3 -2 1 3 1 4 -1 -1 -3 
F -2 -2 -2 -4 -2 -3 -3 -3 -3 -3 -1 -3 -3 0 0 0 -1 6 3 1 
Y -2 -2 -2 -3 -2 -3 -2 -3 -2 -1 2 -2 -2 -1 -1 -1 -1 3 7 2 
W -2 -3 -2 -4 -3 -2 -4 -4 -3 -2 -2 -3 -3 -1 -3 -2 -3 1 2 11 

 
Appendix table 2  amino acid hydrophobicity substitution matrix 

 R K D E S N Q G T H A C M P V L I Y F W 

R 10 10 9 9 6 6 6 5 5 5 5 4 3 3 3 3 3 2 1 0 
K 10 10 9 9 6 6 6 5 5 5 5 4 3 3 3 3 3 2 1 0 
D 9 9 10 10 7 6 6 6 5 5 5 5 4 4 4 3 3 3 2 1 
E 9 9 10 10 7 6 6 6 5 5 5 5 4 4 4 3 3 3 2 1 
S 6 6 7 7 10 10 10 10 9 9 9 8 8 7 7 7 7 6 6 4 
N 6 6 6 6 10 10 10 10 9 9 9 8 8 8 7 7 7 6 6 4 
Q 6 6 6 6 10 10 10 10 9 9 9 8 8 8 7 7 7 6 6 4 
G 5 5 6 6 10 10 10 10 9 9 9 8 8 8 8 7 7 6 6 5 
T 5 5 5 5 9 9 9 9 10 10 10 9 9 8 8 8 8 7 7 5 
H 5 5 5 5 9 9 9 9 10 10 10 9 9 9 8 8 8 7 7 5 
A 5 5 5 5 9 9 9 9 10 10 10 9 9 9 8 8 8 7 7 5 
C 4 4 5 5 8 8 8 8 9 9 9 10 10 9 9 9 9 8 8 5 
M 3 3 4 4 8 8 8 8 9 9 9 10 10 10 10 9 9 8 8 7 
P 3 3 4 4 7 8 8 8 8 9 9 9 10 10 10 9 9 9 8 7 
V 3 3 4 4 7 7 7 8 8 8 8 9 10 10 10 10 10 9 8 7 
L 3 3 3 3 7 7 7 7 8 8 8 9 9 9 10 10 10 9 9 8 
I 3 3 3 3 7 7 7 7 8 8 8 9 9 9 10 10 10 9 9 8 
Y 2 2 3 3 6 6 6 6 7 7 7 8 8 9 9 9 9 10 10 8 
F 1 1 2 2 6 6 6 6 7 7 7 8 8 8 8 9 9 10 10 9 
W 0 0 1 1 4 4 4 5 5 5 5 6 7 7 7 8 8 8 9 10 


