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Abstract: The results of directly comparing the prediction accuracy of 

optimized 3D Quantitative Structure-Activity Relationship (3D-QSAR) 

models and linear Support Vector Machine (SVM) classifiers to identify 

small molecule inhibitors of the BRAF-V600E and HIV Integrase targets 

are reported. Performance comparisons were carried out using 303 

compounds (68 active) against BRAF-V600E and 204 compounds (159 

active) against HIV Integrase. A SVM prediction accuracy of 95% (BRAF-

V600E) and 100% (HIV Integrase) and 3D-QSAR prediction accuracy of 

76% (BRAFV600E) and 82% (HIV Integrase) was observed. To help 

explain the better performance of SVM in the comparison reported here and 

to help assess the degree to which a SVM or 3D-QSAR model is likely to 

perform best for other targetligands of interest a new EPP (Expected 

Predictive Performance) metric is introduced. How EPP can be used to help 

predict future performance of SVM and 3D-QSAR models by quantifying 

the degree of similarity between candidate compounds and training data is 

also demonstrated. Results show that the EPP metric is capable of 

predicting future prediction accuracy of SVM and 3D-QSAr models within 

7% of actual performance. 
 
Keywords: 3D-QSAR, SVM, BRAF, HIV Integrase, Machine Learning 

 

Introduction 

The drug discovery and development process is 

highly inefficient, risky and complex (DiMasi et al., 

2015; Lamberti and Getz, 2015). Approximately 95% 

of candidate drug compounds fail to make it to market 

for a variety of complex reasons that range from 

imperfect science through business and economic 

related forces (Torfinn, 2014). Despite the use of High 

Throughput Screening (HTS) to help address efficiency 

concerns, drug failure rates and inefficiencies remain 

unacceptably high (Torfinn, 2014). Virtual screening 

attempts to improve HTS efficiency by using Machine 

Learning (ML) computational methods (Shoichet, 2004; 

Sengupta and Bandyopadhyay, 2012). The ML 

methods used in HTS carry out virtual screening by 

training supervised classifiers or regression-based 

methods to predict affinity and activity interactions 

between targets and candidate compounds. Then a 

subset of the candidate compounds that are predicted 

to be active and at times a smaller subset of 

compounds predicted to be not active, have bioassay 

tests conducted to confirm or refute predictions. This 

ML-based virtual screening process helps improve 
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efficiencies by significantly reducing the time and 

number of resource intensive bioassay tests. 

Selecting an appropriate ML method remains a non-

trivial and critical task because many complex aspects 

must be considered (Murphy, 2011). These range from 

the particular HTS questions to be answered, nature and 

amount of available data through the relevant 

physiochemical properties (i.e., descriptors) of candidate 

compounds, computational resources and the desired 

accuracy of classification results (Liu et al., 2014). 

Although there are many different types of ML-based 

classifiers and regression algorithms from which to 

select, typical practice is to analyze and compare the 

results from several distinct algorithms, or combine 

several methods into a single multiple classifier system 

(Wozniak et al., 2014). In either case, evaluating the 

credibility of several prediction results remain integral to 

identifying the most appropriate ML algoritm to use for 

the HTS task of interest. 

Two among many well known ML algorithms that 

are used to help with drug discovery and development 

tasks include 3D Quantitative Structure-Activity 

Relationship (3D-QSAR) models and linear Support 

Vector Machine (SVM) models (Nantasenamat et al., 

2010; Verma et al., 2010; Vapnik, 1999). Li et al. 

(2012), conducted a 500-compound comparative QSAR 

and SVM-regression study on estrogenic activities of 

persistent organic pollutants. Pourbasheer et al. (2015), 

developed QSAR and SVM models for predicting the 

activity of CK2 inhibitors. Darnag et al. (2010), used 

SVMs to build QSAR relationships between anti-HIV 

activity and four molecular descriptors of 82 TIBO 

derivatives. Yao et al. (2004), used SVMs to develop 

QSAR models that correlate molecular structures to 

their toxicity and bioactivities. Vasanthanathan et al. 

(2009), conducted comparative classification accuracy 

of binary quantitative structure activity relationship, 

SVM, random forest, kappa Nearest Neighbor (kNN) 

and decision tree methods to predict activity against 

cytochrome P450 targets. 

With respect to the work reported here, the 

importance of the above and similar related work is that 

the results of the comparative studies suggest that SVM 

classifiers tend to perform better than many other 

supervised ML methods, including QSAR models, 

across a variety of target-ligand combinations. However, 

it is important to note that some of the comparative work 

was conducted using only statistical validation metrics 

such as R
2
, Q

2
, RMSE and so forth. Other comparisons 

were made in which one model used different training 

and test datasets than the other. In contrast, all of the 

comparative work reported by Vasanthanathan et al. 

(2009), involved using isoforms of the cytochrome P450 

family of targets. Evaluation of model performance 

using identical targets, training and test sets for each 

model has very rarely been conducted or reported. The 

work reported here helps address this gap. 
Another remaining technical gap is being able to 

determine if a 3D-QSAR or a SVM model is likely to 

perform better or worse on targets and ligands that are 

different from that investigated in previous work. 

Furthermore, if 3D-QSAR performs better than SVM or 

vice versa, being able to explain the observed difference 

in performance is equally important. 

To begin addressing these technical gaps, the focus of 

the work reported here is three fold: (1) Report the 

results of directly comparing the accuracy of 3D-QSAR 

and SVM models to predict the activity of small 

molecule compounds against the BRAF-V600E and HIV 

Integrase targets; (2) develop a new quantitative and 

comparative measure called the Expected Predictive 

Performance (EPP) of 3D-QSAR and SVM models 

given a set of unclassified compounds and a trained 

classifier; and (3) present a method by which the EPP 

metric can be used to: 

 

• Help explain why one model performed better than 

the other 

• Quantify the degree to which 3D-QSAR or SVM is 

likely to perform better on targets and ligands that 

are of current interest and yet to be classified 

• Quantify the number of samples, descriptors and 

required similarity between unknowns and a training 

set to improve predictive performance 

 

The reasons for using the BRAF-V600E and HIV 

Integrase protein for this investigation are that 

significant previous work has identified many 

inhibitors of these targets, however, there remains 

much interest in identifying additional inhibitory small 

molecule compounds (e.g., Wainber et al., 2012; 

Prahallad et al., 2012). 

The EPP measure is intended to be a common metric 

that can be used to compare current and expected 

prediction performance across many different 

classification and regression models. A requirement of 

the EPP measure is that Vapnik’s theoretical notion of a 

model’s capacity can be quantified and used to 

discriminate between class instances (Vapnik, 1999). 

EPP combines a model’s capacity with a measure of the 

similarity between the unknown to be classified and the 

examples used to train the model. The idea is that the 

observed and expected prediction accuracy of a model is 

based, in part, on and proportional to its theoretical 

capacity to classify and the degree to which an unknown 

to be classified is similar to the examples used to train 

the classification model. 
For the small molecule compounds used here, 

similarity is based on the physiochemical properties of a 

model’s training data and the same physiochemical 
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properties of an unknown candidate drug compound. The 

greater the similarity between an unknown and training 

examples, the greater the observed and expected 

prediction accuracy. 

Materials and Methods 

The compound data sets and details needed to 

reproduce the results reported here can be found in a 

supplement document at (Wesley, 2016). 

The comparison of 3D-QSAR and SVM classifiers to 

predict the inhibitory activity of small molecule 

compounds was carried out on two different targets: 

BRAF-V600E and HIV Integrase. 3D-QSAR modeling 

and prediction was conducted in a Windows 7 

environment using the Molecular Operating 

Environment (MOE, 2015) version 2014.0901 software 

product from the Chemical Computing Group. The 3D-

QSAR classification involved thresholding the 

regression predicted IC50 value at 1.4 µM to discern 

active (≤1.4 µM) from non-active (>1.4 µM) compounds. 

SVM modeling and prediction was conducted in a 

Windows 10 environment using scikit’s sklearn SVM 

classifier version 0.17.1 modules that were imported into 

a 64-bit Enthought Canopy environment version 

1.6.2.3262 running Python 2.7.3. 

Two different approaches were used to perform 

each comparison: “Best Possible Model” and 

“Constrained to MOE Descriptors.” In the “Best 

Possible Model” approach, 3D-QSAR and SVM 

models were optimized using a number and type of 

descriptors that produced the best possible prediction 

accuracy. Each model need not use the same type and 

number of descriptors as the other. In the 

“Constrained To MOE Descriptors” approach, the 

optimal SVM classifier was constrained to use all or a 

subset of the descriptors available and used by MOE. 

In this approach, there was no need to re-build 3D-

QSAR models because they were optimized in the 

“Best Possible Model” approach. 

In the “Best Possible Model” approach, 303 small 

molecule compounds were selected and used to build 

and test 3D-QSAR and SVM classifiers for the 

BRAF-V600E target. Of the 303 compounds, 243 

were used as a training set and 60 compounds were 

used as a test set. Of the 243 compounds in the 

training set, 48 are active, per PubChem data base bio 

assay results and 195 are not active (PubChem). Of the 

60 test set compounds, 20 are active and 40 not active. 

The 20 active compounds were specifically chose to be 

analogs of Vemurafenib® to facilitate a more direct 

comparison with 3D-QSAR predictions. 

For the HIV Integrase target, 204 small molecule 

compounds were selected and used to build and test 

3D-QSAR and SVM classifiers. Of the 204 

compounds, 163 were used as a training set and 41 

compounds were used as a test set. Of the 163 training 

set compounds, 130 are active and 33 are not active. 

Of the 41 test set compounds, 29 compounds are 

active and 12 are inactive. 

Comparisons were carried out with no restrictions on 

the descriptors used to build each model. The approach 

involved using the best model building method and 

practices to develop the best possible model before 

making predictions. In this approach, the PaDEL-

descriptor software (Yap, 2011) was used to generate 

descriptors for SVM classifiers and MOE descriptors 

were used for the 3D-QSAR models. 

In the “Constrained to MOE Descriptors” 

approach, the only difference from the “Best Possible 

Model” approach is that the descriptors used by SVM 

were constrained to the same 92 descriptors used by 

MOE. Table 1 provides a summary matrix of the 

experimental approaches, seven (7) prediction 

accuracy experiments and number of descriptors used 

to produce the results reported here. 

3D-QSAR Models 

The practice of building QSAR models for drug 

discovery and development involves, in part, first 

identifying a chemical compound that is known to be 

active via bioassay results and IC50 values (Madhavan, 

2012). For the BRAF-V600E target, Vemurafenib® 

(also known as PLX4032) was selected as a canonical 

active target inhibitor compound (Bollag et al., 2012). 

Then a data set consisting of Vemurafenib® analogs 

and related compounds along with respective IC50 

values was created. The PLS (Partial Least Squares) 

method was then used to build a regression model to 

predict an IC50 value that indicates an active 

compound. The predicted IC50 value was then used to 

filter candidate compounds to identify the most 

appropriate ones to use and build pharmacophore 

models used by the MOE 3D-QSAR classifier. For the 

BRAF-V600E target, two 3D-QSAR models were 

built, one manually and a second using the MOE auto-

build QSAR option. The manual-built method resulted 

in using five optimal descriptors and the auto-QSAR 

method used nine optimal descriptors shown in Table 

2. The manual approach considered the allosteric 

method of inhibition by Vemurafenib® (i.e., high-

level mechanism-based domain knowledge used for 

descriptor selection) that was not available using 

MOE’s auto-QSAR method (PDB-5HES, 2016). The 

3D-QSAR model validation results and BRAF-V600E 

inhibitor prediction accuracies are reported in Table 3. 

Only auto- QSAR was used to build a model to 

predict HIV Integrase inhibitors. Table 4 summarizes 

the 3D-QSAR model validation and prediction results 

for HIV Integrase inhibitors. 
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Table 1. Summary of the seven (7) prediction accuracy experiments conducted, number of descriptors used in each experiment and 

the experimental approach. SVD (Singular Value Decomposition) was used by to reduce the dimension to the indicated 

number of descriptors 

Experiment Target → BRAFV600E HIV Integrase 

Approach ↓ Model ↓ (303 Compounds: 243 train, 60 test) (204 Compounds: 163 train, 41 test) 

Best Possible 3D-QSAR Manual: 5 descriptors Auto QSAR: 5 descriptors 

Model  Auto QSAR: 9 descriptors (SVD) 18 descriptors 

  SVM (SVD) 16 descriptors 

Constrained to MOE descriptors SVM (SVD) 7 descriptors (SVD) 71 descriptors 

 
Table 2. (a) Manually identified optimal descriptors, (b) auto-QSAR identified optimal descriptors for predicting BRAF-V600E inhibitors 

Descriptor Description of the descriptor 

(a) 

a_acc Number of hydrogen bond acceptor atoms  

a_don Number of hydrogen bond donor atoms.  

a_aro Number of aromatic atoms 

b_ar Number of aromatic bonds  

slogp Log octanol/water partition coefficient.  

(b) 

PEOE_VSA +3 Sum of vi such that qi is in the range (0.15, 0.20) 

PEOE_VSA +5 Sum of vi such that qi is in the range (0.25, 0.30) 

PEOE_VSA -4 Sum of vi such that qi is in the range (-0.25, -0.20) 

SlogP_VSA 2 Sum of vi such that Li is in (-0.2, 0) 

SlogP_VSA 5 Sum of vi such that Li is in (0.15, 0.20) 

SlogP_VSA 7 Sum of vi such that Li is in (0.25, 0.30) 

SMR_VSA 3 Sum of vi such that Ri is in (0.35, 0.39) 

SMR_VSA 4 Sum of vi such that Ri is in (0.39, 0.44) 

SMR_VSA 6 Sum of vi such that Ri is in (0.485, 0.56)  

 
Table 3. 3D-QSAR validation metrics and prediction accuracy between auto-QSAR and manual-QSAR models for BRAF-V600E 

inhibitors. Accuracy = (# Correct Prediction/Total # Predictions)×100% 

Validation tests  Auto QSAR Manual QSAR 

CORRELATION COEFFICIENT (R≥0.8 is good) R = 0.8 R = 0.6 

COEFFICIENT OF DETERMINATION (R2≥0.6 is good) R2 = 0.71 R2 = 0.51 

CROSS-VALIDATED R2 (Q2>0.5)  R2 = 0.68 R2 = 0.46 

R2
ADJ ≥ 0.7  R2

ADJ = 0.79 R2
ADJ = 0.71 

R2-Q2< 0.3  0.03 0.03 

R2
ADJ-R

2<0.3  0.08 0.07 

R2
PRED>0.6  0.82 0.65 

Y-RANDOMIZATION (Low R2 is better)  0.002 0.004  

BOOTSTRAPPING R2 0.73 0.57 

 Q2 0.70 0.54 

 R2
PRED 0.72 0.55 

RMSE  0.89 0.70 

ACCURACY  76% 75%  

 
Table 4. Validation and prediction accuracy of the MOE’s Auto-QSAR built 3D-QSAR model for HIV Integrase inhibitors. 

Accuracy = (# Correct Prediction/Total # Predictions)×100% 

Validation tests Auto-QSAR on HIV Integrase inhibitors 

Correlation Coefficient (R) 0.89 

Coefficient of determination (R2) 0.72 

Cross-validated R2 (Q2) 0.67 

R2-Q2 0.05 

R2
adj& Q

2 0.82 and 0.80 

R2
adj- R

2 0.2 

R2
Pred 0.81 

Y-randomization 0.04 

Bootstrapping R2 = 0.73, Q2 = 0.70 &R2
pred = 0.74 

RMSE 0.68 

Accuracy 82.03%  
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Table 5. Summary of prediction accuracy of 3D-QSAR and SVM models for BRAF-V600E and HIV Integrase targets 

 BRAFV600E inhibitors HIV Integrase inhibitors 

 ------------------------------------- ------------------------------------------- 

 SVM QSAR SVM QSAR 

Number of compounds in test set 60 60 41 41 

Number of descriptors 16 9 18 5 

Prediction accuracy 95% 76% 100% 82.03% 

 

SVM Models 

The same compounds used for building 3D-QSAR 

prediction models for the BRAFV600E and HIV 

Integrase targets were used for building SVM models for 

both the “Best Possible Model” and “Constrained to 

MOE Descriptors” approaches. 2D .sdf (structure 

definition files) for the candidate compounds were 

obtained from the PubChem database and then 

converted to 3D .sdf files using OpenBabel version 

2.3.1 (O’Boyle et al., 2011). Descriptors were generated 

from the 3D .sdf files using PaDEL-descriptor software 

(Yap, 2011). For the “Best Possible Model” approach, 

PaDEL-descriptor generated 2,070 2D and 3D 

descriptors for 303 BRAF-V600E target compounds and 

204 HIV Integrase compounds. Singular Value 

Decomposition (SVD) was used to reduce the number of 

descriptors to the numbers shown in Table 1 (Wall et al., 

2003). The SVM training and testing sets consist of the 

minimum number of descriptors that can achieve the 

highest prediction accuracy. This was achieved by a 

gridding process and decreasing the number of 

descriptors, prioritized by SVD, for each gridding 

iteration. Table 5 summarizes prediction accuracy and 

comparison of the 3D-QSAR and SVM models for the 

BRAF-V600E and HIV Integrase targets. 

Expected Prediction Performance 

The EPP measure can help to answer questions 

such as: (1) “Why has an optimized SVM model 

performed better than an optimized 3D-QSAR 

model?”; (2) “What is the likelihood that optimized 

SVM and 3D-QSAR models will accurately predict 

potential inhibitors of interest in the future?”; and (3) 

“How many training samples and what properties 

must unknown ligands/compounds have in order to 

achieve optimal performance?” 

Gunawardana and Shani (2009), conducted work to 

identify evaluation metrics that can be used to assess the 

appropriateness of a machine learning-based 

recommender system. Han et al. (2008), developed a 

means to evaluate decision tree models that can be used 

as a virtual screening technique as well as a 

complement to traditional approaches for hits 

selection. Reich and Barai (1999), proposed a 

systematic evaluation procedure for machine learning. 

An intent of this and related reported work is to 

improve research and practice in the use of machine 

learning algorithms in engineering applications. 

Zadrozny (2004), formalized the sample selection bias 

problem in machine learning algorithms and presented 

a bias correction method that is particularly useful for 

classifier evaluation under sample selection bias. 

To date, previous work to develop model prediction 

performance metrics have not captured the measure of 

observed or predicted performance that is characterized by 

the EPP measure. Here, our EPP measure of 3D-QSAR 

and SVM models is based not only on the available 

training and test data, but also on the characteristics (e.g., 

physiochemical descriptors) of the unknown compounds 

that the models are intended to classify. 

Many classifiers have, as part of their calculus, the 

notion of capacity that is related to the complexity, 

flexibility and power of a set of classifier functions F 

intended to correctly classify example data (Vapnik, 

1999). The notion of capacity can be quantified by a 

measure called the VC dimension, named after Vapnik 

and Chervonenkis (Vapnik, 1999). 

VC dimension for indicator functions is defined to be 

the largest number h of points (i.e., largest number of 

vectors v1, v2, …, vh) in all 2
h
 combinations of 

points/vectors that can be shattered (i.e., separated into 

two classes, e.g., class 0 or class 1) by all members 

f(x,α)∈F, where x is a data point/vector and α, (α∈Λ≡ the 

set of admissible parameters), is a parameter that 

specifies the function (e.g., if f happens to be a linear 

function, then α would represent the slope and y-

intercept parameters of f). 

Where l is the size of the training set (i.e., number of 

training samples), ν(α) is the frequency of training errors 

on the training set (e.g., 1-cross validation score from a 

SVM classifier) and Λ is the set of admissible 

parameters that specify a f, then with probability 1-η 

(i.e., η is the likelihood that a fi ∈ F will misclassify a 

single example (vi,y)) the upper bound of p(α) (i.e., 

defined as the probability of error on the test set) is a 

function of just l, h, ν(α), η). 

VC dimension of real valued functions (e.g., 

regression algorithms), let A ≤ Q(v, α) ≤ B and α ∈ F, 

where F is a set of functions bounded by constants A and 

B and where A can be -∞ and B can be ∞. Let β be an 

indicator of the level for the function Q(z,α) that shows 

for which v the function Q(v, α) exceeds β and for which 

it does not (e.g., β might be 1.4 µM which was the IC50 

threshold level used by the 3D-QSAR models described 
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here to distinguish active from non-active compounds). 

The function Q(v, α) can be described by the set of all its 

indicators. 

Let us consider along with the set of real functions 

Q(v, α), α ∈ F, the set of indicators: 

 

( ) ( ){ } ( ), , , , , ,I v Q v F A Bα β θ α β α β= − ∈ ∈  (1) 

 

where, θ(v) is the step function: 

 

( ) ( )0 0,1 0v if v if vθ = < ≥  (2) 

 

In statistical learning theory, a simplified 

probabilistic estimate of an upper bound on the 

prediction error rate on a test data set can be defined 

under two regimes (Vapnik, 1999). One regime is when 

the error rate on the test data is large, i.e., ≥50%. In this 

regime, the upper bound can be defined as: 

 

( )Pr

2
. log 1 log

4
Dim

Dim

ob test error training error

N
VC

VC

N

η

≤

    
+ −         +

 (3) 

 

where, training error is ν(α) for SVM and 1-R
2
 for 

regression methods (Vapnik, 1999), VCDim is the VC-

Dimension, N is the number of training samples and η is 

chosen based on the training set. For SVMs, an 

approximation of η is taken to be the normalized inverse 

of the perpendicular (⊥) distance from any support 

vector and a fi that corresponds to the boundary yielding 

the max margin distance. For regression methods, an 

approximation of η is taken to be 1-max(∆R
2
|X-xi| for 1≤ 

i ≤ |X|). For SVMs, VCDim can be approximated as N +1 

where N is the number of training samples. For real 

valued functions, VCDim can be estimated as p +1 where 

p is the dimension of the data (Akaike, 1974). If 

computational resources are available, VCDim can be 

estimated with greater accuracy if F is a member of the 

class of linear discriminate functions (Vapnik, 1999). 

 

For the second regime, where the error rate on the 

test data is <50%, the upper bound can be defined as: 

 

( )Pr

2
. log 1 log

4
Dim

Dim

ob test error training error

N
VC

VC

N

η

≤

    
+ −         +

 (4) 

 

In the interest of brevity and without loss of 

generality, the discussion going forward will continue 

just with respect to Equation 3. 

The above probabilistic estimate of the upper bound on 

the prediction error rate is based on the assumption that 

the test data set is selected, i.i.d., from the same 

distribution as the training data. However, the assumption 

that an unknown example, for which a prediction is made, 

is a sample from the same distribution as the training data 

will hold to varying degrees. 

If a fully specified distribution of the training data is 

available, where parameters of the distribution do not 

need to be estimated, then the Anderson-Darling test is 

potentially applicable to assess the degree to which the 

unknown example is a member of the distribution 

(Anderson and Darling, 1954). When this requirement is 

not satisfied, an alternative is proposed here where a 

similarity measure between the unknown example to be 

predicted and the training data is computed and 

integrated into the calculation of the probabilistic 

estimate of an upper bound on the prediction error rate. 

Where the average vector for class 0 data is defined as: 

 

( )1 2

0 0 0 0

1
...

n

V v v v
n

= + + +  (5) 

 

and the average vector for class 1 data is defined as: 

 

( )1 2

1 1 1 1

1
...

m

V v v v
m

= + + +  (6) 

 

and the max Cosine similarity between an unknown and 

yet to be classified vector u and 
0
V or between u and 

1
V  

is defined as: 

 

( )0 1

0 1

0 1

, ,

max ,
|| |||| || || |||| ||

MaxCosSim u V V

u V u V

u V u V

 ⋅ ⋅
 =
 
 

 (7) 

 

Then a proposed similarity measure that is maximal if 

and only if two vectors are identical and less than 

maximal otherwise can be defined as: 

 

( )

( )( )( )
( )( )

0 1

0 1

0 1

, ,

1 min || ||,|| ||

, ,

2

SimEC u V V

u V u V

MaxCosSim u V V

− − −

+

=

 (8) 

 

A measure that can accomplish this is a combination 

of the Euclidian distance and Cosine similarity measure 

SimEC. 

Assuming the similarity measure SimEC is >0, The 

normalized EPP can now be defined as: 
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2
log 1 log

4

1

2
log 1 log

4

Dim

Dim

Dim

Dim

N
VC

VC

N
EPP training error

N
VC
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 (9) 

 
EPP is intended to characterize a minimum expected 

prediction performance based on the training error, 
capacity of the model and the degree of similarity between 
an unknown to be classified and the model’s training data. 
The idea is that if an unknown is very similar to the 
training data and the test data is assumed to be i.i.d. of the 
training data, then the upper bound on Prob(test error) is 
minimal and the expected prediction accuracy of the 
unknown is highest. As similarity between an unknown 
and training set decreases the upper bound on Prob(test 
error) increases and the expected prediction accuracy 
decreases. Intuitively, the higher the EPP value the higher 
the expected correct classification for a given unknown 
and its corresponding similarity measure. 

The EPP measure can be used to characterize the 
expected predictive performance of a model given the 
model’s training data and an unknown to be classified. It 
can also be used to characterize the relative expected 
predictive performance between an optimized SVM 
classifier and an optimized 3D-QSAR model by 
comparing their respective EPP measures. 

The question, “Which trained and optimized SVM or 
trained and optimized 3D-QSAR classifier is more likely 
to correctly classify a given unknown example?” can be 
answered, in part, by comparing their respective EPP 
measures. The classifier with the higher EPP measure is 
more likely to correctly classify the unknown. The 
answer to the question, “Why is one classifier (SVM or 
3D-QSAR) better than the other for a given unknown?” 
can be answered, in part, by examining several aspects 
such as the classifier’s VCDim (i.e., capacity), validation 
error rates of the respective classifiers and similarity of 
the unknown example to the training set.  

Figure 1 shows a comparison between the EPP 
measure as defined in Equation 9, the expected 
prediction accuracy and the actual prediction accuracy 
for the 3D-QSAR and SVM models used for predicting 
BRAF-V600E inhibitors. For space reasons, the same 
plot for HIV Inhibitors is not shown. 

The actual prediction accuracy is determined by 

carrying out predictions on a test set that is 20% the size of 

the original training set. All of the unknown examples in the 

test set are unique but have the same SimEC measure. That 

is, the descriptor values of compounds in the original test 

set were modified to achieve a specified degree of 

similarity/dissimilarity with the training set. Then 

predictions were carried out to achieve the actual prediction 

accuracy shown in the Fig. 1 and were observed to be 

within an average of 7% of the predicted accuracy. 

The results of comparing the predictive accuracy 

between SVM and 3D-QSAR for BRAF-V600E and 

HIV-Integrase, discussed earlier, clearly indicates that 

the performance of SVM is better for the BRAF-V600E 

and HIV-targets than 3D-QSAR. With respect to just the 

BRAF-V600E target, Fig. 1 shows that it is possible for 

3D-QSAR models to achieve comparable or better 

prediction results than SVM if: 

 

• Candidate unknowns are more similar to the training 

data for the 3D-QSAR model 

• The VCDim is decreased relative to the number of 

samples 

• The cross validation error rate is reduced 

 

Such plots can help answer questions such as, 

“Which classification models are most appropriate to use 

for the screening task of interest?” by first assessing the 

similarity of prospective unknown examples and training 

data. Then compare the respective EPP values. The 

classifier with the lower EPP value is more appropriate 

to use for the given unknown example and training set. 

From Fig. 1, it can be seen that for the trained and 

optimized SVM and 3DQSARclassifiers used to make 

BRAF-V00E inhibitor prediction, the performance of the 

SVM model meets or exceeds the performance of the 

3D-QSAR model using unknown examples that are 

between 20 to 30% more similar to the respective 

training set. Conversely, classifying unknown examples 

using 3D-QSAR would require they be 20 to 30% more 

similar to the 3D-QSAR training set to achieve 

comparable prediction accuracy of the SVM. 

The question “How many samples should be used to 

carry out a classification task?” can be answered by 

using, again, the VCDim and following equation: 
 

1
ln

Dim
VC

N
δ

ε

  
+   

  = Θ
 
 
 

 (10) 

 
where, δ is the desired minimum successful prediction 

probability and ε is the desired max training error 

(Vapnik, 1999). Answers to the question, “How many 

descriptors should be used to carry out a classification 

task?” can be approximated by solving Equation 10 for 

VCDim once a sample size, δ and ε have been chosen. 
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Fig. 1. Graph of the EPP metric (Shown as Upper Bound of Prob Prediction Error Rate) vs. similarity between unknown examples to 

be predicted and training data, versus expected and actual prediction accuracy 

 

Answers to the questions like “Which descriptors 

should be identified and ordered in terms of importance 

to carry out a classification task?” can be answered by 

carrying out the desired dimension reduction step, such 

as SVD, PCA and so forth. 

Using the EPP Metric 

The EPP metric is intended to help explain why one 

of the 3D-QSAR or SVM models performs better than 

the other. It is also intended to help quantify the degree 

to which 3D-QSAR or SVM model is likely to perform 

better on targets and ligands that are of current interest. 

Finally, algebraic manipulations of the EPP metric can 

be used to quantify the number of samples, descriptors, 

similarity between unknown and training set in order to 

improve predictive performance. 

This can be accomplishing by completing the 

following steps: 

 

• Build optimized 3D-QSAR and SVM classifiers 

using best practices 

• Calculate/estimate VCDim for each classifier. 

• Generate an EPP Vs. similarity Vs. expected 

prediction accuracy plot for each classifier 

• Complete predictions of desired compounds 

• Compute SimEC measure for each desired 

compound 

• Look up EPP values for corresponding SimEC 
value for a given compound. The classifier with a 
lower EPP value will be the classifier with a 
higher expected prediction accuracies. The EPP 
and corresponding expected prediction accuracy 
helps explain the relative performance of the 
classifiers 

• Use the EPP vs. similarity vs. expected prediction 

accuracy plot to quantify the degree of change in 

similarity, EPP, or VCDim that is needed to improve 

a classifier’s performance 

• Use Equation 2 to determine the minimum 

number of samples required to achieve a desired 

prediction accuracy. Alternatively, solve for 

VCDim in Equation 10 to determine the change in 

capacity that is needed to achieve the desired 

prediction accuracy 
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Results and Discussion 

About 303 potential BRAF-V600E inhibitors and 204 

HIV Integrase inhibitors were collected and used to test 

the prediction accuracies of 3D-QSAR and SVM 

classifiers. Observed results indicate that the SVM 

classifier performed over 15% better than the 3D-QSAR 

classifier for both targets. A similarity measure SimEC 

and EPP measure was developed and used to explain and 

predict the difference in prediction accuracy of both 

models. Part of the explanation why the 3D-QSAR model 

did not perform as well as the SVM classifiers is that the 

3D-QSAR model’s “shatter capacity” was approximately 

15% that of the SVM model’s shatter capacity for the 

BRAF-V600E target. From Fig. 1, the EPP measure 

allows us to predict that the performance of the 3D-QSAR 

model might have been comparable to that of the SVM 

model if the unknown compounds predicted by the 3D-

QSAR model were approximately ((3.6-3.3)/3.3) ×100% 

≈ 9% more similar to the 3D-QSAR training data than that 

of the unknown compounds predicted by the SVM model. 

In other words, if the prediction accuracy of the 3D-

QSAR model is expected to be comparable to the 

“optimal” SVM model, the unknowns predicted by the 

“optimal” 3D-QSAR model developed here need to be 

10% more similar to the training data set than that of the 

unknowns predicted by the SVM model. Due to space 

constraints, a comparable Fig. 1 for the HIV-Integrase 

target was not generated and discussed here. 

Conclusion 

An optimized SVM classifier performs significantly 

better than an optimized 3D-QSAR model when 

predicting BRAF-V600E and HIV Integrase inhibitors. 

The developed SimEC and EPP metrics appear to 

provide a means to explain, compare and predict 

performance with respect to prediction accuracy between 

SVM and 3D-QSAR models. These metrics can also be 

used to assess the likelihood of prediction accuracy of 

either or both models for yet to be classified compounds. 

The most appropriate ML-based classifier to use for HTS 

can thus be identified with greater fidelity by using the 

described SimEC and EPP metrics. 

Future work to generalize the EPP and SimEC 

measures for a wider set of classification, regression and 

ML algorithms remains a topic area where even small 

advances are likely to yield significant benefits to the 

biopharmaceutical and larger ML communities. 

Acknowledgment 

The authors are thankful to Nathan Choo and 

Niharika Mandadi-Reddy for their insights and 

discussion about their previous work that involved using 

SVM classifiers to predict HIV Integrase inhibitors. 

Funding Information 

This work was supported, in part, by the SJSU Tower 

Foundation Account #034-1312- 0541 

Author Contributions 

Leonard Wesley: Performed BRAFV600E, HIV-

Integrase, EPP work and preparing paper. 

Saihitha Veerapaneni: Performed 3DQSAR BRAF-

V600E and 3D-QSAR HIV Integrase work and 

preparing paper and supplement to paper. 

Rachana Desai: Performed 3D-QSAR BRAF-

V600E work and preparing supplement to paper. 

Francisco McGee: Performed 3D-QSAR BRAF-

V600E work. 

Namrata Joglekar: Performed 3D-QSAR BRAF-

V600E work. 

Sheela Rao: Developed SVM classifier to help 

predict BRAF-V600E inhibitors. 

Zeeshan Kamal: Provided information about HIV 

Integrase and related work on finding inhibitors. 

Ethics 

Authors declare no ethics violations. 

Conflict of Interest 

Authors declare no conflict of interests. 

References 

Akaike, H., 1974. A new look at the statistical model 

identification. IEEE Trans. Automatic Control, 19: 

716-723. DOI: 10.1109/TAC.1974.1100705 

Anderson, T.W. and D.A. Darling, 1954. A test of 

goodness-of-fit. J. Am. Stat. Assoc., 49: 765-769. 

Bollag, G., J. Tsai, J. Zhang, C. Zhang and P. Ibrahim et al., 

2012. Vemurafenib: The first drug approved for 

BRAF-mutant cancer. Nat. Rev. Drug Discovery, 

11: 873-86. DOI: 10.1038/nrd3847 

Darnag, R., E.L. Mostapha Mazouz, A. Schmitzer,       

D. Villemin and A. Jarid et al., 2010. Support vector 

machines: Development of QSAR models for 

predicting anti-HIV-1 activity of TIBO derivatives. 

Eur. J. Med. Chem., 4: 1590-1597. 

 DOI: 10.1016/j.ejmech.2010.01.002 

DiMasi, J.A., H.G. Grabowski and R.W. Hansen, 

2015. The cost of drug development. N Engl. J. 

Med., 372: 1972-1972. 

 DOI: 10.1056/NEJMc1504317 

Gunawardana, A. and G. Shani, 2009. A survey of 

accuracy evaluation metrics of recommendation 

tasks. J. Machine Learn. Res., 10: 2935-2962.  



Leonard Wesley et al. / American Journal of Biochemistry and Biotechnology 2016, 12 (4): 253.262 

DOI: 10.3844/ajbbsp.2016.253.262 

 

262 

Han, L., Y. Wang and S.H. Bryant, 2008. Developing and 

validating predictive decision tree models from mining 

chemical structural fingerprints and high-throughput 

screening data in PubChem. BMC Bioinform., 9: 

401-401. DOI: 10.1186/1471-2105-9-401 

Lamberti, M.J. and K. Getz, 2015. Profiles of new 
approaches to improving the efficiency and 

performance of pharmaceutical drug development. 

Tufts Center for the Study of Drug Development.  

Li, C.Y., Q.S. Li, L. Yan, X.G. Sun and R. Wei et al., 

2012. Synthesis, biological evaluation and 3D-

QSAR studies of novel 4,5-dihydro-1H-pyrazole 

niacinamide derivatives as BRAF inhibitors. 

Bioorganic Med. Chem., 20: 3746-3755. 

 DOI: 10.1016/j.bmc.2012.04.047 

Liu, Y., Y. Zhou, S. Wen and C. Tang, 2014. A strategy on 

selecting performance metrics for classifier evaluation. 

Int. J. Mobile Comput. Multimedia Commun., 6:  

35-35. DOI: 10.4018/IJMCMC.2014100102 

Madhavan, T., 2012. 3D-QSAR in drug design-a review. 

J. Chosun Nat. Sci., 5: 1-5. 

 DOI: 10.2174/156802610790232260 

MOE, 2015. MOE is the commercial product of the 

Chemical Computing Group.  

Murphy, R., 2011. An active role for machine learning in 

drug development. Nat. Chem. Biol., 7: 327-330. 

DOI: 10.1038/nchembio.576 

Nantasenamat, C., C. Isarankura-Na- Ayudhya and V. 

Prachayasittikul, 2010. Advances in computational 

methods to predict the biological activity of 

compounds. Expert Opin. Drug Discovery, 5: 633-

54. DOI: 10.1517/17460441.2010.492827 

O'Boyle, N.M., M. Banck, C.A. James, C. Morley and  

T. Vandermeersch et al., 2011. Open Babel: An 

open chemical toolbox. J. Cheminform., 3: 33-33. 

 DOI: 10.1186/1758-2946-3-33 

PDB-5HES, 2016 3D-Structure image of BRAFV600E 

with Vermufanib inhibitor.  

Pourbasheer, E., R. Alizadeh and M.A. Ganjali, 2015. 

QSAR study of CK2 inhibitors by GA-MLR and 

GA-SVM methods. Arab. J. Chem. 

 DOI: 10.1016/j.arabjc.2014.12.021 
Prahallad, A., C. Sun, S. Huang, F. Di Nicolantonio and 

R. Salazar et al., 2012. Unresponsiveness of colon 
cancer to BRAF(V600E) inhibition through 
feedback activation of EGFR. Nature, 483: 100-103. 
DOI: 10.1038/nature10868 

PubChem, PubChem source information. The PubChem 

Project. National Center for Biotechnology 

Information, USA. 

Reich, Y. and S.V. Barai, 1999. Evaluating machine 

learning models for engineering problems. Artificial 

Intell. Eng., 13: 257-272. 

 DOI: 10.1016/S0954-1810(98)00021-1 

Sengupta, S. and S. Bandyopadhyay, 2012. Application 

of support vector machines in virtual screening. Int. 

J. Computat. Biol., 1: 56-62.  

Shoichet, B.K., 2004. Virtual screening of chemical 

libraries. Nature, 432: 862-865. 

 DOI: 10.1038/nature03197 

Torfinn, S., 2014. R&D Cost estimates: MSF response to 

tufts CSDD study on cost to develop a new drug. 

MSF USA. 

Vapnik, V.N., 1999. The Nature of Statistical Learning 

Theory. 2nd Edn., Springer Science and Business 

Media, New York, ISBN-10: 0387987800, pp: 314. 
Vasanthanathan, P., O. Taboureau, C. Oostenbrink, 

N.P.E. Vermeulen and L. Olsen et al., 2009. 

Classification of cytochrome P450 1A2 inhibitors 

and noninhibitors by machine learning techniques. 

Drug Metabolism Dispos., 37: 658-664. 

 DOI: 10.1124/dmd.108.023507 

Verma, J., V.M. Khedkar and E.C. Coutinho, 2010. 3D-

QSAR in drug design--a review. Curr. Top. Med. 

Chem., 10: 95-115. PMID: 19929826 

Wall, M.E., A. Rechtsteiner and L.M. Rocha, 2003. 

Singular Value Decomposition and Principal 

Component Analysis. In: A Practical Approach to 

Microarray Data Analysis, Berrar, D.P., W. 

Dubitzky and M. Granzow (Eds.), Kluwer, Norwell, 

MA., pp: 91-109. 

Wainber, M. A., T. Mesplède and P.K. Quashie, 2012. The 

development of novel HIV Integrase inhibitors and the 

problem of drug resistance. Curr. Opin. Virol., 2:    

656-662. DOI: 10.1016/j.coviro.2012.08.007 

Yap, C.W., 2011. PaDEL-descriptor: An open source 

software to calculate molecular descriptors and 

fingerprints. J. Computat. Chem., 32: 1466-1474. 

DOI: 10.1002/jcc.21707 

Wesley, 2016. 3D-QSAR and SVM prediction of BRAF-

V600E and HIV integrase inhibitors: A comparative 

study and characterization of performance with a new 

expected prediction performance metric supplement.  

Wozniak, M., M. Grana and E. Corchado, 2014. A 

survey of multiple classifier systems as hybrid 

systems. Inform. Fus., 16: 3-17. 

 DOI: 10.1016/j.inffus.2013.04.006 

Yao, X.J., A. Panaye, J.P. Doucet, R.S. Zhang and     

H.F. Chen et al., 2004. Comparative study of 

QSAR/QSPR correlations using support vector 

machines, radial basis function neural networks and 

multiple linear regression. J. Chem. Inf. Comput. 

Sci., 44: 1257-1266. DOI: 10.1021/ci049965i 

Zadrozny, B., 2004. Learning and evaluating classifiers 

under sample selection bias. Proceedings of the 21th 
International Conference on Machine Learning, 

(CML’ 04), ACM, New York, pp: 114-114. 
 DOI: 10.1145/1015330.1015425 


