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Antibiotic Compounds from Bacillus: Why ar e they so Amazing?
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Abstract: The constant increase of multi-drug resistant pgehe stimulates research, more than ever,
to identify and develop new antibacterial compouridee recent advances in genome sequencing have
highlighted the genu8acillus as an unexpected source of antibiotic-like compeurhis review
focus on the different class of antimicrobial mailles produce bacillus genus such as polyketides,
nonribosomal peptide, bacteriocins as well as athesual peptides.
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INTRODUCTION acid. The modules consist of three main core dosnain
that catalyze a specific reaction for the incorgioraof
The discovery of penicillin by A. Fleming more a monomer. Firstly, the adenylation domain (A) sele
than 90 years ago has revolutionized the mediame a and activates the cognate amino acid as an amiie ac
allowed to treat millions of people from bacterial adenylate. Then after, Thiolation domain (T) condlie
infections. Unfortunately, the intensive use andusé binds the activated monomer to the synthetase girou
of antibiotics have generated a strong selectiesqure a phosphopantetheinyl arm. Finaly, the condensation
for the emergence of resistant strains. Actualhe t domain (C) catalyses the formation of the peptide
constant increase of multi-drug resistant pathagenilinkage between the activated amino acids from two
microorganisms stim ulates more than ever effort tadjacent T modules. Two additional specific modules
identify and develop new antibacterial compounds. | are also requested for NRPs synthesis. These are th
that field, the recent advances in genome sequgnciroading module, composed only by one A and T
have highlighted the genwBacillus as an unexpected domain, involved in the activation and incorporatiaf
source of antibiotic-like compounds. Indeed, fomso the first amino-acid of the NRP and a termination
of them, such aBacillus subtilis, more than 4% of the module containing a Thioesterase (TE) domain, which
genome has been found potentially devoted to theeleases the newly synthetized peptide from the
synthesis of Polyketides (PKs), Nonribosomal Peptid synthetase. Beside these three main domains, many
(NRPs), bacteriocins as well as other unusuaNRPSs feature more specialized domains within
antibiotics (Kunstet al., 1997; Chenet al., 2009a; modules that allow residue modifications, namely
Arguelles-Arias et al., 2009). In the past, these Epimerisation (E), Methylation (M), Oxidation (Ox),
compounds had to be identified by intensive screeni Reduction (R), Formylation (F) and Heterocyclisatio
for antimicrobial activity against appropriate tatgand (Cy). These specialized domains enable NRPSs to
subsequently purified using fastidious methodsrpigo  synthesize an impressive number of diversified
assess their potential utilization as antibacteoal structures with broad range of biological actistihat
antifungal compound. However, since the advenheft could not be obtained by the ribosomal machinery
genomic era, available bacterial genomes are sedeen(Felnagleet al., 2008). This diversity of structure is
for bacteriocin, Polyketide Synthetase (PKS) andesponsible for their board-range of biological
Nonribosomal Peptide-Synthetase (NRPS) gene ctusteactivities, targets, mechanisms of action, allowtineir
using appropriate bioinformatics tools, renderifg t exploitation by the biopharmaceutical industry.
identification of new compounds more easy-goingBacitracin, for instance, used in human medicine,
(Tapiet al., 2010; Cabochet al., 2008). inhibit the biosynthesis of the bacterial cell way
interacting with undecaprenyl pyrophosphate, ingdlv
Polyketides and non-ribosomal peptide: Polyketides in peptidoglycan synthesis (Stone and Strominger,
(PKs) and Nonribosomal Peptides (NRPs) arel971). Since its US FDA approval in 2010, bacitmasi
synthesized by large multimodular synthetase bywsed for the treatment of infants wigtaphylococcal
elongation of activated monomers of amino andpneumonia and empyema. Mechanistically, NRPS
hydroxyl acid building blocks. The genes coding forcould function based on two distinct schemes. Linea
these synthetases are clustered in operons thaspean NRPSs proceed synthesis starting with the loading
over 150 kb. NRPSs are organized in modulesnodule, following by addition of specific amino dci
responsible for the incorporation of a specific mni according the ordered fashion of the different neslu
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in the synthetase and ending with the cleavagéhef t Il PKSs often feature a Cyclase (Cy) domain leading
peptide from the synthetase by the TE domain.titera the formation of aromatic structures. Similarly to
NRPSs use successively, one, several or the esdfre NRPS, the last module contains a Thioesterase (TE)
of modules constituting the synthetases (Mogtal., domain that catalyzes the release of the final yrbd
2002). Since the discovery of gramicidin froBr  from the enzyme (Meureet al., 1997). Due to their
brevis, the first NRP compound characterized in theversatile assemblage mechanism, polyketides exhibit
early '70, many bioactive NRPs have been isolatetl a remarkable diversity both in terms of structure and
their biosynthetic clusters characterized. Recentlg  biological activities. For instance, three functbgene
Norine database containing hundreds of NRPSlusters directing the synthesis of difficidin,
molecules has been created, providing users with amacrolactin and bacillaene were identified B
interesting computational tool for systematic sty —amyloliquefaciens (Arguelles-Ariaset al., 2009; Chen
these molecules (Cabochet al., 2008). With et al., 2007). Difficidin is an unsaturated 22-membered
emergence of powerful bioinformatics and molecularmacrocylic polyene lactone phosphate ester witladbro
tools, identifying new metabolites by genome miningspectrum antibacterial activity (Wilsoet al., 1987,
has become a reality (Ansai al., 2004; Lanen and Zimmerman et al., 1987). It inhibits protein
Shen, 2006). For instance, a bioinformatics armlgi  biosynthesis and was recently shown promising sn it
the genome oB. thuringiensis led to the prediction of an suppressive action againsErwinia amylovara, a
NRPS constituted of seven modules that could behied ~ devasting plant pathogen causing necrotrophic fire
in the synthesis of a heptalipopeptide similaruestakin ~ blight disease of apple, pear and other rosacelaumssp
(Abderrahmangt al., 2011). The discovery of new natural (Zweerink and Edison, 1987; Chetal., 2009b). By
products by genome mining is an encouraging signgontrast, macrolactin anq bacillaene have not geinb
suggesting that this methodology could lead to thélemonstrated to be directly related to biocontrol,
isolation of novel molecules of pharmacologicatiast. although they are both antimicrobial agents thaticco
PKSs assemble the core structure of polyketide§€ potentially useful in human medicine. Macrolacti
from acyl-Coenzyme A (acyl-CoA) monomers in aWhich consists of a 24-membered ring lactone, had t
head-to-tail fashion (Jenke-Kodama and Dittmannability to inhibit murine melanoma cancer cellsves|
2009; Hertweclket al., 2007). Type | PKSs are similar @ mammalian herpes simplex viruses. It was also
to NRPSs in that the different catalytic domaine ar Shown effective in protecting lymphoblast cellsnfro
found in a single polypeptide and are further suideid ~ HIV (Gustafsonet al., 1989). Similarly to difficidin,
into iterative and modular synthases. An iteratigee | bacillaene is an inhibitor of prokaryotic protein
PKS is a monomodular synthase in which a singleket Synthesis constituted by an open-chain enamine acid
catalytic domains is used repeatedly in a highlywith an extended polyene system. This compound
programmed fashion. By contrast, modular PKSgisplays antimicrobial activity toward human patog
feature several separate modules that do not repe&uch asSerratia marcescens, Klebsiella pneumoniae
Type Il PKSs possess a biosynthetic mechanisn@ndSaphylococcus aureus (Patelet al., 1995).
analogous to iterative type | PKSs but harbourrthei
catalytic domains on mono-or bi-functional proteinsNRPS/PKS hybrid synthetases: Several compounds
(Hertwecket al., 2007). Several bacteria, includiy  isolated from bacteria are synthesized by NRPS/PKS
subtilis and fungi, but mostly plants, possess type lithybrid synthetases. These metabolites are compafsed
PKSs (Nakanet al., 2009; Resmi and Soniya, 2012; Li @ polyketide backbone featuring incorporated amino
et al., 2011). They consist of a single multimodularacids in the case of a PKS-NRPS hybrid or a pebtidy
protein  synthesizing molecules devoid of anychain harbouring ketone group characteristic of an
antibimicrobial activities (Felnaglet al., 2008). Each NRPS-PKS hybrid. Among them are the three iturin
PKS module is composed by at least three corépopeptides, namely mycosubtilin (Duitmagt al.,
domains: an Acyltransferase Domain (AT) which 1999), iturin A (Tsuget al., 2001) and bacillomycin D
selects the appropriate monomers, an acyl CarrigfHofemeisteret al., 2004), produced by different strain
Protein Domain (ACP) that carry the activatedof Bacillus. Iturins are amphiphilic cyclic peptides
monomer through the formation of a thioester lirkkag composed of sevem-amino acids linked to a singfe
and a Ketosynthase (KS) domain responsible for thamino fatty acid. The length of the fatty acid nigie
condensation between the activated monomer and thgay vary from C14 to C17 and different homologous
polyketide intermediate present on two adjacent ACRompounds with a linear or branched fatty acid tyoie
domains. Additional secondary domains such asire usually co-produced (Hofemeisterl., 2004). This
Ketoreductase (KR), Oxidation (Ox), Dehydrataseamphiphilic structure confers interesting biologica
(DH), Methyltransferase (MT), Enoylreductase (ER)properties to these secondary metabolites. Foariost
and Methylation (M) domains are involved in the mycosubtilin, produced bf. subtlis ATCC6633, was
chemical modification of the growing polyketide.py found very effective against the human pathogenic
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yeastCandida albicans (Fickerset al., 2008; 2009) and characterized by an hydrophobic N-termini contanin
as biocontrol agent to preveRythium infections of the YGNGV consensus sequence and a disulfide hridge
tomato seedlings (Lecleret al., 2005). The gene Class Ilb feature two-component non-modified
clusters involved in mycosubtilin is composed ofon bacteriocin whereas class llc regroups all the rothe
operon that span over 38 kb. It consists of fouF®R molecules that do not correspond to class lla dnd |
designated fenF, mycA, mycB and mycC. The Class Ill bacteriocins are heat sensitive moleculitis
mycosubtilin synthetase reveals features unique foa molecular weight higher than 30 kDa. Its only
peptide synthetases as well as for fatty acid sgeb. representative among th®acillus genera is the
MycA subunit combines functional domains derivedmegacin A-216 produced bB. megaterium that only
from peptide synthetases, amino transferases ahd fa exhibits a phospholipase A2 activity (Tersch and
acid synthases. The growing understanding of PK5 anCarlton, 1984). The type IA bacteriocin subtilin,
NRPS mechanisms has led to the development gfroduced byB. subtilis ATCC6633, is the model
genetic engineering technique yielding to the sgsith  lantibiotic produced by members of tBacillus genus.
of “synthetic” compounds. These methods consist ofActive subtilin contains eight post-transcriptidgal
adding, subtracting or permuting modules or caalyt modified residues: four methyllanthionines (Abu-S-
domains of a known natural synthase to obtain NRP#&la), one didehydrobutyrine, one dehydroalanine and
and PKs presenting modified structures and funstionone lanthionine (Ala-S-Ala) and one D-alanine
(Caneet al., 1998). (Banerjee and Hansen, 1988). Despite their relative
variability of structure, lantibiotics share in comn
Bacteriocin: Beside NRP and PK moleculeBacillus  some characteristic features concerning their nufde
genus is also able to produce interesting riboslymal synthesis. The gene cluster involved in their sgsith
synthetised peptides, the so-called bacteriocie @@d which is approximately 10-15 kb, is composed of a
Kim, 2011; Abriouelet al., 2011). Based on their structural gene as well as other genes necessatleo
structure and biological activities, bacteriocimalld be  modification, transport, regulation and immunitythé
divided into three main groups. Class | bacteriscthe  producer strain. The subtilin biosyntheric genest®uis
so-called lantibiotics, are characterized by thieiusual composed of 10 ORFs, namekpaBTCSFEGRK,
amino acids such as Lanthionine (Lan),forming four distinct operonsaBTC, spaS, spalFEG,
Methyllanthionine (MeLAn) and dehydrated residues.spaRK). SpaS encodes a premature and inactive peptide
Lan and MelLan are enzymatically synthesized by thef 56 residues with a 24 residues signal sequeSaB
cyclisation of a free cysteine and a dehydratedives and SpaC are involved in the dehydratation of serin
namely Dehydroalanine (Dha) and didehydrobutyrineand threonine, which are required for the formatdn
(Dhb), respectively. DhA and Dhb are obtained by th Dha and Dhb, respectively, as well as that of
dehydratation of a serine or a threonine (McAuléfe lanthionine, which is the result of the cyclisatimiiDha
al., 2001). Lantibiotics can be further subdividetbin with thiol group of a free cysteine. Presubtilin is
two types based on their structure and mode oéxported by the ABC type transporter protein Spad a
posttranslational modifications. Type A lantibigtic is then processed by the serine protease subtilisin
exhibit linear secondary structures and are paditiv form a bioactive subtilin. Self-protection of the
charged. Two distinct LanB and LanC enzymes argroducer strain from the synthesized lantibiotiss i
involved in their post-translational modificatiomca ensured by different immunity mechanisms. The
they are processed by a LanP protease. By contragitotein Spal, a membrane-bound protein, interacts
Type B lantibiotics, exhibit a globular structunedaare  specifically with subtilin causing its inactivation
non-charged. They are modified by a single LanMBeside this, the immunity complex formed by SpaF,
enzyme and processed by a LanT transporter with NSpaE and SpaG proteins pumps subtilin out of the
terminal-associated protease activity (Willey ammhk,  producer strain. The production of lantibiotic is
2007). Beside this, two-component lantibiotics, regulated at the transcriptional level in a celtsigy/-
consisting of a two peptides system that actsdlependent manner. It was evidenced that some
synergistically were also reported. Since a sihgleM lantibiotic, such as subtilin, can act as auto-tidg
enzyme modifies these peptides, they were cladsifie peptides (Kleerebezemst al., 2004). Two proteins,
type B lantibiotics (Asaduzzaman and SonomotospaR and spaK, corresponding to a response regulato
2009). Compared to lantibiotics, class Il bactdriec protein and a sensor kinase, respectively, form the
are non-modified peptides that are synthesizedegulatory system. After subtilin concentration thre
ribosomally. They are characterized by a moleculaculture medium reaches a certain threshold, ivatgs
weigh below 5 kDa. They could be further subdividedthe membrane-bound SpaK protein which then
into three subclasses (lla, lIb, lic) based oncttmal  autophosphorylates. This leads to the phosphooyiati
properties, activity and mode of action (Nes andglfa of SpaR, which in phosphorylated form can recognize
1996; Klaenhammer, 1993). Class lla bacteriocims arthe binding domain on three promoters upstream of
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spaS, spaBTC and spalFEG, resulting in subtilin  produced by Gram-positive bacteria has been idedtif
production. In addition§paRK expression is controlled Research to discover these compounds is sure to be
by the sporulation transcription factor sigma He{8et  ongoing for many more years.
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