
American Journal of Biochemistry and Biotechnology 4 (4): 375-384, 2008 
ISSN 1553-3468 
© 2008 Science Publications 

Corresponding Author: Amer F. Al-Badarneh, Department of Computer Information Systems, 
 Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan 

375 

 
Improving Protein 3D Structure Prediction Accuracy using Dense 

Regions Areas of Secondary Structures in the Contact Map 
 

1Amer F. Al-Badarneh, 2Mohammad A. Khalil and 3Mo'taz A. Al-Hami 
1Department of Computer Information Systems, 

Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan 
2Department of Basic Medical Sciences, Cellular and Molecular Neurobiology, 

King Fahad Medical City, P.O. Box 59046, Riyadh 11525, Saudi Arabia 
3Department of Computer Science, 

Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan 
 

Abstract: Problem Statement: The protein folding problem is a fundamental problem in structural 
molecular biology. This problem describes how a protein is transformed from its primary sequence 
(i.e., amino acid sequence) into the three dimensional structure (3D structure) for this sequence that 
determines the function of the protein. The 3D structure of a protein can be represented using a square 
symmetrical binary matrix called contact map. The concept of contact map facilitates the 
transformation of the folding problem into a computational one, so various computational approaches 
use the contact map to predict protein secondary structures. Correlation mutation analysis is an 
approach that tries to study the mutated patterns that appear in the multiple sequence alignments, this 
approach predicts every pair of protein residues to be in contact or not independently of the other pairs. 
Approach: This study proposed an improvement over correlation mutation analysis to predict the 
secondary structures that exist in the contact map. The proposed method uses regions of the secondary 
structures instead of independent pairs as in the typical correlation mutation analysis; also it applies the 
analysis on the dense regions rather than the whole contact map. Results: The proposed method was 
implemented on proteins related to different classes (i.e., mainly alpha, mainly beta, mixed alpha beta 
and low secondary structures). The test proteins are extracted from the Protein Data Bank (PDB) of 
solved structures. The results show improvements of dense regions accuracy over correlation mutation 
accuracy and random accuracy. Conclusion: According to the amount of wrongly predicted contacts, 
the results show a large decrease in the wrongly predicted contacts in the dense regions analysis over 
correlation mutation analysis. 
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INTRODUCTION 
 
 Proteins are necessary for us in enormous variety 
of different ways. Much of the body materials like 
muscles, cartilage, skin and hair are constructed from 
protein molecules. Also proteins play a vital role in 
keeping the body working properly. Undoubtedly 
proteins are the most important functional unit in the 
living organisms[1]. The function of a protein molecule 
is determined by its 3-Dimensional (3D) structure. The 
3D structure of proteins can be determined biologically 
by X-Ray crystallography[2] or Nuclear Magnetic 
Resonance (NMR) techniques[3]. In X-Ray 
crystallography, the protein is crystallized, bombarded 

with electrons, which creates a diffraction pattern that 
determines the atomic structure of the protein. The 
electron diffraction pattern is used to calculate the 
coordinate of atoms based on the measured electron 
density. Some limitations associated with X-Ray 
crystallography include, inability to crystallize some 
molecules, crystallography is being laborious, 
limitation of resolution (i.e., nearly about 2.9 A°) and 
poor reproducibility (same sequence produce more than 
one structure under different experimental conditions). 
 In NMR spectroscopy, the molecules are exposed 
to a static magnetic field, causing the nuclei of atoms to 
vibrate. Then, the molecules are subjected to a second 
oscillating magnetic field, generating a characterizing 
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spectrum for all the atoms for each molecule which 
becomes a spatial atomic map (i.e., 3D structure). 
 A closer examination of the 3D structure of 
proteins led biologist to conclude that secondary 
structures contained within proteins essentially 
determine their 3D configuration in space[4]. Therefore, 
biologists directed their attention to characterizing 
secondary structures contained within proteins. To date, 
there exists a complete classification system of protein 
3D structure based on the type of secondary structures 
present in proteins[5,6]. This classification system 
divides proteins into: mainly alpha secondary structures 
class, mainly beta secondary structures class, mixed 
alpha beta secondary structures class and low secondary 
structures class. The secondary structures contained 
within a protein forms in nature due to the spatial 
proximity (i.e., distance in space) of the central carbon 
(C�) of the amino acid, typically measured in angstroms 
(A°). This numerical perception of the 3D structure of 
protein facilitates the transformation of the biological 
problem into a computational one[7]. Based on the 
aforementioned information, the question arose: "Can 
3D structure of protein be determined by mining protein 
primary structure (i.e., amino acid sequence)?”. 
 It is pertinent to state that with the completion of 
the first stage of the human genome project, namely 
"structural genomics", has lunched the second stage of 
the human genome project, namely "functional 
genomics". The later is concerned with the study of 
"proteomics", which is the study of proteins content of 
a cell, tissue, or organ any one time, to elucidate a more 
comprehensive understanding of the cell. Since the 
dogma "structure determines function" remains at large 
valid to date, the science of bioinformatics was 
inevitably pioneered to capitalize on the combined 
efforts and advances in structural biology and 
computational mathematics. 
 

 
 

Fig. 1: Contact map for 2IGD protein 

 A contact map is a representation tool of the 
protein 3D structure[8]. Two residues (amino acids) ai 
and aj are in contact if their 3D distance (the distance 
between coordinate of the � carbon) is less than some 
threshold value t. So using this definition, every pair of 
amino acids is either in contact or not. A contact map C 
for a protein sequence with N residues is N×N binary 
symmetrical matrix. The entry of the contact map Cij is 
1 if the two amino acids i and j are in contact and 0 
otherwise. Figure 1 shows the structure 2IGD Protein 
and its contact map. 
 The contact map shows the overall folding of the 
structure and gives useful information about protein 
secondary structures and it captures non-local 
interaction giving clues to its tertiary structure[9]. �-
helices appear  in  the  contact  map as clusters along 
the  main  diagonal, while �-sheets  appear in the 
contact map as clusters anti-parallel to the main 
diagonal. Since each residue is in contact with itself, the 
main diagonal appears in contact state. Neighboring 
residues with distance less than the predefined 
threshold  t  appear in contact beside the main diagonal. 
The contact map is formed due to the spatial proximity 
between amino acids in the space. The concept of 
contact map facilitates the transformation of the folding 
problem into a computational one, so various 
computational approaches and mathematical models 
can participate in analyzing and extracting rules related 
to this map. 
 Correlation mutation analysis is an approach that 
tries to study the mutated patterns that appear in the 
multiple sequence alignments, this approach predicts 
every pair of protein residues to be in contact or not 
independently of the other pairs. This study proposed 
an improvement over correlation mutation analysis to 
predict the secondary structures that exist in the contact 
map. The proposed method uses regions of the 
secondary structures instead of independent pairs as in 
the typical correlation mutation analysis; also it applies 
the analysis on the dense regions rather than the whole 
contact map. The proposed method was implemented 
on proteins related to different classes. The results show 
improvements of dense regions accuracy over 
correlation mutation accuracy and random accuracy. 
According to the amount of wrongly predicted contacts, 
the results show a large decrease in the wrongly 
predicted contacts in the dense regions analysis over 
correlation mutation analysis. 
 Correlation mutation analysis[10,11] is used as an 
indication of probable physical contact in the 3D 
structure. The mutated and conserved patterns in the 
multiple sequence alignments provide evidence of 
structural constraints. This analysis makes assumption 
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on that, residues in physical contact have a correlation 
mutation behavior. This correlation mutation behavior 
is measured through a correlation coefficient value[12]. 
The correlation mutation analysis consists of the 
following four steps that extract the correlation 
tendency of pairs of residues to be in contact from the 
multiple alignments (Fig. 2). 
 
Step 1: Building the multiple alignments: To build a 
good multiple sequence alignments, homologous 
protein sequences for the test protein were collected by 
using PSI-BLAST with default parameter and non 
redundant database. From the homologous protein 
sequences, the sequences with sequence identity 
between 25% and 85% were chosen, so more distantly 
related sequences that belong to the same family and 
hold enough amount of knowledge about the structure 
were selected. Then these sequences aligned using 
ClustalW to generate the multiple alignments[13]. 
 
Step 2: Creating the exchange matrix: Exchange 
matrix is a two dimensional square matrix that 
describes conservative mutation of an amino acid at 
each sequence position through the other sequences in 
the multiple sequence alignments. Using this matrix, all 
mutations that are created by the residue in a specific 
position through the sequences, can be recorded. The 
size of the exchange matrix equals to M×M, where M is 
the number of sequences in the multiple alignment. 
 

 

i 

j 

 
 

Fig. 2: Correlation mutation analysis example 

Step 3: Estimating the mutation matrix: After 
building the exchange matrix, another two dimensional 
square matrix is constructed to measure the mutation 
behavior similarity S(i, k, l) from amino acid k to amino 
acid l at position i. As the value of the mutation 
increases to more than zero, it is more likely to consider 
this mutation happened rather than by chance. The 
similarities between 20×20 amino acids are taken from 
statistical scoring matrix Blosume62. 
 
Step 4: Calculating the correlation coefficient: The 
correlation coefficient measures how strongly one 
attribute (residue) implies the other attribute, based on 
the available data in the sequences[14]. The correlation 
coefficient rij value between any two positions can be 
calculated as: 
 

( )( ) ( )( )i j

ij
kl i j

s i,k, l s s j,k,l s1
r

M

− −
=

σ σ�  

 
Where: 
�si� = The mean value of similarity matrix for residue 
i, �i = The standard deviation of S(i, k, l) value about 
  the mean value �si�. 
 
 The higher correlation coefficient value rij between 
two residues positions is interpreted as more tendency 
between the two residues to be in contact[10]. A two-
dimensional matrix is created having all possible rij 
values. So when the correlation coefficient rij is above a 
chosen threshold, the associated pairs of amino acids 
are in contact. The predicted contact map resulted from 
all pairs that have correlation coefficient values higher 
than the predefined threshold. 
 For calculating the accuracy for this prediction, 
comparisons are made between the predicted contact 
map and the experimentally derived contact map. It is 
worthwhile to mention that completely conserved 
residues (residues which don’t mutate in the multiple 
alignments) and positions with more that 10% gaps in 
the multiple alignments are excluded from the 
correlation mutation analysis, since they represent 
ambiguous data (i.e., no enough mutation exists or 
contain many gaps in the alignments) and no clear 
decision can be made about them. 
 Correlation mutation analysis suffers from two 
main drawbacks. The first drawback is the unfair 
studying of the whole contact map regions. It does not 
take into consideration the probable dense areas that 
include the secondary structures like �-helices and �-
sheets. Looking for the dense areas that contain 
secondary structures is an important step that will 
improve the performance of the correlation mutation 
analysis. This can be done by weighting the regions 
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according to the probability of the presence of 
secondary structures, so the regions that are more 
probable to contain these secondary structures will 
contain dense contact clusters, while others will contain 
sparse contacts. The second drawback in the typical 
correlation mutation analysis is the increasing amount 
of non contact pairs predicted as contact (low 
accuracy), especially for low threshold values for the 
correlation coefficient rij. These pairs will decrease the 
accuracy of the results. So if we concentrate to increase 
the prediction accuracy to hit true contact pairs and at 
the same time to decrease the prediction to choose none 
true contacts, a larger accuracy than what is available in 
typical correlation mutation analysis can be obtained. In 
this study, correlation mutation analysis will consider 
only dense regions that contain secondary structures 
and use low thresholds values for the correlation 
coefficient rij. 
 

MATERIALS AND METHODS 
 
 Protein 3-D structure prediction directly from 
amino acid sequences still remains as an open and 
important problem in life sciences. The bioinformatics 
approach first predicts the protein secondary structure 
which represents an 1D projection of the very 
complicated 3D structure of a protein. Predicted 
secondary structure provides information about the 
regions in the amino acid sequence that contain a 
certain secondary structure. The goal of secondary 
structure prediction is to classify a pattern of residues in 
amino acid sequences to a corresponding secondary 
structure element: an �-helix, �-sheet, or coil[4]. Table 1 
shows the predicted secondary structure for 2IGD 
protein. Different approaches developed to predict the 
protein secondary structure[15]; their accuracies range 
between 70-75%. 
 The main objective of the proposed method is to 
detect the dense areas that contain the secondary 
structures instead of using the whole contact map. 
These dense areas include regions of �-helices and 
regions of �-sheets, which form the basic functional 
areas in the contact map. 
 The importance of this step is that correlation 
mutation analysis will be used basically for looking for 
dense regions (i.e., the regions of �-sheets) and then we 
use the correlation mutation analysis inside these 
regions. This process will increase the probability to hit 
true contact residues and at the same time it will 
decrease the probability of wrongly predicted contact 

pairs outside the dense regions. It is worthwhile to 
mention that some knowledge about the dense areas is 
extracted from the predicted secondary structure for a 
protein. From the predicted secondary structure, the 
positions in the sequence that contain amino acids that 
form a particular secondary structure (i.e., �-helix or �-
sheet) are recorded. 
 
Searching �-helices regions: �-helix was first 
described by[16]. It is a classical element in the protein 
structure and one helix can have more influence on the 
stability and functionality of the protein. The internal 
structure of �-helix looks like spiral and contains 3.6 
residues per complete 360° turn, where there is a 
hydrogen bond between CO of residue n and NH of 
residue n + 4. The structure of the �-helix as a spiral is 
interpreted in the contact map as a thick cluster of 
contacts along the diagonal, so it is favorable to restrict 
our searching of the �-helices regions in the contact 
map to narrow width regions along the diagonal.  
 The width of these regions is four like the number 
of residues that can be in contact per turn. The length of 
�-helix region is taken from its length in the predicted 
secondary structure. Figure 3 shows the window that 
captures the �-helix region in the contact map for 2IGD 
protein. The left part shows the window covers the 
region that is most candidates to cover the �-helix and 
the right part shows the original contact map. It is clear 
to notice that the window covers the �-helix correctly. 
Also we notice that the length of the window is larger 
than the length of the �-helix in the original contact 
map, because we extend window length on both sides to 
guarantee that �-helix falls inside the window. 
 
Searching �-sheets regions: �-sheets secondary 
structure is formed by extended consecutive amino 
acids.   In  the  �-sheet,  hydrogen  bond  occurs 
between  CO  and  NH  groups  from  residues  in 
strand formed by other parts in the polypeptide[17]. In 
anti parallel �-sheets adjacent strands are located in 
opposite directions. Detecting �-sheet is more difficult 
than detecting �-helix, since it appears anti parallel 
(orthogonal) to the main diagonal and it has no certain 
position in the contact map. All we know that it appears 
between the start position and end position of the �-
sheet in the predicted secondary structure. The 
detection of �-sheet consists of the following steps: 
 
Step 1: Identifying the regions of �-sheets: Predicted 
secondary structure sequence defines the regions of �- 

 
Table 1: Part of predicted secondary structure for 2IGD protein 
Position of amino acid 1 2 3 4 5 6 7 ... 28 29 30 … 58 59 60 61 
Protein structure M T P A V T T ... A E T ... T V T E 
Predicted secondary structure C C C C C E E ... H H H … E E E C 
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Fig. 3: �-Helices for 2IGD protein. The left part shows 

the position of �-Helices and the right part 
shows the original contact map 

 

 
 
Fig. 4: Creating the initial line for the sliding window 
 
helix and �-sheet, so it is simple to identify the 
positions at which �-sheet strand starts and finishes in 
the secondary structure. This region will be subject to 
the analysis using correlation mutation measurement to 
find the right position of the �-sheet. 
 
Step 2: Creating initial sliding window: A sliding 
window is constructed as a sensor that searches the 
right position of the �-sheet in the contact map. To 
construct this window, an initial sliding window is 
constructed in the center of the region defined in Step 1. 
The center of this window is defined as: 
 

(Start Pos End Pos)
Cluster Center (cc)

2
+=  

 
 From the position (cc), we initiate a line orthogonal 
on the diagonal. This line is restricted in the area 
between start position and end position with some 
extension on both sides to guarantee that the �-sheet 
inside this region. The goal of this step is to create a 
sliding window that has a shape similar to the �-sheet. 
Figure 4 shows the orthogonal line on the diagonal, the 
line deviates from x-coordinate by 45° down the 
coordinate, so the slope of the line is -1. This line is 
initiated in the center of the �-sheet candidate region as 
shown in the Step 1. An equation of the line with slope 
m  going  through  a  given  point p(x1, y1) is y – y1 = m 
(x–x1). The point of the Cluster Center (cc) has the 
coordinate (cc, cc) since it is located on the diagonal  
 

 
 
Fig. 5: Looking for the �-sheet 
 
and the equation of the line that goes through (cc, cc) 
point and has slope value equal to -1 is given by: 
 
y + x – 2cc = 0 (1) 
 
 Any point located between start position and end 
position satisfying Equation 1 will participate in the 
orthogonal line. The constructed line forms the bases of 
the sliding window. Using this line, we will add all 
neighbors’ points, which have distance less than a given 
threshold d, to the line to create the sliding window. 
The distance between the point p(x1, y1) and the line L 
of equation Ax+By+C = 0 is given by Eq. 2 and the 
result of compensating Equation 1 in Eq. 2 is shown in 
Eq. 3: 
 

1 1

2 2

| Ax By C |
d

A B

+ +=
+

 (2) 

 
1 1| x y 2cc |

d
2

+ +=  (3) 

 
 In this study, all the neighbors with d<2 were 
added to the initiated line to form the sliding window. 
Form the experiments threshold 2 is found very suitable 
to cover the region of � sheet, other thresholds like 3, 4 
can be used but 2 is enough to cover the region of � 
sheet. The sliding window now can be used as a sensor 
for the �-sheet. 
 
Step 3: Looking for the �-sheet: The constructed 
sliding window is now used to look for the �-sheet in 
the candidate sheet region. The sliding window is used 
to scan the region from start position to the end position 
of the �-sheet in the predicted secondary structure. The 
sum of correlation coefficient values for the residues 
pairs inside the sliding Window is calculated to get the 
region of highest correlation coefficient sum (Fig. 5). 
The region that has the highest correlation coefficient 
sum is chosen to be the region that represents the real �-
sheet. 
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Fig. 6: �-sheet regions for 2IGD protein. The left part 

shows the position of region that has the highest 
correlation coefficient sum and the right part 
shows the original contact map 

 
 The importance of Step 3 is that it employs the 
correlation mutation analysis on the cluster level, while 
the traditional correlation mutation works on pairs 
level. The tendency of correlation mutation analysis on 
cluster level is better than its tendency on pairs level. 
As the correlation mutation analysis achieves more 
improvements over random prediction, distinguishing 
the position of real �-sheet through sliding window 
becomes simpler. 
 In the literature, most of the previous research 
concentrated on predicting protein contact maps on the 
residues pairs level[10] and it neglected distinguishing 
the regions that have secondary structures. It is 
worthwhile to mention that the research efforts must 
focus toward predicting the dense regions as a first step 
and then focusing on pairs level inside these regions. 
Figure 6 shows the final sliding window which is used 
to look for �-sheet for 2IGD protein. The left part 
shows the position of region that has the highest 
correlation coefficient sum, while the right part shows 
the original contact map. The sliding window detects 
the right positions of �-sheets in this protein. 
 

RESULTS AND DISCUSSION 
 
 We used different proteins related to different 
classes in our experiments. The selected proteins were 
extracted from the PDB database of solved structure 
proteins. The accuracy of the prediction is defined as 
the fraction of the predicted contacts which are 
correctly predicted. The Random Accuracy (RA) 
corresponds to placing the predicted contacts randomly 
in the contact map; it is equal to the percent of contacts 
derived from experimental method to the contact map 
size (the set of all pairs). Random Distribution (RD) 
corresponds to the percent of true contacts predicted 
using given correlation coefficient threshold to the 
predicted contacts for the same threshold. 
 
2IGD protein analysis: The 3D structure of the 2IGD 
protein contains two anti parallel �-sheets and one �-
helix between them. Figure 7 shows the �-sheets, �- 

 
 
Fig. 7: 2IGD protein information. CATH 

classification (Alpha Beta Protein Size: 61 
Amino Acids) and its 3D structure with 
associated contact map. It is amino acid 
sequence is 
"MTPAVTTYKLVINGKTLKGETTTKAVDAETAEKA
FKQYANDNGVDGVWTYDDATKTFTVTE" 
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Fig. 8: Prediction accuracy using correlation accuracy 

(Cor A), Random Accuracy (RA) and Random 
Distribution (RD) 

 
helix secondary structures, and the correlation mutation 
analysis of the 2IGD protein. The results in Fig. 8 
reflect the improvements of correlation accuracy (Cor 
A) over random accuracy and random distribution. As 
we go toward higher correlation coefficient values, the 
accuracy of correlation mutation increases accordingly. 
When reaching to correlation coefficient value greater 
than one, all the measurements go down to zero 
accuracy since there are no predicted contacts in the 
map. 
 Figure 9 shows the dense areas accuracy through 
cluster accuracy (Clus A) measurement. The gap 
between the cluster accuracy and correlation accuracy 
is resulted from the orientation process of the sliding 
windows toward dense areas regions. 
 Figure 10 shows huge improvements especially for 
correlation coefficient zero, where the typical 
correlation mutation analysis grows about six times of 
the observed contact as wrongly predicted.  
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Fig. 9: Prediction accuracy using correlation accuracy 

(Cor A) and Cluster Accuracy (CA) 
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Fig. 10: Loss amount using correlation loss (Cor Loss) 

and cluster loss (Clus Loss) 
 

 
 
Fig. 11: Prediction analysis using dense areas 

improvements for 2IGD protein 
 
While using dense areas, nearly about 0.5 times are as 
wrongly predicted. In Fig. 11, the result of the analysis 
is shown as predicted contact map. In the left part, the 
lower part shows contact map observed through 
experimental methods (i.e., X-Ray crystallography) and 
the upper part shows the predicted contact map using 
the dense areas analysis with correlation coefficient 
value equal to zero. The right part shows the observed 
contact map (the lower part) and the true predicted 
contacts (the upper part) using the dense areas analysis 
with correlation coefficient value equal to zero. 
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Fig. 12: Prediction accuracy for 6PTI protein, using 

correlation accuracy (Cor A) and Cluster 
Accuracy (CA) 
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Fig. 13: Prediction accuracy for 451C protein, using 

correlation accuracy (Cor A) and Cluster 
Accuracy (CA) 
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Fig. 14: Prediction accuracy for 1EYH protein, using 

correlation accuracy (Cor A) and Cluster 
Accuracy (CA) 

 
Other proteins analysis: Different proteins related to 
different classes were used in the analysis. Figure 12-15 
show the improvement results for these proteins 
through cluster accuracy measurement. These 
improvements resulted from using the dense regions 
analysis instead of the whole contact map. 
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Fig. 15: Prediction accuracy for 1DFU protein, using 

correlation accuracy (Cor A) and Cluster 
Accuracy (CA) 
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Fig. 16: Loss amount for 1DFU protein, using 

correlation loss (Cor Loss) and cluster loss 
(Clus Loss) 
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Fig. 17: Loss amount for 451C protein, using 

correlation loss (Cor Loss) and cluster loss 
(Clus Loss) 

 
 Figure 16-19 show the loss amount for different 
proteins compare with the typical correlation mutation 
analysis  loss  amount. In case  of using  low correlation 
coefficient values, the results show a large decrease 
using dense regions (Clus Loss) which increase the 
opportunity to hit a true contacts. 
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Fig. 18: Loss amount for 1EYH protein, using 

correlation loss (Cor Loss) and cluster loss 
(Clus Loss) 
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Fig. 19: Loss amount for 6PTI protein, using 

correlation loss (Cor Loss) and cluster loss 
(Clus Loss) 

 
CONCLUSION 

 
 The protein structure prediction is a fundamental 
problem in molecular biology and any improvement in 
prediction accuracy will support the overall prediction 
process which results in better understanding for the 
cell. Machine learning approaches strongly participated 
in the field of prediction protein structure. Correlation 
mutation analysis was introduced in this study as a 
feature and entrance to the protein 3D structure 
prediction. This analysis predicts every pair of residues 
to be in contact or not independently of the other pairs. 
This study proposed an improvement over correlation 
mutation analysis to predict the secondary structures 
that exist in the contact map using protein primary 
structure and predicted secondary structure.  
 The proposed method makes the decisions in the 
prediction process based on regions of the secondary 
structures (dense regions) instead of independent pairs 
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as in the typical correlation mutation analysis, also it 
applies the correlation mutation analysis to predict the 
contacts that exist in the dense regions rather than 
applying it on the whole contact map. The proposed 
method was implemented on proteins related to 
different classes (i.e., mainly alpha, mainly beta, mixed 
alpha beta and low secondary structures), the test 
proteins are extracted from the Protein Data Bank 
(PDB) of solved structures. The results show 
improvements of correlation mutation analysis accuracy 
over random accuracy, at the same time the results 
show improvements of dense regions accuracy over 
correlation mutation accuracy. According to the amount 
of wrongly predicted contacts, the results show a large 
decrease in the wrongly predicted contacts in the dense 
regions analysis over correlation mutation analysis. 
 Several points have to be taken into account for the 
future study. First, it is worthwhile to mention that the 
other research efforts must be guided to increase the 
amount of knowledge in other features like solvent 
accessibility, build mathematical models simulating the 
biological interactions and integrate physical and 
chemical theories and properties. This will result in 
features that are valuable with knowledge, influence the 
learning process and finally increase the prediction 
accuracy. Second, it is possible to increase the detection 
accuracy of �-sheets through the sliding windows by 
measuring not only the sliding window as sum of 
correlation coefficient values inside the sliding window, 
but also integrating measurements through other 
features that distinguish �-sheets regions from the other 
regions. 
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