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ABSTRACT 

To understand how the capacity for fat metabolism (uptake, synthesis, modification) changes in rumen 
epithelia immediately before and after onset of lactation in dairy cows, rumen fluid Short Chain Fatty 
Acid (SCFA) concentrations and mRNA expression profiles of rumen epithelia was determined in twelve 
Holstein dairy cows at three weeks prior to calving (wk -3, n = 12), one week post calving (week +1, n = 
12) and six weeks (week +6, n = 12) after calving. The diet was modified from a dry cow formulation to 
a lactating cow formulation immediately following parturition and raised the non-fiber carbohydrate level 
from 34 to 43%. All data was analyzed using the mixed procedure of SAS, with cows blocked by anticipated 
calving date and week of sampling as the repeated measure. Propionate, butyrate, isovalerate and valerate levels 
rose significantly following the diet change (p≤0.001), although acetate and isobutyrate levels were unchanged 
(p>0.05). Mean rumen pH also changed during the transition period (6.38 Vs 5.81 and 5.85±0.08; -3 Vs +1 and 
+6; p<0.001) as did mean BW (716.00 Vs 635.82 kg and 615.45 kg ±16.20; -3 Vs +1 and +6; p≤0.002). 
Microarray analysis of total RNA from rumen epithelial biopsies revealed 1476 differentially expressed genes at 
a false discovery rate of 10%. These results were filtered for genes that were directly related to both the 
immune system and fat metabolism/homeostasis. Consequently, the expression of the resulting 28 
genes was analyzed by quantitative PCR (qRT-PCR) to compare their expression at period -3 versus +6 
periods. qRT-PCR analysis revealed that 13 genes were upregulated (p≤0.01), 2 were downregulated (p≤0.01) 
and 13 were unchanged during the transition period. Pathway and context analysis yielded a unique interactome 
pathway map which revealed a set of genomic interactions that indicate a link between selected genes from the 
immune system and those involved in the preparation for lactation. 
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1. INTRODUCTION 

The maintenance of health and the preparation for 
oncoming parturition is of paramount importance for 
modern dairy cows during the transition period. As a 
result, considerable attention has been given to this 
area of research so that through nutritional 
interventions and adequate homeostasis of fatty acids, 
protein and carbohydrate metabolism can be 
maintained or even enhanced. A comprehensive 
review of the role of disease in the feeding and 

management of transition cows can be found in several 
sources (Mulligan and Doherty, 2008; Mulligan et al., 
2006; Overton et al., 2004; Sordillo and Raphael, 2013). 
Indeed, the literature is replete with information about 
the role of the liver and adipose tissue in metabolic 
alterations during parturition (Loor, 2010). Yet 
despite its importance to ruminant physiology, 
genomic adaptations in the rumen underlying these 
processes have largely been ignored (Loor, 2010). 

During the immediate few weeks following 
parturition, genomic changes take place which promote 
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the production of milk at the expense of normal body 
maintenance (Ingvartsen, 2006). These changes are 
hallmarked by clear reductions in body condition score 
and dry matter intake in the modern dairy cow, so it is 
clear that a massive mobilization of nutrients must be 
taking place which is orchestrated by an as yet 
unknown series of mechanisms (Adrien et al., 2012). 
However, excellent information continues to be 
reported on tissues known to play important roles in 
these processes (liver and adipose). As a result of low 
feed intake, circulating insulin concentrations are low 
and result in drastic reductions in lipogenesis through 
alterations in the control pathways that regulate them 
(Ji et al., 2012; Leroy et al., 2008), enabling more 
nutrients available for milk production. These changes 
can be effectively tracked by studying genomic changes 
in key metabolic pathways and so, relative changes in 
gene expression can be used as a tool to track energy 
status in the periparturient dairy cow. 

The advent of high throughput screening 
technologies such as microarray and quantitative PCR 
in the past few years has allowed researchers to amass 
a large database of information on global gene 
expression from a wide variety of conditions such as 
disease or drug treatment (Cao et al., 2006; Galindo et al., 
2010). Using such technologies has allowed for the 
delineation of many disease processes and has enhanced 
our knowledge of the biochemistry of metabolic 
adaptations. Because most data concerning nutrient 
partitioning in the peri-parturient dairy cow has come 
from studies of liver and adipose tissue, there is a 
scarcity of genomic data concerning changes in the 
rumen during this time period. In dairy cattle, the 
rumen is the principle site of SCFA generation and 
although de novo fatty acid synthesis takes place 
primarily in adipose tissue in these animals, it is the 
rumen which is the primary control point for the entry 
of nutrients into the body (Laliotis et al., 2010). 
Indeed, our group has previously reported genomic 
changes related to cholesterol homeostasis in the 
rumen of dairy cattle (Steele et al., 2011b). Moreover, 
we recently reported that major structural changes in 
the rumen are facilitated by components of the 
immune system (Dionissopoulos et al., 2013). In order 
to help better understand the physiological changes 
that take place during the peripartal period, changes in 
gene expression of key nutrient metabolic pathways 
should be elucidated. The objective of the current 
study was to determine the magnitude and 
identification of genomic changes in the rumen related 
to nutrient (fat) homeostasis and energy availability. 

2. MATERIALS AND METHODS 

2.1. Animals, Treatments and Diet 

Twelve dairy primiparous (mean wt. 644±13 kg) 
and multiparous (mean wt. 760±10 kg) Holstein dairy 
cows fitted with rumen cannulae (Duffield, 1999) were 
used in this study and were housed in a tie-stall facility 
at the Elora Dairy Research Station, University of 
Guelph. The animal utilization protocol (10R105) was 
approved for use by the University of Guelph Animal 
Care Committee in accordance with guidelines set forth 
by the Canadian Council on Animal Care. The cows 
were placed within the study three weeks prior to 
calving (-3) and were placed on a lactating cow diet 
immediately following parturition through the 6th week 
thereafter. The cows were fed a Total Mixed Ration 
(TMR) twice daily at 08:00 and 14:00, where the 
amount of feed allocated to the cows was monitored to 
allow for a maximum of 5 kg day−1 of orts on an as-fed 
basis. The diet formulations and their chemical 
composition are presented in Table 1. 

2.2. Rumen SCFA and pH 

Rumen fluid was collected at the same time each day 
(approximately 3 h after the last feeding; 17:00) from the 
ventral sac of the rumen and squeezed through 4 layers 
of cheesecloth into 50 mL capped, conical centrifuge 
tubes and frozen for subsequent analysis of SCFA via 
gas chromatography (Dionissopoulos et al., 2013). 
Rumen pH was spot measured on the last two days of 
each  experimental  week  (week -3, +1 and +6), 
(AlZahal et al., 2007). Mean daily pH for each experimental 
week was calculated and tabulated in Table 2. 

2.3. Rumen Papillae Biopsies, Microarray and 
qRT-PCR 

Samples of rumen papillae (n = 12) were harvested 
from the ventral sac of the rumen at the end of each 
experimental week according to the methodology 
described in Steele et al. (2012b). Rumen contents were 
partially evacuated to allow access to the ventral sac. 
Approximately 150 mg of papillae was cut from this area 
and washed 20 times in ice-cold PBS and subsequently 
placed in RNAlaterTM (Qiagen, Hilden, GmbH) until 
such time that the RNA could be isolated. Total tissue 
RNA was isolated as previously described by our group 
(Steele et al., 2012b) using the RNeasy midi kit (Qiagen, 
Mississauga, Ontario, Canada) and its concentration was 
determined by Nano-Drop (ND-1000, NanoDrop 
Technologies, Wilmington, Delaware). After isolation, 
the RNA was treated with DNAse (Invitrogen, Inc., 
Burlington, Ontario, Canada) and its purity was assessed 
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using a bio-analyzer (Agilent 2100, Agilent 
Technologies Inc., Palo Alto, California). 

2.4. Microarray 

The isolated RNA was subsequently prepared for 
microarray analysis to determine expression differences 
(n = 12) between weeks -3 and +6. Microarray 
hybridization and data acquisition was performed at the 
University of Kentucky Advanced Genomic 
Technologies Center using the 24K Affymetrix 
GeneChip Bovine array (Affymetrix, Santa Clara, CA) 
as was done previously (Steele et al., 2011b). The effect 
of week of transition on gene expression was assessed at 
the University of Guelph Genomics Facility using 
GeneSpring GX 7.3.1 (Agilent Technologies, Santa 
Clara, CA). Using the partial least squares methodology 
in SAS (2004), comparison differences were determined 
between the two weeks, employing a false discovery rate 
of 0.1 according to the methods of Benjamini as 
described by Reiner et al. (2003). Therefore, differences 
expressed between treatment weeks at an adjusted P 
value <0.10 were considered to be significant. 

2.5. qRT-PCR 

In order to confirm results on candidate genes 
involved in fat homeostasis and the immune system, 
quantitative PCR was performed on samples from the -3 
(n = 12) and +6 (n = 12) periods. Five µg samples were 
reverse transcribed using iTaq SYBR Green (Bio-Rad 
Laboratories) performed in triplicate using an ABI Prism 
7000 instrument (Applied Biosystems). Where 
permissible, PCR primers were designed to span exon-
exon junctions using the NCBI/PrimerBLAST tool 
(http://www.ncbi.nlm.nih.gov/tools/primer-blast) and 
were verified to be specific for target genes using 
GenBank (NCBI, Bethesda, Maryland). Primer 
efficiency was determined through a 5-point standard 
curve method, where these dissociation curves were used 
to determine the amplification of a single gene product. 
Target gene expression was normalized to GAPDH 
mRNA expression which was used as the housekeeping 
gene (Steele et al., 2011a), where GAPDH stability was 
confirmed by low variance Ct. Differences in the 
expression of genes assessed by qRT-PCR were 
determined using the Pfaffl et al. (2004). mRNA content 
was expressed relative to the -3 week observation as 
described previously (Xue et al., 2010). Expression 
differences were assessed via the comparison of 
individual +6 week group samples to the -3 pooled value 
using a Student’s t-test. All differentially expressed genes 
were analyzed for interaction pathways using the Ingenuity 
Pathway Analysis software tool (Ingenuity Inc., Redwood 

City, California) in conjunction with the University of 
Kentucky (Lexington, Kentucky). Values deemed 
significant were subjected to a screen of 95% confidence 
and a false discovery rate of 10% according to the methods 
of Benjamini (Reiner et al., 2003). 

2.6. Statistical Analysis 

SCFA concentration, BW, BCS and pH were analyzed 
using the Mixed procedure in SAS (2004). This model 
included cow parity (primi-or multiparous) and week (-3, 
+1, +6). The term “week” was used as the repeated 
measurement using “cow” as the subject term and the data 
was subjected to multiple covariance structures. The 
structure that yielded the smallest Bayesian information 
criterion was used for reporting of results. 

3. RESULTS 

3.1. Diet and Physiological Parameters 

Table 1 indicates the formulation and chemical 
composition (analysis) of the diet in this study. As can be 
seen in the table, the analysis confirmed that the design 
actually matched the composition for both of the diets. 
 
Table 1. Formulation and chemical composition of pre-and 

post-parturient TMR diets expressed on an a dry 
matter basis) 

 % DM 
 ---------------------------------------- 
Component Dry-cow Lactating-cow 
Corn silage 45.00 26.00 
Alfalfa silage 11.00 26.00 
Straw 27.00 6.00 
High-moisture corn - 20.00 
Protein supplement1 18.00 21.00 
Chemical composition 
DM, % 44.00 45.00 
CP (N×6.25) 13.00 16.00 
Soluble Protein 5.00 6.00 
ADIN 3.00 4.00 
ADF 31.00 23.00 
NDF 46.00 34.00 
NFC 34.00 43.00 
Starch 18.00 22.00 
Ether extract 3.00 3.00 
Ash 8.00 7.00 
NEL, Mcal/kg 1.37 1.68 
1Dry-cow protein supplement contained 48%-soybean meal, 
10% canola meal, 10% wheat bran, 19% vitamin and mineral 
mix, 4% soybean hulls, 2% molasses, 3% beef tallow. Lactating 
cow supplement contained 9% high-protein corn gluten meal, 
48% soybean meal, 7% Tri-Pro Gold, 14% canola meal, 10% 
beat pulp, 3% herring meal, 4% dry-corn distillers grain, 12% 
mineral mix, 5% soybean hulls, 2% molasses, 3% beef tallow 
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There was no effect of transition period (-3 vs +1 vs +6) 
on rumen acetate and isobutyrate concentrations or on total 
SCFA concentration (Table 2). However, propionate was 
significant between weeks -3 and +1 (17.57 vs 22.94), 
between weeks -3 and +6 (17.57 Vs 22.26), but not between 
weeks +1 and +6 (22.94 vs 22.26±1.25 mM). For weeks -3 
Vs +1 and for weeks -3 vs +6, Butyrate (6.97 Vs 9.85±0.52 
mM), isovalerate (1.09 Vs 1.29±0.07 mM) and valerate 
(1.74 Vs. 2.57 ± 0.15 mM) concentrations were affected by 
diet transition (Table 2; p≤0.004). No statistical differences 
were observed between weeks +3 vs +6. 

Similarly, mean rumen pH changed significantly 
between weeks -3 and +1 (6.38 vs 5.81±0.08; p<0.001) and 
between weeks -3 and +6 (6.38 Vs 5.85±0.08; p<0.001). As 
was the case with the SCFA, no changes were observed in 
the comparisons between weeks +1 and +6. 

Body weight and BCS (data not shown) also 
significantly changed between week -3 and +1 (716.00 
vs. 635.82±16.20; P = 0.002) and between week -3 and 
+6 (716.00 vs. 615.45±16.20; p<0.001). BW and BCS 
did not change between weeks +1 and +6. 

3.2. Microarray Screen, qRT-PCR and Pathway 
Analysis 

Microarray analysis of total rumen papillae RNA 
revealed that 1476 genes were differentially expressed 

(p<0.0001; data not shown). Subsequently, the 1476 
differentially expressed genes (10% FDR) were subjected to 
a stringent screening regimen in which only those genes 
related to nutrient homeostasis and the immune system 
were chosen. In addition, only those differentially 
expressed genes in which a direct interactive relationship 
was demonstrated in the literature and were found in the 
GIT were subjected to verification by qRT-PCR. The 28 
genes found to correspond to these criteria which 
demonstrated microarray-identified differential 
expression, were confirmed by qRT-PCR. Of those, 13 
were upregulated (ACSL1, ATF3, CLU, DUSP1, EPAS1, 
F2RL1, GSN, MAP2K1, MAPK3, PTEN, SMAD4, 
SREBF1 and TP63), 2 were downregulated (HMOX1 and 
LGALS1) and 13 were unchanged (BCL2L11, CAV1, 
HIF1A, HTR2A, KSR1, MIF, PPARA, PRKCD, 
SERPINE1, STAT4, TGFB1, TIMP1 and VDR). Gene 
expression results along with fold changes and 
significance are presented in Table 3. In addition, an 
interpretation is offered which places meaning on these 
results within a contextual interactome framework of the 
genes which intersect those involved in fat metabolism 
and those commonly associated with the immune system. 
Using these results and the IPA tool, a concrete graphical 
interactome was constructed and can be seen in Fig. 1. 

 

 
 
Fig. 1. Biological interactome pathway delineated by genomic analysis of immune-related and fat metabolism genes in the bovine rumen 

using Ingenuity Pathway Analysis. Findings were analysed using ANOVA and mixed models statistics and biological network 
analysis stemming from microarray and qRT-PCR analysis of 1476 differentially expressed genes (false discovery rate 10%). These 
results were further filtered to include only those genes that were confirmed to be direct interactions and related to both the immune 
system and fat metabolism in the gastrointestinal tract of mammals from Table 3 Green = upregulated gene; Red = downregulated 
gene; Gray = unaffected. Genes outlined in magenta indicate concomitant involvement in immune system signaling 
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Table 2. Rumen SCFA concentration (mM), mean rumen pH and mean Body Weight (BW; kg) expressed through the transition 
period (-3, +1 and +6 weeks). Values are expressed as means ± SEM; n = 12 per treatment week. 

     P-value 
 Day -3 Day +1 Day +6  ------------------------------------------------------ 
 A B C SEM AB AC BC 
Total SCFA 70.61 73.48 81.90 4.43 0.645 0.0870 0.195 
Acetate 40.75 40.53 43.20 1.32 0.911 0.2390 0.200 
Propionate 17.57 22.94 22.26 1.25 0.001 0.0040 0.643 
Isobutyrate 2.48 2.68 2.95 0.17 0.394 0.0640 0.282 
Butyrate 6.97 9.85 9.40 0.52 <0.001 0.0020 0.510 
Isovalerate 1.09 1.29 1.43 0.07 0.005 <0.0001 0.039 
Valerate 1.74 2.57 2.47 0.15 <0.001 <0.0010 0.592 
pH 6.38 5.81 5.85 0.08 <0.001 <0.0010 0.730 
BW 716.00 635.82 615.45 16.20 0.002 <0.0010 0.381 
 
Table 3. Gene expression results from qRT-PCR analysis and biological context analysis from rumen tissue of cows from the transition period between weeks -3 and +6. 

All pathway results were confirmed via the INGENUITYTM KEGG knowledge database 

Symbol Entrez Gene Name Fold Change SE P-value Function Ref. 

ACSL1 acyl-CoA synthetase long -chain family member 1 1.54 0.53 0.01 Promotes uptake of rumen SCFA (Yang and Barouch, 2007)  
ATF3 activating transcription factor 3 3.13 0.57 0.00 Promotes assimilation of fatty acids (Zmuda et al., 2010) 
BCL2L11 BCL2-like 11 (apoptosis facilitator) Unchanged NA NS NA 
CAV1 caveolin 1, caveolae protein, 22kDa Unchanged NA NS NA 
CLU clusterin 1.33 0.10 0.01 Promotes fat mobilization (Seo et al., 2013) 
DUSP1 dual specificity phosphatase 1 2.09 0.27 0.00 Promotes fat mobilization (Guenard et al., 2013) 
EPAS1 endothelial PAS domain protein 1 1.72 0.21 0.00 Improves insulin sensitivity (Shimba et al., 2004) 
     and fat mobilization 
F2RL1 coagulation factor II (thrombin) receptor-like 1 2.10 0.20 0.00 Promotes fat mobilization (Badeanlou et al., 2011) 
GSN gelsolin 1.65 0.19 0.00 Promotes mammary gland (Crowley et al., 2000) 
     Development 
HIF1A hypoxia inducible factor 1, alpha subunit Unchanged NA NS NA 
 (basic helix -loop- helix transcription factor) 
HMOX1 heme oxygenase (decycling) 1 0.75 0.06 0.00 Promotes efflux of hepatic triglycerides (Czech et al., 2013) 
HTR2A 5-hydroxytryptamine (serotonin) receptor 2A, Unchanged NA NS NA 
 G protein-coupled 
KSR1 kinase suppressor of ras 1 Unchanged NA NS NA 
LGALS1 lectin, galactoside-binding, soluble, 1  0.72 0.08 0.00 Promotes glucose homeostasis (Camby et al., 2006) 
MAP2K1 mitogen-activated protein kinase kinase 1 1.36 0.05 0.00 Maintains fat homeostasis (Bost et al., 2005) 
MAPK3 mitogen-activated protein kinase 3 1.40 0.14 0.01 Promotes adipogenesis (Bost et al., 2005) 
MIF macrophage migration Inhibitory factor Unchanged NA NS NA 
 (glycosylation-inhibiting factor) 
PPARA peroxisome proliferator Unchanged NA NS NA 
 -activated receptor alpha 
PRKCD protein kinase C, delta Unchanged NA NS NA 
PTEN phosphatase and tensin homolog 1.44 0.11 0.00 Promotes fat mobilization (Sanchez-Gurmaches et al., 2012) 
SERPINE1 serpin peptidase inhibitor, clade E (nexin, Unchanged NA NS NA 
 plasminogen activator inhibitor type 1), member 1 
SMAD4 SMAD family member 4 1.65 0.14 0.00 Maintains fat homeostasis (Wrana, 2009) 
SREBF1 sterol regulatory element 2.29 0.27 0.00 Promotes de novo fat (Eberle et al., 2004) 
 binding transcription factor 1    synthesis and mobilization 
STAT4 signal transducer and activator of transcription 4 Unchanged NA NS NA 
TGFB1 transforming growth factor, beta 1 Unchanged NA NS NA 
TIMP1 TIMP metallopeptidase inhibitor 1 Unchanged NA NS NA 
TP63 tumor protein p63 1.73 0.14 0.00 Promotes fatty acid synthesis (Sabbisetti et al., 2009) 
VDR vitamin D (1,25-dihydroxyvitamin D3) receptor Unchanged NA NS NA 

 
4. DISCUSSION 

The transition period for a high-producing dairy cow is 
metabolically stressful and it is during this time that most 
production diseases occur (Drackley, 1999; Ji et al., 2012; 

Osorio et al., 2013), most likely as a result of transient but 
sustained immunosuppression (Springer and Sciences, 
2008). Many metabolomic and genomic studies have been 
performed to determine the role of macronutrients on gene 
expression of key metabolic pathways (Loor, 2010; 
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Mulligan and Doherty, 2008; Mulligan et al., 2006). 
However, these studies have mainly focused on liver and 
adipose tissue, largely ignoring the rumen epithelium. As 
the rumen is the source for most metabolic SCFA and 
nutrient transport and since immune activity seems to be 
omnipresent, we elected to elucidate changes in transition 
cow rumen epithelial tissue by studying local genomic 
alterations to determine what role, if any, is ascribed to the 
immune system. 

4.1. Physiological Parameters 

To achieve optimal health status during the transition 
period, the diet of the dairy cow must be modified to 
balance production goals while maintaining adequate 
health (NRC, 2001). As the cow progresses through the 
transition period, its diet changes from one typical of a 
dry cow formulation to one which is formulated for 
lactating cows (Grummer, 1995). The dietary 
formulations in this study follow this treatment 
paradigm, changing in such key parameters as protein 
level, ADF, energy density and most drastically, NFC 
(Table 1). In this study, the NFC content rose from 34% 
to 43%, a diet typically used for lactating dairy cows, but 
which is known to cause Subacute Ruminal Acidosis 
(SARA) (Dionissopoulos et al., 2012; Steele et al., 
2012a). The rise in NFC over the transition period 
reflects the change in mean pH over time; where it was 
seen to drop from 6.38 to approximately 5.81 following a 
dietary switch post-calving. Although still below the 
threshold level for a diagnosis of SARA (Plaizier et al., 
2008), the changes in pH likely reflect dietary alterations 
and hence changes in SCFA homeostasis rather than a 
physiological adaptation during the transition period. In 
addition to BW losses from calf, placenta and fluid 
expulsion, as expected, BW decreased significantly 
during the transition period, falling significantly from 
716 kg to 635 kg. Negative changes in BW and body 
condition score have been associated with the 
transition period and have been documented for some 
time (Hutjens and Aalseth, 2005). It is important to 
note that the ensuing inflammation that occurs 
following calving can also be a contributing factor to 
reductions in DMI. Chronic immune system 
stimulation during this period has been known to 
result in anorexia, leading to feed depressions and 
reductions in body weight (Dionissopoulos et al., 
2006; Esposito et al., 2013). 

Although the total rumen SCFA did not change, the 
ruminal SCFA propionate, butyrate, isovalerate and 
valerate showed significant increases that coincided with 
the timing of the dietary change post calving. It is known 

that ruminal SCFA concentration is largely affected by 
dietary formulation and nutrient ecology (Aschenbach et al., 
2011; Gabel and Sehested, 1997; Kristensen et al., 1998; 
Penner et al., 2011) and not as an adaptive mechanism 
during the transition period. The SCFA concentrations 
agree with previously published reports from our group 
using diets of similar composition (Dionissopoulos et al., 
2013; Steele et al., 2012b). 

4.2. Gene Expression and Biological Interactome 
Analysis 

The changes accompanying the rumen epithelium in the 
transition cow have been largely ignored, due to the 
importance of metabolically active tissues such as liver and 
adipose (Loor, 2010). Yet this amazing tissue is the site of a 
great variety and quantity of nutrient absorption and so 
likely serves a significant role during the transition period in 
the high-producing dairy cow. Our group therefore, sought 
to determine genomic alterations in ruminal tissue during 
this period. To achieve this goal, a microarray screen 
followed by qRT-PCR analysis was performed on genes 
differentially expressed and associated with fat 
metabolism and the immune response. Furthermore, since 
we have previously shown a role for the immune system 
in facilitating rumen adaptation (Dionissopoulos et al., 
2013), it was deemed prudent to also determine which 
immune-related genes were undergoing change. In this 
study, the genes significantly changed and verified by 
qRT-PCR were related to the immune system and fat 
metabolism (mobilization, synthesis). 

Receptor signaling in adipose and liver tissues is 
known to enhance insulin sensitivity and fatty acid 
homeostasis during the postpartum period (Loor, 2010). 
In addition, the principle means by which metabolic 
alterations take place are through changes in a 
multitude of pathways involved in fatty acid 
homeostasis, with glucose and amino acid homeostasis 
following close behind (Dann et al., 2006; Drackley et al., 
2006; Loor et al., 2006). Hence, since adipose tissue 
contains the key metabolic fuel for mobilization in the 
periparturient dairy cow, its signaling pathways must be 
of high concern as they are likely to affect fat 
metabolism in distant tissues (Vernon, 2005). 

ACSL1 and SREBF1, which were upregulated during 
the transition period, are both involved in enhancing the 
uptake and assimilation of rumen SCFA (Yang et al., 
2007) and in de novo fatty acid synthesis and 
mobilization. These results agree with those published 
earlier this year (Weber et al., 2013) which showed 
similar patterns of expression during the transition 
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period. ATF3 is an inducible transcription factor whose 
expression is enhanced by high levels of circulating fatty 
acids and glucose (Zmuda et al., 2010). ATF3 expression 
was enhanced in this study, which corresponds to its role 
in promoting the mobilization of fatty acids. CLU is a 
gene expressed in various tissues, but most notably its 
expression is reduced during lactation and is partially 
responsible for mammary gland involution following the 
cessation in lactation during the dry period (Piantoni et al., 
2010). CLU was upregulated in our study, owing to the 
fact that comparisons were made among the interval 
between -3 and +6 weeks post calving, which presented 
the greatest differences. DUSP1 along with MAP2K1 
and MAPK3 are well known genes involved in nutrient 
homeostasis. DUSP1 has been reported to be one of a 
series of upstream regulators of the MAP series of kinase 
activity (Liu et al., 2008) and has been shown to be 
downregulated during a shift from negative to positive 
energy balance (Moyes et al., 2011), likely affecting 
downstream transcription of MAP2K1 and MAPK3. 
These results agree with those presented here in that 
during transition, cows in general are in a negative 
energy balance state. Similarly, EPAS1 has been shown 
to improve insulin sensitivity and fat homeostasis 
(Shimba et al., 2004) and in this study, EPAS1 was 
upregulated during the transition period, likely as a 
response to the negative energy balance described above. 
F2RL1 and PPAR2 are central signaling genes and 
originate from the signal clotting cascade in a wide 
variety of tissues (Reinhardt et al., 2012). In the present 
study, F2RL1 expression increased likely as a result of 
MAPK signaling in negative energy balance. In an 
experimental model of obesity, Badeanlou et al. (2011) 
found that mice lacking the F2RL1 gene had better fat 
homeostasis and insulin sensitivity than their wild type 
counterparts. GSN is a cytoskeletal protein involved in 
actin signaling in order to strengthen and prepare the bovine 
mammary interstitium for lactation (Crowley et al., 2000). 
In the rumen, its upregulation may also be a response to a 
negative energy balanced state in order to mobilize body 
reserves for a successful lactation (Kuhla et al., 2011). 
Moreover, PTEN (upregulated in our study) is also a key 
gene in the pathway mediating fat liberation during this 
period (Sanchez-Gurmaches et al., 2012) and in response 
to increased levels of SMAD4 and control inputs from 
TGF-β and TP63 signaling (Wrana, 2009), acts through 
PPARA and back to ACSL1 to mediate the liberation 
of fats from metabolic stores and to promote the 
redistribution of energy to on-demand tissues. 

To better understand the interconnectedness and 
adaptability of metabolism, a biological interactome was 
derived (Fig. 1) using data obtained from this study as 

well as from the Ingenuity SystemsTM KEGG database 
(Tanabe and Kanehisa, 2012; Zhou, 2013). As can be 
seen in Fig. 1, these genes act in a concerted fashion to 
regulate fat metabolism and hence energy availability. A 
central role for this pathway in the provision of energy 
during the transition period can clearly be seen. 

5. CONCLUSION 

To our knowledge, this is the first analysis of 
metabolic and genomic markers of ruminal tissue of 
dairy cows during the transition period. Although the 
transition period places severe metabolic and physical 
stress on the dairy cow, through changes in the 
expression of genes involved in fat metabolism, the 
immune system and energy homeostasis, the dairy cow 
can have a productive and healthy life. We have 
demonstrated altered expression of a subset of genes that 
seem to constitute an interactome representing associated 
changes in the expression of genes responsible for fatty 
acid, triglyceride and immune system capacity, which 
collectively prepare the dairy cow for the metabolic 
rigors associated with the transition period. 
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