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Abstract: Residue Number System (RNS) is an unweighted number system 

that symbolizes big integers with smaller numbers. It can perform operations 

in particular addition and multiplication in parallel. Because of this property, 

RNS is extensively used in communication, Finite Impulse Response (FIR), 

cryptography and signal processing devices. The transfer of data in digital 

channels is very important for some critical applications where accuracy is 

very important. In this study, we proposed a novel algorithm that is 

premised on the Hamming Distance (HD) and one of the reverse 

conversion methods, which is, the Chinese Remainder Theorem (CRT) 

and) as a joint technique for the detection and correction of multiple bit 

errors in RNS. The proposed algorithm provides a more efficient 

technique that improves on the hardware size and increases the 

processing speed with fewer iterations when compared with other state-

of-the-art schemes. The work analyses the area and delay of the hardware 

architecture and compared with other similar schemes. The results 

indicated the effectiveness of our proposed scheme in terms of the area 

and delay specifications.  
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Introduction  

In this era of technology, a good number of error-

control methods are developed to ensure the efficient, fast 

and reliable transfer of non-erroneous data in modern 

digital systems such as digital processors and arithmetic 

units. An identifiable challenge in the transfer of data is 

caused by noise that can result in an error (s) in a 

transmission channel (Afriyie and Daabo, 2018a). Fault 

tolerance is, therefore, needful to be able to allow faulty 

channels to continue to operate through error detection 

and correction mechanisms (Afriyie and Daabo, 2018b) 

the concept of fault tolerance regarding security in 

transmission channels cannot be left unattended. There 

are three main concepts of information security namely 

confidentiality, integrity and availability. Faults can be 

classified as transient where error happens for a very short 

moment. With intermittent faults, it appears repeatedly for a 

specific period and permanent faults however can only be 

prevented when the parts that have affected transmission 

channels need to be replaced (Jonsson, 1996). 

Error-correcting codes in RNS are attractive because 

of their inherent features. RNS provides the speed of 

arithmetic computations because of its unweighted and 

unparalleled characteristics compared to the conventional 

number systems. Residue Number System (RNS) is a 

non-positional, unweighted number system that does not 

spread error from one residual digit to the other (Daabo and 

Gbolagade, 2014). Over the past decade, RNS has 

received and continues to receive considerable attention 

in digital systems such as image processing, cryptography 

and digital filtering. The reason for its widespread is its 

notable properties for instance modularity, fault tolerance, 

parallelism and its carry-free operations (Beame et al., 

1986; Leighton, 1992; Taylor, 1984; Soderstrand et al., 

1986). Several works proposed by scholars in error 

detection and correction in RNS have been done on single 

and multiple error detection and correction schemes. 

Several works in the existing literature on the detection 

and correction of errors are based on the traditional 

Chinese Remainder Theorem (CRT) and the Mixed Radix 

Conversion (MRC) (Wang, 1998; 2000). There are two 

most important issues for the residue arithmetic in RNS, 

which include the selection of the moduli set and lastly 

the conversion of the residue digits to binary numbers. An 

RNS is based on the traditional moduli set {2n-1, 2n, 2n, +1} 

has become popular that is expected to play a very good 

role in RNS digital processing (Ashur et al., 1995). A 
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number of conversion schemes for {2n-1, 2n, 2n, +1} have 

been done in (Jenkins, 1978; Taylor and Ramnarynan, 

1981; Andraos and Ahmad, 1988; Ibrahim and Saloum, 

1988; Vinnakota and Rao, 1994; Piestrak, 1995; 

Bhardwaj et al., 1998; Conway and Nelson, 1999).        

Yau and Liu (1973) developed an algorithm that detected 

and corrected single and burst error respectively in 

Redundant Residue Number System (RRNS). However, 

their algorithm requires no look-up tables. The hardware 

implementation of that proposed algorithm had memory 

space that was faster than the algorithm proposed in 

earlier works. A similar algorithm that is based on the 

CRT presented by (Goh and Siddiqui, 2008) detects and 

corrects multiple bit errors in RRNS The integrity and 

reliability of data have major special effects on the 

performance of any data in any transmission line. Factors 

such as noises and disturbances can also affect 

transmission lines by reducing the reliability of the data. 

With the provision of the desired fault tolerance, a system 

will continue to perform its desired functions. Figure 1 

shows the structure of Encoder in error detection and 

correction proposed by Olabanji et al. (2016).  

There are two (2) main principles of improving the 

reliability of Computing Systems (CS) that is resident in 

the positional number systems through: (1) Increasing the 

reliability of individual elements of the CS and (2) 

introducing different types of redundancy (Tay and 

Chang, 2017; Phalakarn and Surarerks, 2018). It evident 

that introducing redundancy when applying available 

elements is the surest way in increasing the reliability of 

CS. The existence of fault tolerant features in the 

computing systems helps to increase the reliability of the 

CS. The existence of fault tolerant features of the CS can 

be achieved as a result of the application of two main 

methods namely the Active Fault Tolerance (AFT) and 

the Passive Fault Tolerant (PFT). Some studies done by 

(Yatskiv and Tsavolyk, 2017; Krasnobaev et al., 2019) 

indicate the use of PFT technique that helps in the 

improvement of reliability in CS that is widely used in 

positional number systems. There is however lack of 

studies conducted using residue classes in achieving 

fault tolerance and also improving the reliability of CS 

that is based on the application of AFT. The main goal 

of this study is to propose the design of effective fault 

tolerant structure using residue classes to detect and 

correct multiple bit errors by applying the AFT 

technique. Begli et al. (2019) proposed a framework 

that detects attacks by employing machine learning 

techniques and Support Vector Machines (SVM). Their 

findings showed the efficiency of the proposed 

framework in detecting faults in critical infrastructures.  

Fundamentals of Residue Arithmetics 

Residue Number System is characterized by a set of k 

pairwise relatively prime positive integers, i.e., the greatest 

common divisor gcd (mi, mt) = 1 with i  j, m1, m2… mk-1, mk 

called the moduli, that is formed in increasing, i.e., m1 < m2 

<… mk-1 < mk (Afriyie and Daabo, 2018a). Their products 

represent the interval [0, M) referred to as the legitimate 

range that defines the useful computational range of the 

number system, that is: 

 

1

N

i

i

M m
=

=   (1) 

 

 
 

Fig. 1: Structure of encoder in error detection and correction 
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In representing signed numbers in RNS, the 

dynamic range is defined as [-(M-1)/2, (M-1)/2] if M is 

odd and M/2 if M is even. Every natural integer X, in 

the legitimate range, can be represented by a set of 

residues r1, r2,…rk-1, rk where: 

 

( )modi ir X m  (2)  

 

|X| mi represents X modulo mi with iϵ [1, m]. RNS 

has a carry-free feature that works on addition, 

subtraction and multiplication operations. These 

operations can be achieved independently in RNS 

concerning the moduli. As a result of the carry-free 

property of RNS, the three operations specifically 

addition, subtraction and multiplication are possible to 

be performed concerning the moduli i.e.: 

 

1 2 1 2 1 2

,

, ,

*

, *k k k

k i i i i

x x x x y y

z z x

y

y m

z z  =


  (3) 

 

Hence, * indicates the basic operations. As a result, 

RNS can provide fast arithmetic.  

In achieving redundancy for the reason of detecting 

errors in digital channels, redundant moduli are added to 

the existing moduli as spare. By adding (u-w) redundant 

moduli (mn+1, mn+2, … mn) to the v information moduli 

(m1, m2, m3, …mn), an RRNS (u, w) code is possible to 

be generated. The process of achieving this is called 

RRNS encoding. An integer S can be represented in the 

RRNS form as: 

 

 1 2 3 1, , , , , , ,w w uS r r r r r r+=    (4) 

 

where, (m1, m2, m3, … mn) are known as the information 

moduli and (mw+1, mw+2, mw+3… mw) indicating the redundant 

moduli set. Similarly, the residues, (r1, r2, … r3, rw) show the 

information residues and (rw+1, rw+2, rw+3 … rw) are 

called the redundant residues.  

In the process of decoding in RRNS, if some of the 

spare residues are not used, an integer can be correctly 

recovered if the existing residue digits are without errors. 

For RRNS, all moduli are pairwise relatively prime and 

the representation of this system is equal to: 

 

1

0,
h r

i

i

m
+

=

 
 


  (5) 

 

Information and Non-redundant for any moduli set are 

given as: 

1

n

r i

i

M m
=

=   

 

1

m

s i

i n

M m
= +

=   

 

Hence, the equation below describes the dynamic range: 

 

1 1 1

*
n m m

i i i

i i n i

R m m m
= = + =

= =    

 

Also, in determining the Euclidian algorithm, we have: 

 

( )

( )

( )2

gcd , gcd( , 1

gcd (2 ) ,2 1 1

gcd (2 2) ,2 2 1

b

n n

n n n

a b b a= =

+ =

− + =

 

 

Theorem 1 

RRNS, (u-w, v) code has a detection capability of            

(u-w-v) errors and an error correction capability of                  

(u-w-v)/2. The code rate of an RRNS is defined as: 

 

1

b
C u

bj

K
R

K
=

=


 (6) 

 

where, 2logb rK M=     and 2log ,bj jK m=     where (j = 1, 2, 

3, …u) are the moduli. During the transfer of data, the 

number of extra bits and the code rate for error detection 

and correction can be varied. The spare moduli are added to 

the information bits. This, therefore, affects the code rate by 

decreasing it and the error correction capability is enhanced. 

In RNS, the number of non-zero elements in a vector is 

defined as its hamming weight. Let Ki and Kj be code vectors, 

then the hamming distance d(Ki, Kj) is defined as the number 

of bits in which two code vectors Kj and Kj differ. HD is the 

minimum of the hamming distances: 

 

 ( )( ),min ; .D i j i jH d y y y Y=   (7)  

 

Theorem 2  

The minimum Hamming distance (d) of an RRNS (u, 

w) code is defined as d = u-w + 1provided (m1, < m2 < m3 

<… < mu). 

Theorem 3  

The minimum distance of an RRNS code is dmin, if 

and only if the product of redundant moduli satisfies 

these relations: 
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min min 1

1 1

max max
d d

ji n k ji

i i

m M m
−

−

= =

      
    

      
   (8) 

 

where, 
1

n

n k j

j k

M m−

= +

=   shows the product of the extra 

moduli of the code and mji is of n moduli of the RRNS 

code, for 1  ji  n. 

Theorem 4 

An RRNS code y that is premised on an extra RNS has 

a minimum hamming weight wtmin   + 1 and a minimum 

distance dmin = r + 1. 

Theorem 5 

For an extra moduli bit in RNS, the error detection 

capability cd, cd = d-1 and the error correction 

capability 
1

2

d
t

− 
=  

 
 where, x is the largest integer 

value smaller than x (Ashur et al., 1995). That is, RRNS 

(u, w) code can detect up to (u-w) residue digits and 

correct up to 
2

u w
t

− 
=  

 
 residual digits. This implies 

that single and multiple error detection and correction 

algorithms are possible to be implemented when u and 

w are carefully selected. This study focuses on 

detecting and correcting multiple bit errors in RRNS 

with (u-w = 2).  

It is important to determine the optimal set {mo}OPT 

of modules from the set of the possible respective 

moduli set mn+1, mn+2, mn+3, …, mn+k at which the 

reliability of the CS R(n/k)RC(t) of the CS will be 

maximum. In achieving the optimality of the moduli set 

{mo}OPTs, it is important to frame and solve the problem 

of inverse of the optimal reservation in the residues. 

The inverse optimal reservation problem in the residues 

is mathematically formulated as (Ushakov, 2013): 

 
( ) ( ) 

( )( )
max;

;

a b

a cn

K RC t t const

V TNS P RC

+

+

 = →




 (9) 

 

where, c is the maximum possible number of control bases 

mn+1, mn+2, mn+3, …, mn+k; ( )  ( )1,2,...,
a b

OPT
m f k

+
=  

indicates the optimal control bases. In ensuring the 

possibility of maximum reliability value ( )

a

bK RC t

 
 
   

computing system in RC. With this, the condition that is 

set must be achieved: 

 
c n mV RC V TNS V RC −  (10) 

Conversion 

The MRC and CRT are the main approaches that are 

mainly used in conversion processing (Sun and 

Krishna, 1992). This study will be limited to the CRT 

and the HD techniques because the CRT offers the real-

time signal processing time as a result of its parallel 

means of conversion and there is a constant limit to this 

approach (Soderstrand et al., 1986). The process of 

converting from conventional representations to RNS 

is known as forward conversion whilst converting from 

the RNS to the conventional representations is known 

as the reverse conversion.  

The residue to conventional number representation is 

done mainly by the MRC or the CRT (James and Pa, 2015); 

To compute numbers X from its corresponding 

residues, the CRT technique can be used which is given 

in Eq. (11): 

 

1 mi

N

i i i

i M

X x 
=

=   (11) 

 

where: 

 

1

N

i

i

M m
=

=   (12) 

 

i

i

M

m
 =  (13) 

 

* 1
i

i i m
x =  (14) 

 

This research paper provides an efficient and novel 

algorithm for the detection and correction of multiple 

bit errors for the moduli set {2n
 -1, 2n, 2n+1, 2n+1-1,              

22n-3, 2n2+1}. 

Proposed Methods 

This part of the paper presents a new scheme for 

detecting and correcting multiple bit errors in RRNS in 

the stated moduli set. 

Proposed Algorithm 

The proposed method is based on the algorithm 

outlined given below: 

 

1. Calculate y  from the received vector y using Eq. (11) 
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2. Execute the needed number of iterations using 

( )

!

! !

n

t

n
C

n t t
=

−
 by dropping two residues at a time  

3. If y  falls within the legitimate range, stop and output 

y . Declare there are no errors 

4. If y is not within the legitimate range, compute the 

residual vector y and the HD d(ri, y) If d(ri, y) stop 

and output the result 

5. If d(ri, y) > t, indicate that there are more than t errors 

and stop 

 

Using the CRT, it is possible to compute for the 

original integer message as a way of recovering it from 

the set of residues received. Hence, to recover the 

original integer message involves only the modulo 

operations for some iterations. The algorithm is 

premised on the CRT and the HD.  

From the stated moduli set S = {2n
 -1, 2n, 2n+1, 2n+1-1, 

22n-3, 2n2+1} where, m1 = 2n-1, m2 = 2n, m3 = 2n+1, m4 = 

2n+1 – 1, m5 = 22n = 3 and m6 = 22n+1.  

The multiplicative inverses for the CRT based on the 

same moduli set are computed as follows: 

 
1 1

1 2 2
(2 1) 1

n

nm m− −= − = −  (15) 

 
1 1

2 3 2 1
(2 ) 1

n

nm m− −

+
= =  (16) 

 

1

1 1

3 4 2 1
(2 1) 2

n

n nm m
+

− −

−
= + =  (17) 

 

2

1 1

3 5 2 3
(2 1) 2

n

n nm m− −

−
= + =  (18) 

 

2

1 1 1 1

4 5 2 3
(2 1) 2 6

n

n nm m− + − +

−
= − = −  (19) 

 

1

1 1

2 4 2 1
(2 ) 2 1

n

n nm m
+

− −

−
= = −  (20) 

 

2
6

1 1

3 2 1
(2 1) 2 3

n

n n

m
m− −

+
= + = +  (21) 

 

2

1 1 1 1

4 6 2 1
(2 1) 2 3

n

n nm m− + − +

+
= − = −  (22) 

 

2

1 2 1 2

5 6 2 1
(2 3) 2 12

n

n nm m− −

+
= − = −  (23) 

 

Equation (15) - (23) project the formulations using 

the CRT in detecting the affected integer message. This 

study purposely employs the CRT for implementation 

of the hardware architecture. Generally, the CRT is 

specified usually as. 

For the values n1 to n6, for the moduli set, S = {2n-1, 

2n, 2n+1, 2n+1-1, 22n-3, 22n+1} gives: 

 
6

1

123456

1

*
i

i i im
i M

X X M M−

=

=   (24) 

 

Based on the proposed algorithm, the amount of 

parts for the duplicate CS in the positional number 

system can be determined by the mathematical 

expression in equation: 

 
( ) 2 2.8.zV PNS z=  (25) 

 

For the triple CS, it can also be mathematically 

expressed as: 

 
( )3 3.8.zV PNS z=  (26) 

 

Equation (25) and (26) can generally be expressed as: 

 

( )
( )

( ) ( ) ( )

0

0

1

kn
i n k ik

i

i

i
i j j

i i

j

R RC t A n kB

t D B t

+ −

=

=

= +

−




 (27) 

 

The probability of the fault tolerant activity of the CS 

can be obtained on the residues from Eq. (27). 

Hardware Implementation 

In implementation of the hardware, the considered 

moduli set S = {2n-1, 2n} for the hardware architecture for 

the non-redundant component is considered. The 

corresponding binary representation of the residues have a 

bit level representation as x1 and x2 which further give: 

 

1 1, 1 1, 2 1 1,0 2( , , )n nx x x x x− −=   (28)  

 

2 2, 2, 1 2 2,0 2( , , )n nx x x x x−=   (29)  

 

and the redundant part as: 

 

3 3, , 3, 1, 3, 2, 3,0n n nx x x x x− −=   (30) 

 

4 4, 1, 1, 2 4,0n n nx x x+ − −=   (31)  
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5 5,2 , 5,2 1, 5,2 2, 5,0n n nx x x x x− −=   (32)  

 

6 6,2 , 6,2 1, 6,2 2, 6,0n n nx x x x x− −=   (33)  

 

Thus CRT technique gives: 

 

1 2 3

4 5 6

1 1 1

123456 1 1 1 2 2 2 3 3

1 1 1

3 4 4 4 5 5 5 6 6 6

* *

* * * *

m m m

m m m
M

X x M M x M M x M

M x M M x M M x M M

− − −

− − −

= + +

+ + +

(34) 

 

The dynamic range, (M) for the non-redundant parts 

from the Eq. (24) gives: 

 

( )( )1 2 2 1 2n nM m m= = −  (35) 

 

( )( )1 2 2 1n nM = +  (36) 

 

( )( )2 2 1 2 1n nM = − +  (37) 

 

The multiplicative inverses for expanding Eq. (19) are 

shown in Eq. (15) to (23). 

Expanding (24) with the dynamic ranges and its 

respective multiplicative inverses for the non-

redundant part provide: 

12 1 2 (2 1)(2 )
((2 )(2 1) ((2 1)(2 ))

n n

n n n nX x x
−

= − + −  (38) 

 

The correct integer message for the non-redundant part 

that is, X12 is known from the Eq. (38) when any of the 

residue digits have errors in the non-redundant part. 

Results  

The architectural area of the proposed method is built 

from the stated moduli set using Carry Propagate Adders 

(CPAs) and simple adders. To detect and correct multiple bit 

errors in RNS, the residues are converted to a correct integer 

message using the traditional CRT and the HD as a joint. In 

a situation where an error occurs during data transmission in 

digital lines, the redundant part is called to aid in detecting 

and correcting residue errors that are premised on the 

proposed algorithm presented in this study. The erroneous 

residue digits are calculated about Eq. (8). The schematic 

architecture as shown in Fig. 2 depicts that there are three 

regular Carry Propagate Adders (CPAs), that are needed to 

build the architecture with a bit length of (8n bite) as 

regards to the delay for the proposed schematic 

architecture, the CPAs execute a computational speed 

of DFA for of the CPAs each and need a total 

architecture size of (8n) FA. The proposed architecture 

needs a total area of (2n+2) DFA. The schematic 

diagram for the proposed method is shown in Fig. 2.  

 

                                                 𝑋1                  𝑀1                     𝑋2                 𝑀2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑋12 

 
Fig. 2: Block diagram showing the RC for the non-redundant part X12 
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Results and Discussion 

In this section, we present the analysis of the results 

proposed in this study against other existing state-of-the-

art works. Table 2 and 3 show the proposed algorithm 

with the other existing algorithms based on the area and 

delay of the architecture. 

Numerical Results 

We can now illustrate some numerical examples for 

the new method in this study. 

Considering an RNS code (n, k) where n indicates 

the length of the code and k represents the dimension 

of the RNS code with the moduli set (m1, m2, m3, m4, 

m5, m6) = (3,4,5,7,13,17) where, m1 and m2 are non-

redundant moduli, m3, m4, m5 and m6 are the redundant 

moduli. For instance, considering the integer message 

y = 11, for its residue digits, are yi = (2, 3, 1, 4, 11, 17). 

The range of legitimacy = ML = 3*4 = 12 and the 

illegitimate range = M1 = 5*7*13*17 = 7735. Let us 

accept that in the process of calculation of the integer 

message, the second and sixth residues are in error 

respectively, i.e., two errors (t = 2). These residues in 

error have propagated into y during transfer in the 

digital channels using A1 = 2 and B2 = 6 as error 

locations. The codevector after the computation of the 

computation using the CRT gives,           

( )2,5,1,4,11,13,7iy = . 

The decoding process gives: 

 

1 2 3 4 1234

1 2 3 5 1235

1 2 4 5 1245

1 3 4 5 1345

2 3 4 5 2345

1 2 3 6 1236

1 2 4 6 1246

1 3 4 6 1346

2 3 4 6 2346

1 2 5 6 1256

1 3 5 6 1356

– 221

401

557

11*

1441

41

1061

275

1061

245

125

y y y y X

y y y y X

y y y y X

y y y y X

y y y y X

y y y y X

y y y y X

y y y y X

y y y y X

y y y y X

y y y y X

=

− =

− =

− =

− =

− =

− =

− =

− =

− =

− =

2 3 5 6 2356

1 4 5 6 1456

2 4 5 6 2456

3 4 5 6 3456

9

3781

3560

2013

4886

y y y y X

y y y y X

y y y y X

y y y y X

− =

− =

− =

− =

 

 

From the above results, it is observed that whenever y2 

and y6 are used in the computation they give an 

illegitimate integer and also lies outside the legitimate 

range namely X1234, X1235, X1245, X2345, X1236, X1246, X1346, 

X2346, X1256, X1356, X2356, X1456, X2456, X2456 and X3456. 

Whenever the residue digits y2 and y6 were dropped in the 

computation of X1345, the integer message recovered is 11 

and also lies within the legitimate range.  

The legitimate integers are y2 and y6 are the residue 

digits in error. It can be concluded that, the correct integer 

value is 11 and there were errors in y2 and y6. The integer 

values y2 and y6 can be corrected by computing y2 = 11 

mod 4 = 3 and y6 and y6 = 11 mod 17 = 11. 

Table 1 shows the HD between any two code vectors that 

are computed based on theorem 5 of the HD theorems from 

the paper. From the comparison involving the residue vectors 

and the Hamming Distances, the only value that lies in the 

legitimate range and has a Hamming Distance d(ri, y) which 

is less than or equal to 2 i.e., (t 2) is 11. This indicates 

that the proposed algorithm has detected and corrected 

the transmitted integer message correctly. The 

proposed technique is simple and provides an efficient 

way, which makes the integer message, recovered 

avoiding the use of large integers.  

The paper presented a novel and simple scheme that 

detects and corrects multiple bit errors in RRNS 

architecture. For the evaluation of the proposed 

technique, it is compared to known best-known state-

of-the-art schemes that also work on errors in RNS. The 

paper-based on the proposed algorithm provides a 

faster encoding and decoding schemes because of the 

generalized moduli set. The generalized moduli set 

provides an efficient Dynamic Range. The theoretical 

analysis performed between the proposed and other 

known schemes indicated that the proposed technique had 

improved hardware architecture for the area and provided 

a faster processing speed. The proposed method presented 

an area of (8n) FA a processing speed of (2n+2)DFA. 

The architecture of the proposed work uses simple adders 

and Carry Propagate Adders (CPAs) which presents the 

simple architecture and fewer hardware resources. The 

scheme proposed has a faster processing speed and 

computing time than the other schemes used in this study 

for different values of n. When n it becomes large in all 

schemes, the proposed scheme tends to be simpler and has 

less delay than the other schemes. The resulting outputs 

are shown in Fig. 2 and 3 respectively. 

Figure 3 and 4 show the performance comparison of 

the area and delay schemes of the proposed scheme 

with other known schemes. Figure 3 presents the area 

of the hardware architecture for the proposed scheme 

and other known methods used for comparison. With 

an increasing value of n in all schemes, the proposed 

scheme gets better hardware size. In Fig. 4, the delay 

of both the proposed and similar known schemes are 

compared. It can be realized that our proposed method 
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requires less memory in detecting and correcting 

multiple bits’ errors. The other known schemes used in 

this study present high memory that reduces the 

computational or processing speed for implementation. 

 

 

 

Fig. 3: Graph of proposed area with other existing works 

 

 

 

Fig. 4: Graph of proposed delay with other existing works 

 
Table 1: The residue vectors and hamming distances for residue digits’ error correction 

i y  ri y d(ri, y) 

  1 221 2,1,1,4,0,0 2,3,1,4,11,11 3 

  2 401 2,1,1,2,11,10 2,3,1,4,11,11 3 

  3 557 2,1,2,4,11,13 2,3,1,4,11,11 3 

  4 11 2,3,1,4,11,11 2,3,1,4,11,11 0* 

  5 1441 1,1,1,6,11,13 2,3,1,4,11,11 3 

  6 41 2,1,1,6,2,7 2,3,1,4,11,11 4 

  7 1061 2,1,1,4,8,7 2,3,1,4,11,11 3 

  8 275 2,3,0,2,2,3 2,3,1,4,11,11 4 

  9 1061 2,1,1,4,8,7 2,3,1,4,11,11 3 

10 245 2,1,0,0,11,7 2,3,1,4,11,11 4 
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Table 2: Comparison of various techniques and algorithm 

 Number of 

 detectable Schemes 

 and correctable error Error   Generalized 

Technique errors detection location Fixed latency Memory moduli set Output domain Iteration 

Amusa and Nwoye (2012) Multiple MRC Modulus projection Yes Yes No Integer High 

Tay and Chang (2015) Multiple Syndrome Syndrome check Yes Yes No Residue High 

Olabanji et al. (2016) Multiple CRT Double consistent check Yes No No Residue High 

Aremu and Gbolagade (2017) Multiple CRT Syndrome Yes Yes Yes Residue High 

Proposed Scheme Multiple CRT HD Yes Yes Yes Residue Low 

 
Table 3: Area and delay comparison 

Schemes  Area (FA)  Delay (DFA) 

Afriyie and Daabo (2018b) 11n +4 10n +7 

Pontarelli et al. (2008) 12n +12 24n +20 

Aremu and Gbolagade (2017) 12n +1 9n +2 

Proposed 8n 2n +2 

 

Conclusion 

In conclusion, this study has presented a novel and 

simple algorithm that has the capability in detecting and 

correcting multiple bit errors in RRNS architecture. The 

proposed method was compared to other existing 

literature in RRNS for the detection and correction of 

errors in digital channels. The existing schemes compared 

in this study provide complex and time-consuming 

algorithms. The realization was that, the proposed method 

considerably performs better and requires fewer bits than 

the other schemes used for comparison in this study. The 

proposed algorithm provides fewer iterations in the 

decoding and encoding process that reduces the cost of 

redundant moduli and high-speed elementary RNS 

operations. The proposed scheme incorporated the 

traditional CRT and the HD as a joint technique that 

simplified the hardware design and improved the 

processing speed as compared with other similar 

known schemes in RRNS. For the proposed algorithm, 

detecting and correcting multiple bit errors are only 

possible, however, overflow and sign detections seem 

to be more difficult. Some prior studies have shown 

that the use of AFT also known as the dynamic 

reservation technique in residues presents high 

reliability in CS than the PFT technique. 

For future work, the concentration of detection and 

correction of errors will be premised on optimization 

techniques to reduce the iteration steps to enhance the 

speed of the algorithm. Besides, a simple algorithm 

premised on the new CRT II for some special moduli set 

will be considered for both forward and reverse 

conversions to enhance the computational speed for 

detecting and correcting errors in RNS.  
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