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Abstract: Temporal consistency stands as a vital property in semantic video
retrieval. Few research studies can exploit this useful property. Most of the used
methods in those studies depend on rules defined by experts and use ground-
truth annotation. The Ground-truth annotation is time-consuming, labor
intensive and domain specific. Additionally, it involves a limited number of
annotated concepts and a limited number of annotated shots. Video concepts
have interrelated relations, so the extracted temporal rules from ground-truth
annotation are often inaccurate and incomplete. However, concept detection
score data are a huge high-dimensional continuous-valued dataset and
generated automatically. Temporal association rules algorithms are efficient
methods in revealing the temporal relations, but they have some limitations
when applied to high-dimensional and continuous-valued data. These
constraints have led to a lack of research used temporal association rules. So,
we propose a novel framework to encode the high-dimensional continuous-
valued concept detection scores data into a single stream of numbers without
loss of important information and to predict the neighbouring shots’ behavior
by generating temporal association rules. Experiments on TRECVID 2010
dataset show that the proposed framework is both efficient and effective in
encoding the dataset which reduces the dimensionality of the dataset matrix
from 130x150000 dimensions to 130x1 dimensions without loss of important
information and in predicting the behavior of neighbouring shots, the number
of which can be 10 or more, using the extracted temporal rules.

Keywords: Semantic Video Retrieval, Temporal Association Rules, Principle
Component Analysis, Gaussian Mixture Model Clustering, Expectation

Introduction

Tremendous growth in digital devices and digital
media has led to the capture and storage of a huge amount
of digital videos. As a result, an urgent need appears to
manage, analyze, automate and retrieve videos efficiently.
One of the most important subjects in video retrieval is
semantic video retrieval. Semantic video retrieval searches
and retrieves the videos based on their relevance to users’
requirements. Semantic video retrieval still represents a big
challenge to researchers, as bridging the gap between the
users’ views and the low-level features of videos represents
a complicated problem and requires a tremendous amount
of research. This is called the semantic gap; much research
has been done on bridging the semantic gap using various
methods and techniques, but it is still an open problem.
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Semantic video retrieval involves two aspects. One of
them concerns with the concept presence detection
according to the context concepts. The other aspect
concerns with temporal concept mining, which predicts the
temporal presence of certain concepts in neighboring shots,
so it can enhance or refute the presence of these concepts.

Temporal concept mining relies on the consistency of
the video shots (Geng et al., 2012; Liu et al., 2008).
Temporal concept rule mining may involve expert-made
rules, be based on statistical dependency tests, or use
information extracted from association rules. Temporal
association concept rules are extracted from ground-truth
annotation. However, ground-truth annotation involves a
limited number of annotated concepts, a limited number of
annotated videos, many missing values and binary values.
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This paper models and automates a framework to
reduce the volume of video concept detection score data
and to extract a compact representation of the temporal
concept rules. These rules predict the behavior of the
neighboring shots based on the current and the previous
shots’ behavior.

The results of our method are tested on the CU-
VIREO374 concept detection scores (Jiang et al., 2008).

The size of the detection score matrix may exceed
150000x300, which considers huge high-dimensional
matrix. Applying temporal association rule learning
algorithms on such a large matrix involves many difficulties
or is, in some cases, impossible. Some of these difficulties
include a long processing time, high space requirements,
the huge number of resulting association rules, rule
redundancy and the selection of rule pruning criteria.
Thus, most of the studies that apply temporal association
rule learning algorithms either use a small set of the
detection score data with specific concepts or use ground-
truth annotation. The major issue with using association
rule learning algorithms is that the association rules cannot
be applied on continuous values, i.e., the data should be
binary. Although much research has been done on
methods for discretizing or categorizing data to minimize
the loss of information when converting data into the
binary form, such methods also increase the data
dimensionality and do not prevent data loss.

To solve these difficulties, we apply Principle
Component Analysis (PCA) in our method to compress
the concept detection score matrix without loss of data.
Principal component analysis represents a form of
multidimensional scaling. It appears as a linear
transformation of the variables into a lower dimensional
space, which retains the maximal amount of information
about the variables. It considers as a common technique
for finding patterns in data of high dimension. It
transforms the correlated video concepts to a new set of
variables, the Principal Components (PCs), which are
uncorrelated and ordered so that the first few principle
components retain most of the variation present in all of
the original variables (Bishop, 2006).

Then, we cluster video shots using the selected
uncorrelated principle components, which contain most
of the data variation. More than 25 components can be
selected. Therefore, there is an urgent need to apply a
clustering algorithm that deals efficiently with high-
dimensional data. Our selected clustering technique is
the Gaussian Mixture Model (GMM) and its parameters
are estimated using the Expectation Maximization
algorithm (EM). GMM (Bishop, 2006) is also useful for
modeling the uncorrelated data. GMM is a parametric
probability density function that is represented as a
weighted sum of Gaussian component densities. GMMs
are commonly used as parametric models of the
probability distributions of continuous measurements or
features. After the clustering phase, we will have a
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compact stream of cluster numbers or symbols of length
N, where N represents the number of shots.

To extract temporal concept rules, we apply the
Sequential Pattern Discovery using Equivalence class
algorithm (SPADE) (Zaki, 2001). SPADE was
developed by Zaki in 2001. SPADE utilizes
combinatorial properties to decompose the original
problem into smaller sub-problems that can be
independently solved in the main memory using efficient
lattice search techniques and simple join operations. All
sequences are discovered in only three database scans.

This paper is organized as follows. In Section 2, the
different approaches of video retrieval especially semantic
video retrieval methods are reviewed. In Section 3, the
proposed framework is presented in detail. Experimental
results are reported in Section 4. Finally, Section 5 includes
conclusion and outline some goals for future work.

Related Work

It is time consuming to upload huge amounts of
multimedia content, especially videos, onto the web or even
just to store them on storage media. Therefore, the videos
need to automate, organize, manage and retrieve them.

Content-based video retrieval methods extract the low
level features from videos. Some of them concern with
shot boundary detection, key frame extraction (Bhat et al.,
2014) and feature extraction and analysis (Asghar et al.,
2014). However, the extracted low level features do not
cover all the user requirements that are represented in the
user queries.

Therefore, many semantic-based video retrieval
methods have been proposed to bridge the semantic
gap. However, this gap still represents a challenging
problem. Semantic video retrieval concerns with
deducing, reinforcing, or refuting the existence of
specific concepts using the context information and
concept relationships. These concepts are detected
using concept detectors. User perspectives contain an
infinite number of high level concepts and the concept
detectors can’t be constructed for this huge number of
high level concepts, for which constructing a concept
detector is an expensive process. Thus, concept
detectors are limited to a few selected concepts
(Hauptmann et al., 2007a; 2007b; Wei et al., 2008).

According to Hauptmann et al. (2007a) a limited
number of reliable concept detectors are constructed in
(Hauptmann et al., 2007a). It concludes that the video
retrieval systems that use a few thousand concept detectors
perform well, even though the individual concept detectors
have low detection accuracies (Hauptmann et al., 2007b).
The experiments on various concepts explain how to select
the set of concepts for which to construct concept detectors
(Lin and Hauptmann, 2006).

A Large Scale Concept Ontology for Multimedia
(LSCOM) is constructed and this effort is being led by
IBM, Carnegie Melon University and Columbia
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University with participation from Cyc Corporation
(Naphade et al., 2006). The Disruptive Technology Office
sponsored LSCOM, which was a series of workshops that
brought together experts from multiple communities to
determine multimedia concepts and their taxonomy
(Naphade et al., 2006).

The goal of LSCOM was to achieve a set of criteria
such as utility, coverage, observability, and feasibility
(Naphade et al., 2006).

There are two main challenges in semantic video
retrieval. The first challenge is to detect those concepts
that do not have detectors and the second challenge is to
improve the accuracy of concept detection. Researchers
in semantic video retrieval have tried to solve these two
challenges by modeling and representing the
relationships using ontologies (Ballan er al., 2010),
expert-made rules, association rules (Liu et al., 2008),
graphs (Geng et al., 2012; Jiang et al., 2012), etc.

Also, the inter-concept relationships are modeled
using ontologies that are based on the principle that
concepts do not appear in isolation but are correlated
with one another and the concept detection is improved
by utilizing such related concepts (Wei et al., 2008;
Ballan et al., 2010). This is called Context-Based
Concept Fusion (CBCF).

A graph diffusion technique refines the annotation of
semantic concepts (Jiang et al., 2012). Liu et al. (2008)
try to exploit the inter-concept association relationships
based on concept annotation of video shots to discover
the hidden association rules between concepts. These
association rules are generated using the Apriori
algorithm and are used to improve the detection
accuracies of concept detectors. Additionally, there are
other research works that are concerned with association
rules using (Yang and Hauptmann, 2006). However, they
depend on the ground-truth data, in which few concepts
are annotated and a limited number of video shots.

Our work is concerned with temporal concept detection.
The following are some research works concerning
temporal concept detection.

Temporally adjacent video shots usually share similar
visual and semantic content (Lin et al, 2012). A
thorough study of temporal consistency, defined with
respect to semantic concepts and query topics using
quantitative measures, is presented and its implications
for video analysis and retrieval tasks are discussed. It is a
preliminary analysis that focuses on the video temporal
consistency issue and thus focuses on the consistency of
adjacent shots, rather than shots in the same
neighborhood (Lin et al., 2012). Therefore, the limitation
of this work is its failure to consider the consistency of
video data beyond the adjacent shots. A CBCF method
called the Temporal Spatial Node Balance algorithm
(TNSB) is presented, which depends on a physical
model (Geng et al., 2012). This algorithm refines
concept detection scores using a concept fusion task,
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which depends on the spatial and temporal relationships
between concepts. Liu ez al. (2008) tests whether there is
temporal dependence among neighbouring shots using
statistical measurements.

Extracting temporal association rules from a huge
high-dimensional dataset has some drawbacks, such as
requiring a large amount of processing time, requiring a
large amount of memory space and necessitating the
extraction of a large number of association rules. Thus,
most previous research (Liu er al., 2008) has been
concerned with extracting temporal association rules
from either the ground-truth annotations or a small set of
concept detection scores. However, this leads to
inaccurate temporal association rules due to incomplete
and inaccurate data. Therefore, our proposed framework
extracts the temporal rules from a large number of
continuous high-dimensional data values.

Proposed Framework

The main goal of our proposed framework method is to:

e Compress concept detection scores without loss of
data, keep the inter-relationships between concepts and
preserve temporal relationships between video shots

e  Extract temporal rules for predicting the next shot
behavior, by which we mean that we predict the
probability of all concepts existence in the shot by
detecting the shot’s cluster, rather than predicting
the existence of a specific concept, as was done in
previous research (Liu et al., 2008)

Our proposed method consists of the following steps,
as showed in Fig. 1 (Geng et al., 2012):

Data Preprocessing
Data modeling using principle component analysis
to reduce its dimensionality
e Clustering shots with Gaussian mixture model and
EM algorithm for parameter estimation
e Temporal rules extraction process
algorithm

using  spade

We will explain each step in details in the following
subsections.

Data Preprocessing

As shown in Figure (Geng et al, 2012), the
preprocessing steps are as follows. This step includes
loading data and sorting rows according to video numbers
and shot numbers to assist in temporal rule detection in the
future steps. This step includes the following:

e Load detection scores from the files, where each file
represents the concept detection values for
unorganized video shots, into an MxN matrix
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e Append two columns to the matrix S, the entries of
which are the name and shot numbers for each video

e Sort the matrix S according to the video numbers
and shots numbers

Data Dimensionality Reduction Using Principle
Component Analysis (PCA)

In this stage, we transform and represent our data using
principle component analysis. The principle component
analysis identifies and finds patterns to reduce the
dimensionality of the dataset with minimal loss of
information. PCA reduces the dimensionality of our dataset,
which consists of a large number of interrelated concepts
(old variables), while retaining as much of the variation as
possible. PCA projects/transforms our concept space of
dimension N onto a new smaller subspace of uncorrelated
principle component variables, which are constructed as
linear combinations of the original concepts (variables),
with dimension L, where L<N (Bishop, 2006).

C represents the concepts’ detection score matrix, M
represents the number of video shots and N represents
the number of concepts, as shown in Equation (1):

@)

For i = 1,.,M shots, PCA transforms j = 1,..,.N
concepts (¢, ¢a,..,cy) into K = 1,..,P new uncorrelated
variables (Z), Z,.., Zp) called principle components, as
shown in Equation (2):

Z =¢,C +¢,C, ++¢,C,

Z,=¢,1C, +¢e,2C, ++e,PC, @)
Where:
Zx = Value or score of principle component K (of
reduced dimension)
C; = Value of the original (j) concept, of the original
dimension
ex = Weights or coefficients that indicate how much

each original concept contributes to the linear
combination used to form principle component K

The matrix notation is shown in Equation (3):

Z, =e,C' 3)

Where:
e, : The transposed eigenvector of the correlation matrix

corresponding to its kth largest eigenvalue
C" : The transposed vector of p concepts
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Concepts’ Detection Scores

1.Data Preprocessing

Concept Detection Scores’ Matrix

2.Data Dimensionality Reduction using Principle
Component Analysis

3. Shots’ Clustering using Guassian Mixture
Model and Expectation Maximization Algorithm

Compressed Data

‘ ‘ Clustered Data

4. Temporal Rules Extraction

I

Fig. 1: Framework components

The eigenvector gives a direction of the data and the
corresponding eigenvalue represents the variance of the
data values in that direction. All the eigenvectors of our
concept detection matrix are perpendicular. Thus, the
eigenvectors will be ordered according to their eigenvalues,
from highest to lowest. Then, we will represent the data
according to the new axes (p eigenvectors) obtained in
Equation (3). We then represent the data according to the
selected components (new axes) by the following general
formula in Equation (4):
Z=e'C' %)

The correlation matrix (Cor) is calculated from the
covariance matrix, where the correlation between ¢, and
¢, measures the strength and direction of the linear
relationship between two numerical variables X and Y.
The correlation equation is shown in Equation (5):

Cor(X,Y)=Cov(X,Y)/oxoy (®)]

Where:

Cor(X,Y) = The correlation between concept C, and
concept C,,

Cov(X,Y) = The covariance between C, and C,

Oy = The standard deviation of concept C,

Gy = The standard deviation of concept C,
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Cov(X,Y) is the covariance between ¢, and c,, which
is calculated as shown in Equation (6):

Z(x, =B, — Hy)
Cov(x,y) =2

— ©)
Where:

Ly = The mean values for concept C,

uy = The mean values for concept C,

X The detection value of concept X for shot i

Y, = The detection value of concept y for shot i

M = Number of video shots

The standard deviation is calculated as shown in
Equation (7):

Q)

Where:
ox = The standard deviation for concept X
x; = The detection score for shot i and concept X

px = The mean value for concept X
M = The number of shots

The correlation coefficient has several advantages
over the covariance for determining the strengths of
relationships:

e The covariance can take any value, while the
correlation is limited to values between -1 and +1.

e Because of its numerical limitations, the correlation
is more useful for determining how strong the
relationship is between two variables:
—The correlation does not have units. The

covariance always has units

—The correlation is not affected by changes in the

centers (i.e., means) or scales of the variables

Shots Clustering using Gaussian Mixture Models
and Expectation Maximization Algorithm

In this stage, the dimension-reduced data are clustered
using Gaussian Mixture Models (GMM) (Bishop, 2006)
and EM algorithm for parameter estimation.

Gaussian Mixture Models for Data Clustering

The dimension-reduced data that were obtained using
PCA have many dimensions, the number of which may
exceed 25 and most of the standard clustering algorithms
may not work with high-dimensional data due to the
curse of dimensionality (Bellman, 1957), causing the
distance measure to become meaningless. This problem led
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to new clustering algorithms for high-dimensional data,
such as subspace- and model-based clustering algorithms.

The Gaussian distribution or normal distribution is
one of the most important probability distributions for
continuous variables. It estimates uncertainty and
requires only two parameters, the mean and variance.
Therefore, it is preferable to other distributions and the
symmetry of its bell shape makes it preferable to most of
the popular models. The central limit theorem tells us
that the expectation of the mean of any random variable
converges to a Gaussian distribution (Rice, 2006).

GMM is a model-based clustering algorithm in which
each cluster can be mathematically represented by a
parametric Gaussian distribution. GMM is a parametric
probability density function represented as a weighted
sum of Gaussian component densities. GMM latent
variables or parameters are estimated from training data
using the iterative Expectation-Maximization (EM)
algorithm or Maximum A Posteriori (MAP) estimation
from a well-trained prior model.

The Gaussian probability density function of a single
dimension (univariate) is shown in Equation (8):

(-’
e 202

g(x|u.c?) = (8)

1
Joro
Where:

1 = Mean or expected value of the distribution
X = Random variable

o’ = Variance

o = Standard deviation

The multivariate Gaussian probability density
function is a generalization of the one-dimensional
(univariate) normal distribution to higher dimensions, as
shown in Equation(9):

1
g(x [ 4, ,Z J— (27[)D/z‘zi‘l\2

| ©)
exp {—z(x—ﬂl D INEE" )}

Where:

x = D-dimensional continuous-valued data vector
u; = D-dimensional mean vector

> = DxD covariance matrix

|| = Determinant of 3,
D = Number of dimensions

As stated before, a Gaussian mixture model stands as
a weighted sum of M component Gaussian densities; it is
shown in the following equation:

p(X|i)=ZW,g(XI#,,Z j

i=1 i

(10)
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Where:

N = GMM variants w;, W;, 2;i=1,...M

W; = Mixture weights for i = 1,..,.M

2 = Covariance matrix

L = Mean value of concept i

g(x| W, >.) = Component Gaussian densities, for i = 1...M

Each component Gaussian density is a D-variate
(multivariate) Gaussian function. The mixture weights

M
satisfy the constraint » i, =1.

i=1
Expectation Maximization Algorithm

There are many latent parameters variables, such as
mean vectors, covariance matrices and mixture weights
from all component densities, in the Gaussian mixture
model. These parameters are collectively represented by
A as shown in Equation (10).

The Expectation Maximization (EM) algorithm
estimates the parameters in Equation (10). The EM
algorithm is a powerful method for finding maximum
likelihood solutions for models with latent variables. The
EM algorithm is an iterative method to find maximum
likelihood or Maximum a Posteriori (MAP) estimates of
parameters in statistical models. The EM iteration
alternates between performing an Expectation (E) step
and a Maximization (M) step. The basic idea of the EM
algorithm is, beginning with an initial model, to estimate
a new model. The new model then becomes the initial
model for the next iteration and the process is repeated
until some convergence threshold is reached. During
each EM iteration, there are set of re-estimation formulas
are used, which guarantee a monotonic increase in the
model likelihood values, as found in (Jiang et al., 2008).

Temporal Rules Extraction

In the final stage, the temporal rules are extracted from
the stream of cluster numbers that resulted from the
Gaussian mixture model clustering algorithm being applied
to the data that were dimension reduced using PCA.

The SPADE algorithm is used in this stage. The
SPADE  (Sequential  Pattern  Discovery  using
Equivalence classes) algorithm is one of the Sequential
Pattern mining algorithms. The sequential pattern mining
problem was first addressed in (Zaki, 2001).

The SPADE algorithm uses a vertical id-list database
format, in which we associate with each sequence a list
of objects in which it occurs. Then, frequent sequences
can be found efficiently using intersections on id lists.
The method also reduces the number of database scans
and therefore also reduces the execution time.

The first step of SPADE computes the frequencies of
1-sequences, which are sequences with only one item.
This is done in a single database scan. The second step
consists of counting 2-sequences. This is done by
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transforming the vertical representation into a horizontal
representation in memory and counting the number of
sequences for each pair of items using a dimensional
matrix. Therefore, this step can also be executed in only
one scan. Subsequent n-sequences can then be formed by
joining (n-1)-sequences using their id lists. The size of
an id list is the number of sequences in which an item
appears. If this number is greater than minsup, the
sequence is a frequent one. The algorithm stops when no
more frequent sequences can be found. The algorithm
can use either a breadth-first or a depth-first search
method for finding new sequences (Zaki, 2001).

Experimental Results and Discussion
Experimental Setup

The proposed framework is performed on an Intel
core(TM) i7-2630 QM CPU @ 2.00 GHZ 2.00 GHZ
processor with 6 gigabyte RAM on a 64-bit operating
system (Windows 7).

All our proposed framework components
implemented using R (Team, 2014).

are

Dataset

The dataset used in our proposed framework is the
CU-VIREO374 TV10 set of detection scores (Liu et al.,
2008). It contains 130 concepts, detected for 150,000
video shots; Table 1 contains a sample of these data,
sorted according to video number and shot number. The
CU-VIREO374 TV10 detection score dataset consists of
the latest detection scores provided by CU-VIREO374.
This dataset is based on models retrained on the
TRECVID 2010 development set. The annual NIST
TRECVID video retrieval benchmarking event provides
benchmark datasets for performing system evaluation. It
uses multiple bag-of-visual-words local features
computed from various spatial partitions and it
incorporates the DASD algorithm (Jiang et al., 2012).

The used Dataset Versus other Datasets

The detection score datasets can be obtained from
Mediamill-101, Columbia374, Vireo374, or CU-
VIREO374. However, Media Mill-101 includes 101
more concept detectors than TRECVID 2005/2006.
Columbia374 and Vireo374 include 374 detectors for
374 semantic concepts selected from the LSCOM
ontology (Naphade et al., 2006). Columbia374 depends
on three types of global features and Vireo374
emphasizes the use of local key point features. As they
work using on the same concepts, their output format is
unified and the detection scores of both detector sets are
fused to generate the CU-VIREO374 detection scores
(Jiang et al., 2008). CU-VIREO374 appears the most
suitable dataset for our framework because it detects up
to 374 concepts for a huge number of video shots (up to
175,000 video shots).
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Table 1: Sample data of CU-VIREO374 TV 10 sorted according to video and shot number (Jiang et al., 2008)

video | shot | Actor Adult Airplane | Airplane_Flying | Anchorperson Animal

1| 3174 1 0.02955 0.08133 0.00680 0.00514 0.00707 0.02422

2| 3175 1 007044 0.15214 0.00391 0.00307 0.06600 0.02248

3| 317% 2 0.03322Z 011826 001114 0.00871 0.04732 001324

4| 3175 3 0.063507 0136874 0.00901 0.00698 0.02053 001811

3| 3175 4 0.05800 0.1993% 0.00516 0.00397 0.05233 0.01920

6| 3175 5 0.04340 013429 000262 000128 0.01503 0.01768

#| 3175 6 0.03776 | 0.07470 0.00330 0.00250 0.01019 001780

8| ‘3175 7 0.02566 0.05156 0.00290 000219 0.01220 004312

5| 3178 8§ 0.06333 0.17284 0.00504 0.00436 0.05661 0.02146

10| 3175 9 004936 007235 000161 oo00z7 001454 001197
11| 3176 1 003171 005220 0.00898 0.00680 0.00761 0.00698
12| 3176 2 0.04519 0.04666 0.01405 0.01004 0.00077 0.02020
13| 3176 3 0.03868  0.04400 0.00831 0.00579 001413 0.00891
4| 3176 4 0.04402 005513 0.00919 0.00653 0.01900 000323
15| 3176 5 004510 006008 0.01241 0.00853 0.01155 0.00853
16| 3176 6 0.06850 0.10478 0.01273 0.00922 0.01469 0.03230
17| 3176 7 0.03532 002806 0.01035 000702 0.00763 0.04562
18 & 0.02800 0.04692 002114 0.01446 0.01190 0.02245

3176
4| “r‘lf

Showing 1 to 10 of 144,088 entries

Compressed Dataset

The CU-VIREO374 TVI10 dataset contains the
detection scores for 130 concepts for 150,000 video
shots. This dataset is loaded into a matrix of size
150000x132. The entries of the additional two columns
contain the video number and the shot number in the
specified video. These columns are very important for
temporal rule detection in the final step. The allocated
memory for the original dataset matrix is 161,23,5784
bytes and contains 19,138,416 elements. This matrix is
unsuitable for use with sequential pattern mining
algorithms such as the SPADE algorithm. Thus, we have
to compress this dataset without losing the relationships
between concepts.

Therefore, we transform the CU-VIREO374 TV10
dataset into a compressed dataset using principle
component analysis. Principle component analysis
reduces the dimensionality of the CU-VIREO374 TV10
data, which contain a large number of concepts, by
representing them with a small selected number of
variables without losing the important data. Principle
component analysis represents our data with new
dimensions, called principle components. The number of
produced principle components is equal to the original
number of concepts. These principle components are
sorted according to the variance of the data. Thus, the
first set of components contains the most important
information about our data. In our implementation, we
select the first 25 principle components, which contain
92% of the variance of our data, as shown in Table 2.

Our new compressed dataset is represented using
the first 25 principle components, as shown in Table
3. Table 3 shows the first 11 PCs for the first 13 shots.
The size of the new compressed matrix is 150,000x25

Asian_People

66

Athlete Basketball Beach Beards- | Bicycles | Bit
001219 007381 0.00633 0.05799 004970 001519 =
0.01936 000781 0.00281 0.02278 0.07685 0.01305 !
0.01687 0.03193 0.00327 0.03660 0.06727 0.03760
001425 0.04160 0.00529 005281 008734 005856
0.01978 0.00796 0.00273 0.01790 007223 001750
0.019204 0.03080 0.00242 0.03363 0.04265 0.01542
0.01230 0.04484 0.00292 0.03776 0.03500 0.00688
0.00815 0.02012 0.00210 0.07666 0.02160 0.00473
0.02137 0.00716 0.00285% 0.01782 0.10654 001611
001117 000373 0.00063 000527 003822 000802
001174 0.00740 0.00177 0.00230 0.03395 0071838
0.01176 0.0025%2 0.00203 0.00315 0.03742 002938
0.00952 0.00225 0.00249 0.00195 0.03310 007048
0.01272 0.00127 0.00152 0.00166 0.04397 0.01471
001007 0.00182 000188 000234 003978 001717
0.0165% 0.00416 0.00269 0.00410 0.08811 002145
0.00677 0.00206 0.00188 0.00220 0.01264 002113
0.00990 0.00195% 0.00136 0.00355 0.04035 003175 _
¥
and it consists of 3,750,000 elements and allocates

37,118,776 bytes.
Clustered Data

Each video consists of a consistent set of shots and
each shot consists of a set of concepts; each concept is
detected by a concept detector. Therefore, each shot is
associated with a set of standardized concept detection
scores. We cluster shots using a Gaussian mixture model
clustering algorithm (Berge ef al., 2012) and each shot is
grouped into a cluster. The dimension reduced data will
be categorized into 20 clusters using the Gaussian
mixture model clustering algorithm. Each cluster
represents the shots behavior category. Finally, we
obtain a stream of cluster numbers; Table 4.

Temporal Rules

In this final step, we extract temporal rules from the
clustered data. The SPADE algorithm is used to extract
temporal rules. The SPADE algorithm parameters are
support = 0.09 and max window size = 10. The matrix
input into the SPADE algorithm is as shown in Table 5.
In Table 5, sequence id represents the video number;
event id represents the shot number in the current video;
size represents the number of items; and items represent
the cluster number of the current shot. The extracted
temporal rules are shown in Table 6. The first temporal
rule is 20->16->20 this rule indicates that if we have two
consecutive shots in the video and their clusters numbers
are as the following 20 and 16, then the fourth shot
cluster is 20 the temporal rules help in concludes the
missing shot behavior by deducing its cluster number
according to the suitable rule then we take the cluster
center values to be the missing shot PCs values.
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Table 2: The first 31 princi.ple components
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CumuTative Proportion

Standard deviation
Proportion of variance
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Standard deviation
Proportion of variance
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Standard deviation
Proportion of variance
Cumulative Proportion

Standard deviation
Proportion of variance
Cumulative Proportion

Standard deviation
Proportion of variance
CumuTative Proportion
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o oo

Comp.1
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9556479 4.7657131 3.08260205 2.69

Comp. 3

2728442 0.1747079 0.07309566 0.05

comp.7
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Comp.12
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Comp.17
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Table 3: The first 11 principle components of the first 18 shots
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Showing 1 to 19 of 144 288 entries
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Table 4: Clustered shots

(45 £ =Y L %]

=

18
19

Showing 1 to 19 of 144,088 entries

Video_no | Shot_no  Cluster_no

3174
3175
3175
3175
3175
3175
3175
3175
3175
3175
317a
3176
3176
3176
3176
3176
3176
3176
317a

1

— D Ga - WA e L P —

Cd =l O WA e A

g

14
7

e I I = = R« B |

20
20
20

18
20
20
20
18

Table 5: The prepared temporal data to SPADE algorithm

W

&

sequencelD
T4
37s
3175
3N7s
3175
37s
3175
37
3175
375
3176

eventiD
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Table 6: The generated temporal rules

sequence support
106 | <{8}{13}Li8]= 0.1642610
107 | <{131{8}{8)> 0.1818752
108 | <{11}{8}1{8}> 0.1007942
109 | <{8}{10}L{8}= 0.1308601
110 | <{10}{8}{8)> 0.1355123
111 | <{gligkighLisl= 0.1136825%
112 <{o}islislisl= 0.1345580
113 | <{8}{o}iglig} 0.1201000
114 | <{81i8Li0}i8}18)> 0.1033043
115 | <{81i8Li8Li8k> 0.2006442
116 | <{81i71i8Li8)> 0.1226281
117 | <{71i81Li8Li8)> 0.1205470
118 | <{31iskiglLisl> 0.1079506
119 | <{8li19Li8Li8k 0.1326404
120 <{191i8hLi8Li8k> 0.1469641
121 ={8L{13}{8}{8}= 0.1263271
122 | <{13}{8}Li81 i8> 0.1282357
123  <{8li10Li8Lisk 0.1006789
124 | <{10%1i8Li8Li8k> 0.1077180

Showing 106 to 124 of 350 entries

Conclusion and Future Work

The proposed framework aims to reduce the huge
size of the concept detection score matrix without loss of
concept relationships and to produce a helpful set of
temporal rules for the shots. The resulting temporal rules
aim to predict neighbouring shots, the number of which
may be 10 or more, according to the maximum window
size parameter value in the SPADE algorithm. Using the
resulting temporal rules, we can predict the clusters
values of future shots representing the shot behaviour.
These rules refine our clustered dataset to be more
accurate and helpful in semantic video retrieval.
Additionally, they help in deducing missing shots.
Although principle component analysis is efficient in
reducing data dimensionality without loss of information
on the relations between the variables in the dataset, the
resulting principle components are incomprehensible to
the normal user. Thus, in future work, we will use big
data  processing techniques to extract more
comprehensible temporal rules that are more easily
understood by the unqualified user.
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