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Introduction 

A Lie algebra g (Erdmann and Wildon, 2006; 
Humphreys, 1978) is a vector space over a field K with 
an associated bilinear map [., .]: g × g  → g, such that the 
following hold: 
 

• [x; x] = 0 for all x ∈ g 

• [x; [y; z]] + [y; [z; x]] + [z; [x; y]] = 0 for all x; y; z ∈ g 

 
The latter axiom of the above definition is called the 

Jacobi Identity. The idea of this axiom is to be a 
replacement for associativity, as we do not have that a 
Lie algebra is an associative algebra. We refer to this 
bilinear map [.,.] as the Lie bracket of g. Let K be any 
field and let gl(n; K) be the vector space of all n × n 
matrices defined over K. Then gl(n; K) is a Lie algebra 
with Lie bracket given by: 
 

[ ] ( ); ; ; ;x y xy yx x y= − ∀ ∈gl n K  (1) 

 

i.e., the commutator bracket. The special linear Lie 
algebra of order n (denoted sln(K) or sl(n, K) is the Lie 
algebra of n × n matrices with trace zero and with the Lie 
bracket given by (1). This algebra is well studied and 
understood and is often used as a model for the study of 
other Lie algebras. The Lie group that it generates is the 
special linear group. For n = 2, the space: 
 

( ) ( ) ( ){ } ( )2
; 0 ;= ∈ = ⊂s tr ssl gl n gl nK K K  

 

be the vector subspace of gl(n; K) whose elements have 
trace 0 where K is any field. Now if x; y∈sl2(K) then we 
will have [x; y] = xy − yx × sl2(K) hence the commutator 
brackets gives sl2(K) a Lie algebra structure, we denote 
sl2(K) by sl2 for simplicity. As a vector space it can be 
shown that sl2(K) has a basis given by: 

0 1

0 0

0 0
,

1 0

1 0
.

0 1

e

f

h

 
=  
 

 
=  
 

 
=  

− 

 

 

These elements have the following Lie bracket relations: 

 

[ ]
[ ]
[ ]

, ,

, 2 ,

, 2 .

e f h

h f f

h e e

=

= −

=

 

 

The Lie algebra sl2(R) plays an important role in the 
study of chaos and fractals, as it generates the Mobius 
group S L(2, R), which describes the automorphisms of 
the hyperbolic plane, the simplest Riemann surface of 
negative curvature; by contrast, S L(2, C) describes the 
automorphisms of the hyperbolic 3-dimensional ball. 
The simplest non-trivial Lie algebra is sl2(C). Also, the 
sl2 can be defined as the *-Lie algebra with three 
generators B

−

,B
+
, M and relations: 

 

( ), , , 2 , , .
∗

− + ± ± − ∗   = = ± =   B B M M B B B M M  

 

Let g1; g2 be Lie algebras defined over a common field 

K. Then a homomorphism of Lie algebras ϕ: g1 → g2 is a 

linear map of vector spaces such that ϕ([x; y]) = [ϕ(x); 

ϕ(y)], i.e., it preserves the Lie bracket. A representation 

(Erdmann and Wildon, 2006; Humphreys, 1978) of a Lie 

algebra g is a pair (V; ϕ) where V is a vector space over K 

and ϕ: g → gl(V) is a Lie algebra homomorphism. 

On the other hand, the language of q calculus (Abdi, 

1962; Adams, 1929; Gasper and Rahman, 1990; Jackson, 
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1910; Leeuwen and Maassen, 1995) appeared. The 

natural number n has the following q-deformation: 

 

[ ] [ ]2 1
: 1 , 0 0.

n

q q
n q q q with

−

= + + + + =⋯  

 

Also, many important algebras was deformed using 

the q-calculus. Our question is, what is the q- analogue 

of the the sl2? 

As a response of this question, in this study, we 
introduce the q- deformation of the sl2 Lie algebra 
(denoted by q-sl2) is introduced. Moreover, as 
application, we study the heat and wave equations 
associated to the genrators of the q-sl2. 

The paper is organized as follows. In Section 2, we 

introduce the q-sl2 and we give its representation. In 

Section 3, we study the heat equations associated to the 

generators of the q-sl2. In Section 4, we study the wave 

equations associated to the generators of the q-sl2. 

q-sl2 

Definition 2.1 

For q∈(0, 1), the q-sl2 is by definition the Lie algebra 

spanned by the operators A, B and C such that: 

 

[ ]
[ ]
[ ]

2

2

, 2

, 2

,

A C q A

B C q B

A B C

= −

=

=

 

 

Theorem 2.1. (Representation of the q − sl2) 

Let q ∈ (0, 1), then we have: 

 
2

2

, 2 ,

, 2 ,

,

q q q

q q q

q q q

A C q A

B C q B

A B C

  = − 

  = 

  = 

 

 

where, Aq, Bq and Cq are given by: 

 
2

2

0 0 0 0
, ,

0 0 0 0
q q q

q q
A B C

q q

    
    

−     
 

 

Proof 

We have: 

 
3

0

0 0
q q

q
A C

 −
 
 

 

and: 
 

3
0

.
0 0

q q

q
C A

 
 
 

 

 

Then, we get: 

 
3

2

0 2
,

0 0

2 .

q q

q

q
A C

q A

 −
  =   

 

= −

 

 

On the other hand, we have: 

 

3

0 0

0
q q

B C
q

 
=  
 

 

 

and: 

 

3

0 0
.

0
q q

C B
q

 
=  

− 
 

 

Then, we get: 

 

3

2

0 0
,

2 0

2 .

q q

q

B C
q

q B

 
  =   

 

=

 

 
Finally, we have: 

 
2

0

0 0
q q

q
A B

 
=  
 

 

 
Then, we get: 

 
2

2

0
,

0
q q

q

q
A B

q

C

 
  =    − 

=

 

 
which completes the proof. 

Heat Equations Associated to the Generator 

of q-sl2 

In this section, we will study the following three 

equations: 

 

0

0 0 0

0

, , .

q
ut A ut
t

X
u X Y

Y

∂
=∂

   = ∈ 
  

ℂ

 (2) 



Sami H. Altoum / American Journal of Applied Sciences 2018, 15 (5): 261.266 

DOI: 10.3844/ajassp.2018.261.266 

 

263 

0

0 0 0

0

, , .

q
ut B ut
t

X
u X Y

Y

∂
=∂

   = ∈ 
  

ℂ

 (3) 

 

0

0 0 0

0

, , .

q
ut C ut
t

X
u X Y

Y

∂
=∂

   = ∈ 
  

ℂ

 (4) 

 

Theorem 3.1 

For q∈(0, 1), the solution of the heat Equation (2) is 

given by: 

 

0 0

0

t

qY t X
u

Y

 +
=  
 

 

 

Proof 

Let ut given by: 

 

.

t

t

t

X
u

Y

 
=  
 

 

 

Then, we get: 

 

.
0

t

q t

qY
A u

 
=  
 

 

 

Therefore, we obtain: 

 

0

t t

t

t

t

X qY

Y

∂
=∂


∂ =

∂

 

 

which implies that: 

 

0

t t

t

t

X qY

Y Y

∂
=∂

 =

 

 

This gives: 

 

0 0

0

t

t

X qY X

Y Y

 = +


=
 

 

which completes the proof. 

Theorem 3.2 

For q ∈ (0, 1), the solution of the heat Equation (3) is 

given by: 

 

0 0

0

t

X
u

qX t Y

 
=  

+ 
 

 

Proof 

Let ut given by 

 

.

t

t

t

X
u

Y

 
=  
 

 

 

Then, we get; 

 

0
.

q t

t

B u
qX

 
=  
 

 

 

Therefore, we obtain: 

 

0
t

t t

X
t

Y qX
t

∂
=∂


∂ =

∂

 

 

This gives: 

 

0t

t t

t

X X

Y qX

 =

∂

=∂

 

 

which implies that: 

 

0

0 0

t

t

X X

Y qX t Y

 =


= +
 

 

Hence, we complete the proof. 

Theorem 3.3 

For q ∈ (0, 1), the solution of (4) is given by: 

 
2

2

0

0

q t

t
q t

X e
u

Y e
−

 
 =
 
 

 

 

Proof 

Let q ∈ (0, 1) and ut given by: 
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.

t

t

t

X
u

Y

 
=  
 

 

Then, we get: 

 
2

2
.

t

q t

t

q X
C u

q Y

 
=  

− 
 

 

Therefore, we obtain: 

 

2

2

t t

t t

X q X
t

Y q Y
t

∂
=∂


∂ = −

∂

 

 

which implies that: 

 
2

2

0

0

q t

t

q t

t

X X e

Y Y e
−

 =


=

 

 

This completes the proof. 

Wave Equations Associated to the 

Generators of q-sl2 

In this section we are interested in the study of three 

wave equations associated to Aq, Bq and Cq. 

Theorem 4.1 

For q∈(0, 1), the solutions of the following wave 

equation: 

 
2

2

0

0 0 0

0

, ,

t q t
u A u

t

X
u X Y

Y

 ∂
=

∂
   = ∈   

ℂ

 

 

are of the form: 

 

3 2

0 0

0

1 1

, , .6 2
t

qt Y qt t X
u

t Y

α β
α β

α

 
+ + + = ∈

  + 

ℂ  

 

Proof 

Let ut given by: 

 

.

t

t

t

X
u

Y

 
=   
 

 

 

Then, since we have: 

0

t

q t

qY
A u

 
=  
 

 

 
We get: 

 
2

2

2

2
0

t t

t

X qY
t

Y
t

 ∂
=∂


∂ =

∂

 

 
which implies that: 
 

2

2

0
,

t t

t

X qY
t

Y t Yα α

 ∂
=

∂
 = + ∈ ℂ

 

 

This gives: 

 

2

0

0

2

,

t

t

X qt Y qt
t

Y t Y

α
β

α αβ

∂
= + +

∂
 = + ∈ ℂ

 

 

Then we get: 

 

3 2

0 0

0

1 1

6 2

,

t

t

X qt qY t t X

Y t Y

α β

α αβ


= + + +


 = + ∈ ℂ

 

 

This completes the proof. 

Theorem 4.2 

For q∈(0, 1), the solutions of the following wave 

equation: 

 
2

2

0

0 0 0

0

, ,

t q t
u B u

t

X
u X Y

Y
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=

∂
   = ∈   

ℂ

 

 

are of the from: 

 

0
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0 0

, ,1 1
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t

t X

u
qt X qt t Y

α

α β
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 +
 = ∈
 + + + 
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Proof 

Let ut given by: 
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t
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t

X
u
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=   
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Then, since we have: 
 

0

q t

t

B u
qX

 
=  
 

 

 
We get: 

 
2

2

2

2

0
t

t t

X
t

Y qX
t

 ∂
=∂


∂ =

∂

 

 
 which implies that: 
 

2

2

0
,

t t

t

Y qX
t

X t Xα α

 ∂
=

∂
 = + ∈ ℂ

 

 
This gives: 

 

2

0

0

2

,

t

t

Y qt X qt
t

X t X

α
β

α αβ

∂
= + +

∂
 = + ∈ ℂ

 

 
Then, we get: 

 

3 2

0 0

0

1 1

6 2

,

t

t

Y qt qX t t Y

X t X

α β

α αβ


= + + +


 = + ∈ ℂ

 

 
This completes the proof. 

Theorem 4.3 

For q∈(0, 1), the solution of the following wave 

equation: 
 

2

2

0

0 0 0

0

, ,

t q t
u C u

t

X
u X Y

Y

 ∂
=

∂
   = ∈   

ℂ

 

 
is given by: 

 

0

0

.

qt

t iqt

X e
u

Y e

 
=  
 

 

 

Proof 

Let q∈(0, 1) and ut given by: 

 

t

t

t

X
u

Y

 
=   
 

 

Then, since we have: 
 

2

2

t

q t

t

q X
C u

q Y

 
=  

− 
 

 
We get: 

 
2

2

2

2

2

2

t

t t

q X
t

Y q Y
t

 ∂
∂

∂ = −

∂

 

 
which gives: 
 

0

0

qt

t

iqt

t

X X e

Y Y e

 =


=
 

 
This completes the proof. 

Remark 1 

In this study we introduced the q-sl2. A q-

deformation of some nuclear algebras of operators acting 

on space of holomorphic functions on a q-deformed 

complexification of real nuclear space can be studied and 

we expect to developp a new q-deforemed white noise 

theory to overcome the renormalisation problem, 

(Altoum et al., 2017; Ettaieb et al., 2012; 2014a; 2014b; 

2016; Ouerdiane and Rguigui, 2012; Rguigui, 2015a; 

2015b; 2016a; 2016b). 
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