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Abstract: In the case of an existing limited capacity of the system called 

required system capacity, in this study a new method is presented to 

determine the disjoint paths to send data from the source to the sink. 

System reliability is evaluated as the probability that a specified amount of 

data can be transmitted from a source to a sink through two disjoint paths, 

subject to a time threshold and a required capacity. In addition, we study 

the effect of using the proposed method on the reliability evaluation in 

comparison with other previous methods.  
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Introduction 

The QPP is used to find a path that has the minimum 

transmission time to send a specified amount of data 

from the source to the sink node (Chin and Chen, 1990; 

Chen and Hung, 1993). All pairs quickest problem has 

been solved in (Lee and Papadopoulou, 1993). If the 

quickest paths are required to go through a specified 

path, then the restricted problem is called the constrained 

QPP (Chen and Hung, 1994). Taking into account the 

lead-time and the capacity of each arc (Martins and 

Santos, 1997), the problem is solved as a bicriteria path 

problem, (Sedeno-Noda and Gonzalez-Barrera, 2014). In 

addition, Lin (2009a) proposed a method based on 

Monte-Carlo simulation to solve the quickest path flow 

network reliability problem. 

The QPP has been extended to the stochastic-flow 

network by (Lin, 2003), an algorithm proposed to 

evaluate the system reliability of a SFN with time 

consideration. While in (Lin, 2009a), the system 

reliability has been evaluated under time constraint. In 

this case, the data are transmitted through two disjoint 

paths. Lin (2009b) presented an algorithm to determine 

the optimal routing policy with the highest system 

reliability. Lin (2010) proposed an algorithm to generate 

all minimal system states fulfilling the demand, time and 

budget constraints; then the system reliability is 

evaluated in terms of such system states. The network 

reliability has been evaluated in the case of sending units 

of data through a number of MPs simultaneously under 

both time and budget constraints (Lin, 2011a). 

Moreover, they evaluated network reliability according 

to the spare routing. In order to reduce transmission 

time, in (Lin, 2011b), a problem of transmitting data 

through multiple disjoint minimal paths simultaneously 

was presented. In (Yeh, 2015), an algorithm based on 

depth-first-search to solve the quickest path reliability 

problem was proposed. In addition, in (El Khadiri and 

Yeh, 2016), a method based on Monte–Carlo simulation 

to solve the quickest path flow network reliability 

problem was proposed. The required system capacity 

(Hassan, 2012) has been extended in (Aggarwal et al., 

1982) to solve the QPP in a stochastic flow network. 

Furthermore, the system reliability has been evaluated 

under time threshold and system capacity constraint. 

Previous studies have evaluated the system reliability 
of an SFN network according to a given demand under the 

time constraints (Sedeno-Noda and Gonzalez-Barrera, 
2014; Lin, 2003; 2009a; 2009b; 2010; 2011a; 2011b; 
Yeh, 2015; El Khadiri and Yeh, 2016; Yeh et al., 2013; 
Jane and Laih, 2017). However, these studies have not 
considered the case of the required system capacity or 
the system with limited capacity. Therefore, the main 

purpose of this paper is to study the QPP in an SFN in 
the case of sending data simultaneously through two 
DMPs under required system capacity. 

The required system capacity has been used to 
determine the available disjoint paths to send a 
specified amount of data from the source node to the 

sink node. Hereby, the set of solutions can be obtained 
and the system reliability can then be computed in 
terms of these solutions. The algorithm presented by 
Lin (2003) can be modified to exploit the idea of 
using the required system capacity constraint to 
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determine the available disjoint paths. The same 
technique can be used to obtain the set of solutions. 

 The paper is organized as follows. In section II, the 

formulation of the problem is presented. System 

reliability evaluation is given in section III. In section 

IV, the proposed algorithm to generate all solutions, 

called Algorithm I is presented. In section V, Illustrative 

examples are presented to show the efficiency of the 

proposed algorithm. The computational time of the 

proposed algorithm is presented in section VI. An 

important Lemma that can be used to speed up 

Algorithm I is given in section VII. In section VIII, both 

the discussion and comparison are presented. In section 

IX, we provide the conclusion. 

Problem formulation 

The transmission time TPj of a path Pj is given by: 

 

{ }
1

| /
n

j k k jk
TP l a P d v

=

= ∈ +   ∑  (1) 

 

where, v is the smallest integer such that TPj ≤ T, T is the 

time threshold. 

The maximum capacity CPj of a path Pj is given by: 

 

{ }|
k

j k jCP Min M a P= ∈  (2)  

 

The path Pj is said to be the available path under the 

required system capacity if its maximum capacity is 

greater than or equal to the required system capacity, i.e., 

when the condition CPj ≥ Cs is satisfied. Then the set of 

available paths ρ is given by: 

 

{ }| , 1,2, ,
j j

P CP Cs j npρ = ≥ = …  (3) 

 

If no path satisfies the condition CPj ≥ Cs, then ρ = ∅. 

From the set ρ, we can construct the set of disjoint 

paths ϕ, where: 
 

( ){ }, |
i j i j
P P i j and P Pϕ ρ= ∈ ≠ ∩ =∅  (4) 

 

The transmission time of sending d units of data 

simultaneously through two disjoint paths Pi and Pj 

under capacity vector X is ψ(di, X, Pi) and ψ(dj, X, Pj) 

respectively, where di + dj = d such that CPi ≥ Cs and CPj 

≥ Cs. Then, ψ(di, X, Pi) = 
1

|
n

i

k k ik

d
l a P

Cs
=

 
+  
 

∈∑  and ψ(dj, 

X, Pj) = 
1

|
n j

k k jk

d
l a P

Cs
=

 
+  
 

∈∑ . Let Γ be the set of 

candidate solutions X under the above conditions and let 

Γmin = {X|XisaminimalineΓ}. Then, X∈Γmin  is called a 

(d,T, Cs)-DMPs throughout this paper. For simplicity 

purposes, let Ti and Tj be denoted to ψ(di, X, Pi) and ψ(dj, 

X, Pj) respectively. 

Reliability Evaluation 

If X
1
, X

2
, …, X

b
 are all (d, T, Cs)-DMPs obtained, 

then the system reliability Rd,T,Cs is given by: 

 

{ }{ }, , 1
Pr |

b
i

d T Cs i
R Y Y X

=

= ≥∪  (5) 

 

The above formula can be calculated by the 

inclusion-exclusion rule (Janan, 1985; Locks, 1980) state 

space decomposition (Alexopoulos, 1995) and Recursive 

Sum of Disjoint Products (RSDP) (Zuo et al., 2007), 

used in this study.  

Proposed Algorithm to Generate all (d,T, 

Cs)-DMPs 

The following algorithm uses required value of the 

Cs to determine the available MPs and then generate all 

(d, T, Cs)-DMPs.  

 

Input: A stochastic-flow network and minimal paths, 

demand level, time limitation and system 

capacity constraint. 

Output: All the (d, T, Cs)- DMPs. 

 

Algorithm I: Generate all (d, T, Cs)-DMPs. 

 1. Input the paths Pi, i = 1,2,3,…,ω, demand value 

and the Cs value. 

 2. Calculate the minimum capacity for each path 

mcpi, CPi = Min{Mk|ak∈pi}. 

 3. Determine all paths that satisfy the condition 

CPi≥Cs.  

 4. Construct the set of available disjoint paths ϕ = 

{(Pi, Pj)|i ≠ j and Pi ∩ Pj = ∅} from the paths 

generated in step 3. 

 5. For each disjoint pair Pi and Pj in ϕ do the following: 

  5.1. Find the largest demands 
i

d and 
j

d that can be 

assigned to Pi and Pj respectively. Such that: 

 

{ }
1

| /
n

ik k i s

k

l a p d C T
=

 ∈ + ≤ ∑  

 
   and: 
 

{ }
1

| /
n

jk k j s

k

l a p d C T
=

 ∈ + ≤ ∑  

 

  5.2. Generate the set of solutions: 

 

( ){ }, | ,i ji j i j i j
d d d d d d and d d dβ = ≤ ≤ + =  
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  5.3. For all solutions in β calculate the 

transmission time for each path: 

 

{ }
1

| /
n

i k k i i s

k

T l a p d C
=

= ∈ +   ∑  

 

  and: 
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  5.4. If Ti ≤ T and Tj ≤ T, then generate the capacity 
vector X

q 
= (x1, x2,…, xk,…, xn) as follows: 

 

0

k i j

k

Cs if a P P
x

Otherwise

∪∈
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  5.5. Repeat steps 5.3 and 5.4 to generate all 

solutions. 

  5.6. Remove the solutions that are not lower. 

 6. Evaluate the system reliability for the generated 

lower capacity vectors. 

 7. End 

 

Illustrative Examples 

A. Five Nodes Network Example 

The network of Fig. 1 has five nodes and eight arcs, 

(Lin, 2009a). The information of each arc is given in 

Table 1. The Minimal paths and their maximum capacity 

are given in Table 2. The available disjoint minimal 

paths corresponding to each value for Cs, the available 

values for (d1,d2), the corresponding (d,T,Cs)-DMP 

solutions and Rd,T,Cs are given in Table 3. The best 

solutions found are given in Table 4. The demand d 

equals to 8 and the time limit is 9 for this example. 

 

 
 
Fig. 1: Computer network 

Table 1: Arcs information 

Arc Capacity Probability Lead time Arc Capacity Probability Lead time 

a1 0 0.05 2 a5 0 0.10 1 

 1 0.05   1 0.10 

 2 0.10   2 0.80 

 3 0.80 

a2 0 0.05 1 a6 0 0.05 2 

 1 0.05   1 0.05 

 2 0.10   2 0.10 

 3 0.80   3 0.20 

     4 0.60 

a3 0 0.05 3 a7 0 0.05 2 

 1 0.05   1 0.10 

 2 0.10   2 0.10 

 3 0.80   3 0.10 

     4 0.10 

     5 0.55 

a4 0 0.10 3 a8 0 0.05 1 

 1 0.90   1 0.05 

     2 0.10 

     3 0.10 

     4 0.70 

 
Table 2: The paths and their corresponding maximum capacity 

No. Pj CPj 

1 {a1, a4} 1 

2 {a1, a5, a8} 2 

3 {a1, a2, a6} 3 

4 {a1, a2, a7, a8} 3 

5 {a3, a6} 3 

6 {a3, a7, a8} 3 

a1 a4 

a5 

a6 

a7 

a8 

a2 

a3 

s t 
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Table 3: The results for different values of Cs 

Cs Disjoint pair (d1,d2) The capacity vector X    Rd,T,Cs 

1 P1 = {a1, a4} and P5 = {a3, a6} (4,4) 1 0 1 1 0 1 0 0 0.771638 

 P1 = {a1, a4} and P6 = {a3, a7, a8} * -        - 

 P2 = {a1, a5, a8} and P5 = {a3, a6} (4,4) 1 0 1 0 1 1 0 1 0.733056 

2 P2 = {a1, a5, a8} and P5 = {a3, a6} (8,0) 2 0 0 0 2 0 0 2 0.93312 

  (7,1) 2 0 2 0 2 2 0 2 

  (6,2) 2 0 2 0 2 2 0 2 

  (5,3) 2 0 2 0 2 2 0 2 

  (4,4) 2 0 2 0 2 2 0 2 

  (3,5) 2 0 2 0 2 2 0 2 

  (2,6) 2 0 2 0 2 2 0 2 

  (1,7) 2 0 2 0 2 2 0 2 

  (0,8) 0 0 2 0 0 2 0 0 

 P3 = {a1, a2, a6} and P6 = {a3, a7, a8} (8,0) 2 2 0 0 0 2 0 0 0.729 

  (7,1) 2 2 2 0 0 2 2 2 

  (6,2) 2 2 2 0 0 2 2 2 

  (5,3) 2 2 2 0 0 2 2 2 

  (4,4) 2 2 2 0 0 2 2 2 

  (3,5) 2 2 2 0 0 2 2 2 

  (2,6) 2 2 2 0 0 2 2 2 

 P4 = {a1, a2, a7, a8} and P5 = {a3, a6} (6,2) 2 2 2 0 0 2 2 2 0.81 

  (5,3) 2 2 2 0 0 2 2 2 

  (4,4) 2 2 2 0 0 2 2 2 

  (3,5) 2 2 2 0 0 2 2 2 

  (2,6) 2 2 2 0 0 2 2 2 

 (1,7) 2 2 2 0 0 2 2 2  

  (0,8) 0 0 2 0 0 2 0 0 

3 P3 = {a1, a2, a6} and (8,0) 3 3 0 0 0 3 0 0 0.74624 

 P6 = {a3, a7, a8} (7,1) 3 3 3 0 0 3 3 3 

   (6,2) 3 3 3 0 0 3 3 3 

   (5,3) 3 3 3 0 0 3 3 3 

   (4,4) 3 3 3 0 0 3 3 3 

   (3,5) 3 3 3 0 0 3 3 3 

   (2,6) 3 3 3 0 0 3 3 3 

   (1,7) 3 3 3 0 0 3 3 3 

   (0,8) 0 0 3 0 0 0 3 3  

 P4 = {a1,a2,a7,a8} and  (8,0) 3 3 0 0 0 0 3 3 0.77824 

 P5 = {a3, a6} (7,1) 3 3 3 0 0 3 3 3  

   (6,2) 3 3 3 0 0 3 3 3  

   (5,3) 3 3 3 0 0 3 3 3  

   (4,4) 3 3 3 0 0 3 3 3  

   (3,5) 3 3 3 0 0 3 3 3  

   (2,6) 3 3 3 0 0 3 3 3  

   (1,7) 3 3 3 0 0 3 3 3  

   (0,8) 0 0 3 0 0 3 0 0   

*Means that (d1,d2) does not satisfy one or more conditions mentioned in the algorithm. Also for the disjoint pairs {P3,P6} 

and {P4, P5} 

 
Table 4: The best disjoint paths for each Cs value 

Cs The best disjoint pair Rd,T,Cs 

1 P1 = {a1, a4} and P5 = {a3, a6} 0.771638 

2 P2 = {a1, a5, a8} and P5 = {a3, a6} 0.933120 

3 P4 = {a1,a2,a7,a8} and P5 = {a3, a6} 0.778240 

 

B. Fourteen Nodes Network Example 

The network given in Fig. 2 is taken from (Lin, 2011a). 

The arcs’ information is given in Table 5. The network 

contains eleven paths shown in Table 6. Also, the maximal 

capacity for each path has been determined. The available 

paths for different values of Cs are shown in Table 7. The 

best disjoint pair of paths for each Cs shown in Table 8. 
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Table 5: Arcs information 

Arc Capacity Probability Lead time Arc Capacity Probability Lead time 

a1 0 0.06 2 a12 0 0.04 2 
 10 0.03   10 0.05  
 30 0.05   20 0.04  
 50 0.86   40 0.04  
     60 0.83  
a2 0 0.05 2 a13 0 0.04 1 
 10 0.02   10 0.02  
 30 0.03   20 0.02  
 50 0.9   40 0.01  
     60 0.82  
a3 0 0.04 3 a14 0 0.05 2 
 10 0.04   20 0.95  
 20 0.04      
 40 0.88      
a4 0 0.05 3 a15 0 0.05 3 
 10 0.05   10 0.05  
 30 0.05   30 0.05  
 50 0.85   50 0.05  
     70 0.8  
a5 0 0.05 4 a16 0 0.04 2 
 10 0.05   10 0.04  
 30 0.05   30 0.04  
 50 0.85   40 0.06  
     60 0.82  
a6 0 0.04 3 a17 0 0.05 3 
 10 0.04   10 0.04  
 20 0.04   30 0.03  
 40 0.88   50 0.88  
a7 0 0.04 2 a18 0 0.05 3 
 20 0.96   10 0.05  
     30 0.05  
     40 0.85  
        
a8 0 0.05 3 a19 0 0.04 3 
 10 0.05   10 0.03  
 30 0.05   30 0.03  
 50 0.85   50 0.9  
        
a9 0 0.05 4 a20 0 0.05 3 
 10 0.05   10 0.05  
 20 0.07   20 0.1  
 40 0.83   40 0.8  
a10 0 0.05 2 a21 0 0.07 2 
 10 0.05   20 0.93  
 20 0.05      
 40 0.85      
a11 0 0.05 3 a22 0 0.04 4 
 10 0.05   10 0.96  
 30 0.02      
 50 0.88      

 
Table 6: The paths and their maximum capacity 

No. Pj CPj 

1 {a1, a2, a3} 40 

2 {a1, a6, a7} 20 

3 {a4, a5, a6} 40 
4 {a8, a9, a10} 40 

5 {a10, a11, a14} 20 
6 {a11, a12, a13} 50 
7 {a15, a22} 10 

8 {a15, a16, a17} 50 
9 {a18, a21, a22} 10 

10 {a16, a17, a18, a21} 20 
11 {a18, a19, a20} 40 
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Table 7: The available paths for different values of Cs 

Cs Pj Cs Pj Cs Pj 

50 {a11, a12, a13} 20 {a11, a12, a13} 10 {a1, a2, a3} 

 {a15, a16, a17}  {a15, a16, a17}  {a1, a6, a7} 

   {a1, a2, a3}  {a4, a5, a6} 

   {a4, a5, a6}  {a8, a9, a10} 

   {a8, a9, a10}  {a10, a11, a14} 

   {a18, a19, a20}  {a11, a12, a13} 

   {a1, a6, a7}  {a15, a22} 

   {a10, a11, a14}  {a15, a16, a17} 

   {a16, a17, a18, a21}  {a18, a21, a22} 

     {a16, a17, a18, a21} 

40 {a11, a12, a13}    {a18, a19, a20} 

 {a15, a16, a17}     
 {a1, a2, a3}     
 {a4, a5, a6}     
 {a8, a9, a10}     
 {a18, a19, a20}     

 
Table 8: The best disjoint paths for each Cs 

Cs The best disjoint pair Rd,T,Cs 

10 P1 = {a1, a2, a3} and P6 = {a11, a12, a13} 0.91 

20 P1 = {a1, a2, a3} and P6 = {a11, a12, a13} 0.91 

40 P1 = {a1, a2, a3} and P6 = {a11, a12, a13} 0.822451 

50 P6 = {a11, a12, a13} and P8 = {a15, a16, a17} 0.789727 

 

 
 

Fig. 2: Example of a Network of fourteen nodes 

 

Time Analysis 

The algorithm Computes the maximum capacity of 

each path in O(ωn) time and O(ω) to determine the set of 

disjoint paths. The time needed to determine 
1
d and 

2
d  is 

O(∝n), where ∝ represents the number of disjoint paths. 

To test transmission time, it takes O(∝n). To generate all 

(d, T, Cs)-DMPs, it takes O(∝dn) time. Then, the total 

time is O(δn) taken by the proposed algorithm to find 

Γmin, where δ = ω + (2+ d)α. 

An Important Lemma 

The time needed to compare each candidate solution 
X with all other solutions to construct Γmin is O(dn), in 
the worst case scenario. This time can be decreased by 
using the following Lemma. 

Lemma 1 

If X is (d, T)-DP candidate under Cs and X 
corresponds to the solution (d1,0) or (0, d2), then X is a 
lower vector. 

t 

a6 

a3 

a10 

a13 

a17 

a20 

a2 

a7 

a5 

a9 

a14 a12 

a22 

a16 

a19 

a21 

a1 
a4 

a8 

a11 

a15 

a18 

s 
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Table 9: The lower vectors in example A according to Lemma 1 

Cs The disjoint pair (d1,d2) The lower vectors    Rd,T,Cs 

2 P2 = {a1, a5, a8} and P5 = {a3, a6} (8,0) 2 0 0 0 2 0 0 2 0.93312 

  (0,8) 0 0 2 0 0 2 0 0  

 P3 = {a1, a2, a6} and P6 = {a3, a7, a8} (8,0) 2 2 0 0 0 2 0 0 0.729 

 P4 = {a1, a2, a7, a8} and P5 = {a3, a6} (8,0) 0 0 2 0 0 2 0 0 0.81 

3 P3 = {a1, a2, a6} and (8,0) 3 3 0 0 0 3 0 0 0.74624 

 P6 = {a3, a7, a8} (0,8) 0 0 3 0 0 0 3 3  

 P4 = {a1,a2,a7,a8} and  (8,0) 3 3 0 0 0 0 3 3 0.77824 

 P5 = {a3, a6} (0,8) 0 0 3 0 0 3 0 0  

 

Proof 

Let P1 = {a1, a4} and P2 = {a3, a6} and Cs = V. Let 

X
1 
= (V 0 0 V 0 0) and X

2 
= (0 0 V 0 0 V) are (d, T)-

DMP candidate to (d1,0) and (0, d2) respectively. Then 

all other (d, T)-DMP candidates will be in the form (V 

0 VV 0 V). It is easy to verify that X
1
 and X

2
 are lower. 

Table 9 shows lower vectors based on using this 

Lemma in Example A. 

Discussion and Comparison 

In this section, we investigate how to use the 

system capacity constraint to determine the candidate 

disjoint paths and then use Lin’s Algorithm presented 

in (Lin, 2009a) to obtain the solutions, given by 

Algorithm II. In addition, the results of applying 

Algorithm II on both Example A and Example Bare 

shown in Table 10 to 12. While Table 13 gives the 

comparison between the results obtained by the 

Algorithm I and that obtained by Algorithm II to show 

the difference to the reliability without using Cs value 

to deduce the solutions. 

 

Algorithm II: Using Cs to the available MPs and using 

Lin’s Algorithm to generate all (d, T)-

DMPs. 

 1. Input the paths Pi, i = 1,2,3,…, ω and the Cs value. 
 2. Calculate the maximum capacity for each path CPi, 

CPj = Min{Mk|ak∈pj}. 

 3. Determine all paths that satisfy the condition CPi 

≥Cs. 

 4. Construct the set of available disjoint paths ϕ = 

{(Pi, Pj)| i ≠ j and Pi ∩ Pj = ∅} from the paths 

generated in step 3. 

 5. For each disjoint pair Pi and Pj in ϕ, do the 
following (Lin, 2009a): 

  5.1. Find the largest demands 
i

d and 
j

d that can be 

assigned to Pi and Pj respectively, such that: 

 

{ }
1

| /
n

ik k i i

k

l a p d CP T
=

 ∈ + ≤ ∑  

   and: 

 

{ }
1

| /
n

jk k j j

k

l a p d CP T
=

 ∈ + ≤ ∑ . 

 

  5.2. Generate the set of solutions 

( ){ }, | ,i ji j i j i j
d d d d d d and d d dβ = ≤ ≤ + =  

  5.3. For all solutions in β, find the smallest integers 

vi and vj, such that the transmission time for 

each path is calculated as: 

 

{ }
1

| /
n

k k i i i

k

l a p d v T
=

∈ + ≤  ∑  

 

  and: 

 

 { }
1

| /
n

k k j j j

k

l a p d v T
=

 ∈ + ≤ ∑ . 

 

  5.4. Generate the capacity vector X
q 
= (x1, x2,…, 

xk,…, xn) as follows: 

 

0

k i k i

k k j k j

u v ifa P

x u v ifa P

Otherwise

≥ ∈


= ≥ ∈



 

 

  5.5. Repeat steps 5.3 and 5.4 to generate all 

solutions.  

  5.6. Remove the solutions that are not lower. 

 6. Evaluate the system reliability for the generated 

lower capacity vectors. 

 7. End 

 

The results in Table 13 show that the system 

reliability values are affected by using Cs value to 

generate solutions. The results obtained by using both 

Lin’s Algorithm and Algorithm II are identical. 

However, Algorithm II can be used to determine the 

available disjoint paths and then generate the solutions. 
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Table 10: The results of applying algorithm II to example A 

Cs The disjoint pair Rd,T,Cs 

1 P1 = {a1, a4} and P5 = {a3, a6} 0.889088 

 P1 = {a1, a4} and P6 = {a3, a7, a8} 0.658268 

 P2 = {a1, a5, a8} and P5 = {a3, a6} 0.948313 

 P3 = {a1, a2, a6} and P6 = {a3, a7, a8} 0.885846 

 P4 = {a1, a2, a7, a8} andP5 = {a3, a6} 0.904758 

2 P2 = {a1, a5, a8} and P5 = {a3, a6} 0.948313 

 P3 = {a1, a2, a6} and P6 = {a3, a7, a8} 0.885846 

 P4 = {a1, a2, a7, a8} and P5 = {a3, a6} 0.904758 

3 P3 = {a1, a2, a6} and P6 = {a3, a7, a8} 0.885846 

 P4 = {a1, a2, a7, a8} and P5 = {a3, a6} 0.904758 

 
Table 11: The best disjoint paths for each Cs value using algorithm II To Example A 

Cs The best disjoint pair Rd,T,Cs 

1 P2 = {a1, a5, a8} and P5 = {a3, a6} 0.948313 

2 P2 = {a1, a5, a8} and P5 = {a3, a6} 0.948313 

3 P4 = {a1, a2, a7, a8} and P5 = {a3, a6} 0.904758 

 
Table 12: The best disjoint paths for each Cs value using algorithm II to example B. 

Cs The best disjoint pair Rd,T,Cs 

10 P1 = {a1, a2, a3} and P6 = {a11, a12, a13} 0.841395 

20 P1 = {a1, a2, a3} and P6 = {a11, a12, a13} 0.841395 

40 P1 = {a1, a2, a3} and P6 = {a11, a12, a13} 0.841395 

50 P6 = {a11, a12, a13} and P8 = {a15, a16, a17} 0.834777 

 
Table 13: Comparison results 

Example A   Example B 

---------------------------------------------------------------------------------- ---------------------------------------------------------------------- 

 Reliability using Reliability using  Reliability using Reliability using 

Cs Algorithm I Algorithm II Cs Algorithm I Algorithm II 

1 0.771638 0.841395 10 0.91 0.841395 

2 0.93312 0.841395 20 0.91 0.841395 

3 0.77824 0.841395 40 0.822451 0.841395 

      50 0.789727 0.834777 

 

Conclusion 

Taking into account the required system capacity 

(Cs) and the transmission time (T), the paper 

presented an algorithm to determine the set of disjoint 

paths that would simultaneously carry the data and 

then, generate all (d, T, Cs)-DMPs to calculate the 

system reliability R(d,T,Cs). Moreover, in this study, the 

benefits of using the system capacity to determine the 

available paths that can be used to send data have 

been investigated. In addition, the computational 

complexity taken by the algorithm to generate all 

solutions is O(δn). 
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Acronyms 

DMPs Disjoint minimal paths. 

SFN  Stochastic-flow network. 

QPP Quickest path problem. 

Notations 

G(A, N, M) SFN with a set of nodes N, a set of arcs A = 

{ai|1≤i≤n} and M = {M
1
, M

2
,…, M

n
} with 

M
i
 (an integer) being the maximum capacity 

of each arc ai.  

X Capacity vector; X = (x1, x2, …, xn). 

MPs Minimal paths. 

MPj A minimal path no. j; j = 1, 2, …, ω. 
TPj The transmission time of path Pj. 
CPj The maximum capacity of Pj. 

d The given demand, units of data to be 

transmitted. 

T The time limit, units of time. 

Cs The required system capacity, given in units 

of cost. 

li The lead time of arc ai. 

Rd,T,Cs  System reliability for the given demand d 

under T and Cs. 

Nomenclature 

X≤Y X = (x1, x2,…, xn)≤ Y = (y1, y2,…, yn), if xi ≤ yi for 

i = 1,2,…,n 

X<Y X≤Y, when xi<yi for at least one i 

 

Lower Vector X∈Γ is a lower vector if there is no 

Y∈Γ such that Y<X. 
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Assumptions 

1. The capacity of each arc ai is an integer-valued 

random variable, which takes values 0<1<2<…M
i
 

according to a given distribution. 

2. Each node is perfectly reliable. 

3. The capacities of different components are 

statistically independent.

 


