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Abstract: Wireless Sensor Networks (WSN) are comprised of spatially 

distributed sensor nodes, where each node contains sensors, processors and 

transceivers for communicating data. Regardless of the application in which 

the sensor network is serving, the data generated in the network eventually 

must be delivered to the sink. However the limited network bandwidth, 

frequent node/link failure along with the unreliable communication medium 

poses great challenges for node to node communication in WSN. Hence, 

energy efficient data compression algorithms are necessary for sensor 

nodes as they enhance the transmission efficiency in WSN. Compressive 

sensing is a new compression algorithm in which the input signal is 

converted into sparse signal and the sparse signal is further converted into a 

signal of reduded dimension than original signal. The dimensionality 

reduction improves the transmission efficiency. This new concept is 

recently applied in WSN, however suitable threshold selection to sparsify 

the one dimensional sensor reading and suitable sparifying basis for image 

input data are not considered in literature. Hence, in this paper analysis of 

compressive sensing algorithm with a suitable threshold selection is 

performed in order to increase the level of sparsity for one dimensional data 

and a suitable sparsifying basis selection is performed for image data. 

Results indicate that compressive sensing with suitable threshold selection 

improves transmission and bandwidth efficiency in case of low correlated 

one dimensional sensor data and a suitable basis improves the quality of 

transmission for image sensor data and hence the overall lifetime of sensor 

network can be increased. 
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Introduction 

Wireless sensor network has wide range of 

applications, like medical, defense, transport and even 

our day to day life. A wireless node consists of sensors 

to collect the data, a processor and transceiver. This 

whole set up is supported by a battery which has limited 

life. Energy saving methodologies with different 

algorithms is needed to save the power in WSN as 

energy is limited in sensor node. The processes of CS 

aggregation in WSN are given in (Yang et al., 2013). A 

brief literature review is provided in related work 

section. Next Section deals with threshold based CS 

encoding method for one dimensional data. For image 

input data the suitable basis selection is analyzed. 

Different recovery methods for CS algorithm is dicussed 

in (Candès and Tao, 2006; Candès and Romberg, 2005). 

Last Section includes the conclusion. 

The main idea of this paper is to exploit the nature of 

data correlation in WSN environment and reduce the 

number of data transmission. The proposed threshold 

based CS algorithm is applied to one dimensional signal 

and a suitable sparsifying basis is chosen for image input 

data. First computation of the correlation coefficient of 

the sensed one dimensional data is done and based on 

mean correlation coefficient a suitable threshold is 

chosen in order to increase the sparsity. This kind of 

analysis is not done in previous work to the best of our 

knowledge and hence the proposed work helps in 

reducing the number of data transmission in WSN. 

Related Work 

Generally data compression schemes for WSNs 

should be lightweight and the computational 

requirements of the algorithms should be low for 
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efficient operation due to WSNs constraints in terms of 

hardware, energy, processing and memory. The most 

important issues and questions that have to be addressed in 

a wireless sensor network is proposed in (Karl and Willing, 

2007). Many algorithms for data compression for WSN are 

found in literature. The modulation scaling for eneergy 

efficient network is  proposed in (Schurgers et al., 2001). 

Some of other work shows adaptive modulation scaling 

which improves energy efficiency of WSN discussed in 

(Yang et al., 2005). Lightweight Data Compression in 

Wireless Sensor Networks using Huffman Coding 

proposed in (Medeiros and Maciel, 2014) uses Huffman 

algorithm for data reduction. A two-stage DPCM scheme 

for wireless sensor networks in (Luo et al., 2005) 

consists of temporal and spatial stages that compress 

data by making predictions based on samples from the 

past and helping sensors. A sensor node LZW (S-LZW) 

is designed specifically for resource constrained sensor 

nodes in (Marcelloni and Vecchio, 2008), Lossless 

Entropy Compression in (Marcelloni, 2009) exploits the 

high correlation that typically exists between 

consecutive samples collected by a sensor node but 

LEC algorithm achieves compression ratios of the order 

of 70%, Median-Predictor-based Data Compression 

(MPDC) in (Kolo and Shanmugam, 2012) which 

performs compression losslessly using two code 

options and is suitable for both real-time and delay-

tolerant transmission. 
The energy-model-based optimal communication 

systems design for wireless sensor networks are 
proposed in (Li et al., 2012). While most of the literature 
focuses either on data compression algorithms or 
performance analysis of compression schemes for 
energy efficiency, still analysis is required about 
performance of compression algorithms for different 
type of input data. This work aims to initiate work in 
this direction and aims to analyze compressive sensing 
algorithm with and without threshold selection for one 
dimensional input data and also selection of suitable 
basis function for two dimensional image. 

Compressive Sensing Based Encoding for one 

Dimensional Data 

Compressive Sensing is a signal processing technique 
used in almost all the field of communication 

engineering for efficiently acquiring and reconstructing a 

signal, by finding solutions to underdetermined linear 
systems. In (Candès and Wakin, 2008), authors have 

discussed that according to CS theory, one can recover 
certain signals and images from far fewer samples or 

measurements than traditional methods use. Actually the 
CS algorithm works beyond the normal sampling 

theorem used in practice discussed in (Luke, 1999). To 

make this possible, CS relies on two principles: Sparsity, 
which pertains to the signals of interest and incoherence, 

which pertains to the sensing modality. 

Sparsity (Candès and Wakin, 2008) expresses the 

idea that the “information rate” of a continuous time 

signal may be much smaller than suggested by its 

bandwidth, or that a discrete-time signal depends on a 

number of degrees of freedom which is comparably 

much smaller than its (finite) length. More precisely, CS 

exploits the fact that many natural signals are sparse or 

compressible in the sense that they have concise 

representations when expressed in the proper basis ψ. 

Incoherence extends the duality between time and 

frequency and expresses the idea that objects having a 

sparse representation in ψ must be spread out in the 

domain in which they are acquired, just as a Dirac or a 

spike in the time domain is spread out in the frequency 

domain. Put differently, incoherence says that unlike the 

signal of interest, the sampling/sensing waveforms have 

an extremely dense representation in ψ. 

In CS method, the collected signals or images are 

changed into compressed sparse signals with any one of 

available kernel. Sparse signal are very few in number 

and has full structure and complete meaningful 

information which are necessary to reconstruct the 

original signal or image. Equation 1 describes generation 

of the sparse signal (s): 

 

s Tx=   (1) 

 
In Equation 1, Where, (x) is the input signal of size 

(n×1), (T) is the Transform matrix or kernel of size (n×n) 
and (s) is the sparse representation of size (n×1). After 
sparse generation, measurement matrix (M) of size 
(m×n) is used to compress the sparse representation ‘s’ 
of input image and compressed sparse output ‘y’ of size 
(m×1) is generated. Here m << n and hence the resultant 
signal y is of reduced size (m×1). The compressed sparse 
output (y) is given in Equation 2: 
 
y Ms=   (2) 
 

For the purpose of analysis the input signals are 
considered based on the correlation coefficient as highly 
correlated and low correlated data. Table 2 and 4 describe 
the thresholding effect on different correlated data. 

The proposed threshold based CS algorithm for one 
dimensional signal computes the correlation coefficient 
of the sensed data which is used as a metric to decide the 
measurement matrix of the CS encoder. Further an upper 
threshold and a lower threshold based on Gaussian 
distribution is calculated to enforce the sparsity in 
transformed data. It is observed that the measurement 
matrix selection based on correlation characteristics of 
the data greatly improves the quality of reconstruction. 
Also thresholding technique increased the sparsity of the 
transformed data and hence the compression ratio is also 
improved. In order to enforce the sparsity level, 
thresholding is performed based on the following rule:  



Parnasree Chakraborty and C. Tharini / American Journal of Applied Sciences 2017, 14 (2): 239.244 

DOI: 10.3844/ajassp.2017.239.244 

 

241 

• Find the mean of input data set by adding all the data 

points and dividing by the number of data points 
• Subtract the mean from each data point and square 

the result 
• For the given input data the mean square error, 

signal to noise ratio are calculated 
• Take the square root of that mean to get the standard 

deviation 
• Multiply the standard deviation by 3 
• Add the mean of the original data set to the result. 

This is the upper control limit 

• Subtract the result of Step 1 from the mean of the 

original data set to get the lower control limit 

 

The performance of the proposed algorithm is 

measured by considering the input as temperature 

sensor data (200 nos. of sample). The Signal to Noise 

Ratio (SNR) and Mean Square Error (MSE) values are 

calculated for a temperature input of size 200 samples 

with mean correlation coefficient of 0.6565 which is 

shown below in the Table 1. 

 
Table 1. Performance analysis of CS without thresholding for 

temperature samples of mean correlation coefficient 

0.6565 

Temperature Compressed Mean Square SNR 

data size  data  size  Error (mse)  (dB)  

200 100 0.0013 52.2617 

200 67 0.0049 46.6439 

200 50 0.0179 40.9886 

 

Table 2. Performance analysis of threshold based CS for 

temperature samples of mean Correlation coefficient 

0.6565 

Temperature Compressed Mean Square SNR 

data size  data  size  Error ( mse)  (dB)  

200  100  0.0016  51.4694 

200  67  0.0076  44.6987 

200  50   0.0502  36.5154 

 

Table 3. Performance analysis of CS without thresholding for 

temperature samples of mean Correlation coefficient 

0.3076 

Temperature Compressed Mean Square SNR 

data size  data  size  Error (mse)  (dB)  

200  100   0.6126  25.6501 

200  67   0.7960  24.5130 

200  50  1.0496  23.3115 

 

Table 4. Performance analysis of threshold based CS for 

temperature samples of mean Correlation coefficient 

0.3076 

Temperature Compressed Mean Square 

data size  data size  Error (mse)  SNR  

200  100  0.5950  25.9278 

200  67  0.6778 25.2110 

200  50  0.9139  23.9128 

Table 5. MSE and PSNR (in dB) values in DCT basis with a 

input image dimension 32×32 

No. of samples 

transmitted  MSE  PSNR (dB) 

700 0.2726 40.9535 

600 0.6835 38.9571 

500 0.8076 38.5948 

400 1.2609 37.6274 

300 2.1500 36.4658 

 

Table 6. MSE and PSNR (in dB) values in DWT basis 

No. of samples 

transmitted  MSE  PSNR (dB)  

700 0.1896 41.74 

600 0.2020 41.6036 

500 0.2079 41.5147 

400 0.2489 41.1505 

300 0.4243 39.9922 

 

Table 1 Performance analysis of CS without 

thresholding for temperature samples of mean 

correlation coefficient 0.656. 

Table 2 shows performance analysis of threshold 

based CS for same set of input data. 

The SNR comparison between basic CS and 

threshold based CS for highly correlated temperature 

data is shown in Fig. 1 and MSE comparison between 

basic CS and threshold based CS for highly correlated 

temperature data is shown in Fig. 2. 

The similar analysis is done for another set of 

temperature data of mean correlation coefficient 0.3076 

which is shown in Table 3 and 4. 

The SNR comparison between basic CS and 

threshold based CS for temperature data of low 

correlation coefficient is shown in Fig. 3 and MSE 

comparison between basic CS and threshold based CS 

for highly correlated temperature data is shown in Fig. 4. 

From the obtained result it is clear that thresholding 

technique gives better SNR and low MSE when input 

data are highly uncorrelated. 

Performance Analysis of Compressive Sensing 

Algorithm on Two Dimensional Signals 

Comparison of two different sparsifying basis 
is performed for image input signal of size 32×32. 
DWT and DCT basis are used for comparison. When 

DWT is used as sparsifying basis, the sparsity 

increases which results better reconstruction quality. 

The input image is shown in Fig. 7. Table 5 shows 

the MSE and PSNR (in dB) values in DCT basis with a 

input image dimension 32×32. Table 6 shows MSE and 

PSNR (in dB) values in DWT basis. The concept of 

wavelet transform is well explained in (Mallat, 2008). 
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Recovery of Original Image 

In order to obtain original image, it is required to find 

the optimum solution for the Equation 2. Among many 

reconstruction techniques of CS, Basis pursuit method is 

simple and hence for CS reconstruction it is used in this 

work. Basis Pursuit (BP) (Candès and Romberg, 2007; 

Candès and Tao, 2006; Candès and Romberg, 2005) is 

the one in which adopts either simplex iteration method 

or primal dual method. Reconstruction using basis 

pursuit method requires solving of underdetermined 

linear equations. This method is computationally 

complex and requires convex optimization algorithm. It 

uses a very few non-zero coefficients to reconstruct the 

signal. Basis Pursuit method involves l1 norm 

optimization (Nesterov, 2004) to solve the 

underdetermined system of simultaneous linear equation 

of the form similar to Equation 2. 

Figure 5. Shows the comparison of PSNR (in dB) 

in DCT and DWT basis and Fig. 6 shows about the 

mean square error(mse) in DCT and DWT basis. 

Figure 7 and 8 are reconstructed images using BP. 

Figure 7 is the reconstructed image generated using 

DCT transform. Figure 8 is the reconstructed image 

generated using DWT transform. Results indicate 

DWT provides less MSE and high PSNR making it 

suitable for images. The values of MSE and PSNR in 

dB are shown in Tables in previous section. 

Result of this section was used to analyze a 

suitable sparsifying basis for the image input. From 

the result it is clear that DWT basis is better compared 

to DCT basis. 

 

 
 

Fig. 1. SNR (in DB) Comparison For Basic CS and Threshold 

Based CS For Highly Correlated Data 

 
 
Fig. 2. MSE Comparison For Basic CS and Threshold Based 

Cs For Highly Correlated Data 
 

 
 
Fig. 3. SNR(in dB) Comparison For Basic CS and Threshold 

Based CS For Low Correlated Data 

 

 
 
Fig. 4. MSE Comparison For Basic Cs and Threshold Based 

Cs For Low Correlated Data 
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Fig. 5. Comparison of PSNR (in dB) in DCT and DWT basis 

 

 
 
Fig. 6. Comparison of mse in DCT and DWT basis 

 
 
Fig. 7. Original input image and reconstructed image with DCT basis with Dimension  of input image (N) 32×32 = 1024 pixels and 

Reconstructed image with   M = 360 pixels 

 

 
 
Fig. 8. Original input image and reconstructed image with DWT basis with   Dimension of input image (N) 32×32 = 1024 pixels and 

Reconstructed image with   M = 360 pixels 

 

Conclusion 

Simulation results show that, use of compressive 
sensing algorithm for data compression tremendously 
reduces the number of transmission bits as the SNR 
value is high and hence enhances the transmission and 
bandwidth efficiency in WSN. Results show that a 
suitable threshold value can increase the level of sparsity 
in transformed data when the input signal correlation is 

very low. The input data with low mean correlation 
coefficient gives better SNR and less MSE in case of one 
dimensional signal compared to highly correlated data 
when thresholding is incorporated. On the otherhand it is 
obvious from the result that basic CS without any 
threshold selection is much suitable for highly correlated 
data input. In case of image input signal comparison of 
two different basis is carried out. Results show that 
DWT is much suitable transform basis than DCT 
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transform basis for sparse measurement generation in 
case of image input. In comparison with DCT, DWT is 
computationally simple and uses very less time which is 
expected in real time application. A high degree of 
compression ratio can be achieved with the help of 
proposed algorithms, which is shown in the result. The 
reconstruction result shows that even less than 50% of 
the data sample is sufficient to recover the original data 
and image, perhaps which is the most surprising result. 
Since the energy efficiency can be enhanced 
significantly using the proposed algorithm and hence the 
battery operated WSN lifetime can be prolonged. 
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