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Abstract: Malicious programs are malignant software’s designed by 
hackers or cyber offenders with a harmful intent to disrupt computer 
operation. In various researches, we found that the balance between 
designing an accurate architecture that can detect the malware and track 
several advanced techniques that malware creators apply to get variants of 
malware are always a difficult line. Hence the study of malware detection 
techniques has become more important and challenging within the security 
field. This review paper provides a detailed discussion and full reviews for 
various types of malware, malware detection techniques, various researches 
on them, malware analysis methods and different dynamic programming-
based tools that could be used to represent the malware sampled. We have 
provided a comprehensive bibliography in malware detection, its 
techniques and analysis methods for malware researchers. 
 

Keywords: Malicious, Malware Representation, Detection Techniques, 

Analysis Methods, Dynamic Programming  

 

Introduction  

Representation of malware basically deals with how 

the collected malware samples are being transformed 

from specific format to another by applying certain 

techniques to represent them such as a system call 

representation technique (Mehdi et al., 2010) and 

Opcode sequences as representation of executable data-

mining-based (Santos et al., 2013). In this study, besides 

providing the researchers with full and comprehensive 

literature on malware definitions, types, various 

detection techniques and methods, we aim at giving 

researchers an idea about various techniques that are 

used for representing the malware samples as we will 

conduct a deep survey on some representations that are 

based on the major malware detection techniques. We 

are proposing the string representation technique as a 

solution for some drawbacks/disadvantages caused by 

representation techniques been used by researchers in the 

recent years our survey will be focused or limited to 

analysing some techniques based on machine learning, 

data mining, API call graph and String (Signature based 

technique). The proposed string representation will be 

based on these representation techniques 

drawbacks/disadvantages. Our survey will touch upon 

some of the tools that are used in implementing some of 

these and other malware representation techniques as we 

will focus on the dynamic programming tools since they 

have been used in API call graph String and some other 

malware system designed recently by a considerable 

number of researchers. So with respect to various 

representation techniques, questions such as: How far 

these techniques or models have achieved largest 

detection rates? What is the best level of accuracy that 

the various detection models have reached? What types 

of programming tools available to carry out the detection 

system designed with these techniques? Are of various 

research challenges on the field of malware detection. 

With the increased concern towards the various 

vulnerabilities that cause unavailability of the network 

resources, malware is considered as one of the serious 

threats that violate confidentiality, integrity and 

availability of the system. It has tremendous negative 

impact on the computer security. The antivirus systems 

development is in increasing process as viruses are still 

considered to be of great threats and can harm our 

application programs and systems as well. With the 

complexity of the malicious software and its ability to 

harm and infect computer systems research has been 

conducted and the process is still going on by 

researchers on computer security field to deal with all the 

threats caused by this malicious software (Kumar et al., 

2010). The software is set to be malicious as it disrupts 

computer operation, gather sensitive information, or 
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gain unauthorized access to a computer system 

(Santos et al., 2013). In the case of the malware 

infecting executable codes when this happen the file 

or files got infected will be residing in memory the 

moment the user executes them and hence they will 

infect any other files that the user may execute 

afterwards. It has a tremendous negative impact on the 

computer security (Mehdi et al., 2010). With the use 

of antivirus programs and firewall 

many malware could be defeated “to some extent” 

especially those been very active through the network, 

but at the same time, if we disable the use of antivirus 

and firewalls for a single day, this may show strong 

proof of the fast spread of this malicious software. 

The techniques that are being developed and applied 

by the researchers to detect the malware are clearly 

explained and known through the malware detectors. 

Of no doubt, malware has grown in volume and 

complexity and this has proven and experienced the 

danger of this malicious software. It is found that 1 in 

8 legitimate Websites has a critical vulnerability, 

(Patil and Patil, 2015). Following a pull-based model, 

as the technique uses two categories of web infection 

by means of delivering malware into it as first various 

social engineering techniques are used by the 

attackers so that they can attract the visitors to 

download the malware. The second category involves 

the underhanded tactic of targeting various browser 

vulnerabilities to automatically download and run i.e., 

unknowingly to the visitor, the binary upon visiting a 

website (Mavrommatis and Monrose, 2008) last but 

not least, there exist a gap between the various 

detection techniques and the representation methods 

used. This is very clear as in the case of API call 

graph which has a major issue related to its NP-

Complete problem because of its computational 

complexity and also during the construction phase of 

the graph it is difficult to build a precise call graph 

from information collected about malware samples 

(Patil and Patil, 2015). 

Types of Malware 

As stated above malware as a malicious software is 

a set of codes that are designed by hackers with an 

intent to harm others information or computer 

systems. With this background in mind and as it is 

shown in the above Fig. 1 we can classify the malware 

into different categories or types. In the above Fig. 1, 

the researchers have given a category for different types 

of malware in terms of their existence and spread and 

activation during the period that prior to the year 2011. 

From the percentages shown we can easily say that the 

Trojan horses followed by Virus have taken the 

maximum percentage whereas other malware has taken 

some different ranges of percentages. 

 
 

Fig. 1: Types of malware by categories (Piyanuntcharatsr et 

al., 2015) 
 

Viruses 

It has been defined by some researchers as pieces of 
code that insert itself into other program(s) known as 
virus host and get replicated. This host is very important 
and necessary for the virus so as to cause harm to the 
computer or data. As Idika and Mathhur (2007) 
emphasizes, a virus may use some utility software such 
as word processing application and attach itself to it, 
once the user lunched that utility software the virus will 
get activated and it may reach the level of disabling the 
malware detectors enabled in that particular computer 
system. There are viruses which can evolve into various 
types by duplicating itself. These types of viruses are 
known as metamorphic viruses. Unlike most of other 
malware the virus has disadvantage that it cannot be 
active unless it/its host been launched/executed, but 
same time the dangerous of it is driven by the fact that in 
order to get spread it needs a host so as to attach itself to 
and then do its harmful job, this host could be a useful 
file created by the user using any of the computer 
languages. Once the file is launched the virus will get 
activated and it can go up to the level of disabling any 
detection utility that has been installed in the computer 
system for the sake of detecting any malware. Hence 
basically a virus is a malware that does self-replication 
into other existing files or programs that could be 
executed and this action is repeated by the infected file 
for other uninfected files to make the virus spread within 
the same computer system or even can shift between 
various computers through usage of infected external 
media such as USB, CD/DVD, Floppy Disk and so on. It 
is also a well-known fact that the virus cannot simply 
spread through the network as this is done by another 
type of malware, discussed below, called worm. As 
mentioned above the two types of virus classification, in 
this case, can be classified as polymorphic and 
metamorphic malware. 

Polymorphic Virus 

In this type of virus, the morphing will be done for 

the code to decrypt malware after every infection. The 

functionality of the code will not be changed while 

morphing as only the internal structure of the code 

will get changed completely (Rad et al., 2012). In this 

case, by implementing signature based detection the 

encrypted malware could be recovered or resolved.  
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Metamorphic Virus 

In this type of virus, the internal structure of the 
malware gets changed after every execution with its 
overall functionality remains the same, which could be 
considered an advanced version of the polymorphic virus 
(Lin and Stamp, 2011). For morphing the internal 
structure of the malware there are different approaches 
been followed, they could be discussed as in the case of 
‘Subroutines Permutation’ where the subroutine 
definitions get arranged by malware writers within the 
code, as the time of maintaining the ordering of 
subroutine calls this result into generating codes that 
have equal functionality but different in their structure. 
Another approach is what is called ‘Instruction 
Recording’ where instructions are rearranged in a 
program to generate the morphed copies (Rad et al., 
2012). Further, when an instruction or sequences of 
instructions are replaced by its functionality equivalent 
instruction in order to generate new variants of same 
code this is called as ‘Instruction Equivalence’ 
(Walenstein et al., 2007). Last but not least an 
approach some junk code or dead codes otherwise 
called do-nothing instructions which are basically 
inserted into software which will not affect the 
execution of the program, these dead codes are added 
to facilitate code obfuscation (Al Daoud et al., 2008). 
Certain algorithms have been used such as: Feng-
Doolittle algorithm, a clustering algorithm, Prim’s 
algorithm and MSA construction algorithm. 

Worms 

By exploiting operating systems vulnerabilities this 
type of malware spreads over computer networks. 
Although they are been classified as viruses, but the 
main different between them and the viruses is that they 
have the ability to self-replicate where viruses need 
human activity to spread in the computer system, in this 
sense, the propagation of computer worms is often based 
on the sending of mass emails with infected attachments 
to user’s contacts (Rey, 2015). The worm replicates itself 
by executing its own code independent of any other 
program. The primary distinction between a virus and a 
worm is that a worm does not need a host to cause harm. 
Another distinction between viruses and worms is their 
propagation model. In general, viruses attempt to spread 
through programs/files on a single computer system. 
However, worms spread via network connections with the 
goal of infecting as many computer systems connected to 
the network as possible (Idika and Mathur, 2007). 

Trojan Horses 

This malicious software will be embedded by the one 
who has designed it i.e., hackers for example, in any 
kind of application or even a system that is intended and 
appears to perform some function or action which 
apparently useful like for example give the information 
about the local weather but in fact it is performing some 

other action for example collecting whatever possible 
information about the user who has used the application 
or the computer system and not only gazer them but also 
send them to a host which is reported to be malicious 
one, in this case, such type of Trojan horses could be 
classified as spyware as well (Landwehr et al., 1994).  

Spyware 

The personal information is not only gathered by the 
malicious software either by replicating or morphing or 
through the network, the term spyware could refer to 
such software which monitors and gathers personal 
information about the user as when he/she visited the 
particular page(s) frequently or accessing of email 
address or even the continuous usage of the credit card 
number or key pressed by user and so on. Moreover, it 
enters the system whenever free trial software is 
downloaded (Vinod et al., 2009). 

Adware 

It is again malicious software but unlike Spyware it 

appears whenever an advertisement is played or 
implemented by particular software automatically this 
could be referred to what we call Adware. By monitoring 
the Internet user’s’ activities, for example, many malware 
developers can add any Adware to any software that 
supports the add-ins, the most common adware programs 

according to Vinod are free games, peer-to-peer clients 
like kaZaa Bear Share etc (Vinod et al., 2009). 

Botnet 

As shown in the above Fig. 2, the fact behind this 

malicious software is that there will be number of 

computers (Botnets) get infected with a malware 

known as bots which will send orders through a 

Command and Control (C and C) to the botnets through 

its unique characteristic (Lee et al., 2010a). The usage 

of the botnet was just for the sake of mere vandalism 

and then it has been switched to financial revenue goals 

by criminals (Satrya et al., 2015). According to a survey 

done by Vinod P. and others they have clearly pointed out 

that the botnet is a remotely-controlled software-collection 

of autonomous software robots. It is also a fact to mention 

that botnet is usually a zombie program (Worms, Trojans) 

under common control on public and private network 

infrastructure, hence with this clear concept and remote 

technique of the botnets nature in sending 

spam/spyware. The bot looks for the communication 

with similar instances of bots awaiting instructions and 

doesn’t sit on the infected machine and wait 

instruction from a third party. The survey has shown 

how the configuration is taking place and also the 

nature of it with respect to the bot as simplest bot 

configuration is where the bots are connected to the 

single central hub. This configuration does not scale 
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much because maintenance of various connections 

over single server is difficult. The next configuration 

is a hierarchical structure where bot master connects 

to hundreds of bots which in turn is connected to 

many bots. Thus this configuration could scale much 

larger extent (Vinod et al., 2009). 

One of the most powerful ways to pursue any 

computationally challenging task is to leverage the 

untapped processing power of a very large number of 

everyday endpoints. This is the idea behind the modern 

botnet: A collection of compromised workstations and 

servers distributed over the public Internet, which jointly 

serve the agenda of a malicious or criminal entity. Once 

infiltrated with malware in a variety of ways, these 

compromised systems (“bots”) typically link back to a 

Command and Control (C and C) server and wait for 

instructions. The botnet can then be used for tasks ranging 

from Distributed Denial of Service (DDOS) attacks to 

spam-marketing on a mass scale and collecting sensitive 

credit card/financial data leading in short order to identity 

theft and fraud (Lee et al., 2010b).  

Ransomware 

According to a research Pathak and Nanded (2016) they 

have defined Ransom ware as such kind of malware that 

attempts to extract money from a computer user by 

contaminating and taking control of the victim’s machine or 

the files or documents stored on it as they use the 

encryption of all those user’s files so as to prevent the user 

from using them unless a ransom is paid. They have 

preceded more in their introduction to explained that in 

general, the Ransomware will performs some actions to the 

user’s computer or data as it either locks the computer to 

prevent normal usage or encrypts the documents and files 

on it to prevent access to the documents and files. The 

ransom demand is displayed, usually either via a text file as 

shown in the above Fig. 3 or as a web page in the web 

browser. This type of malware exploits the victim's 

embarrassment or fear to force them to pay the ransom 

demanded. (Pathak and Nanded, 2016).  

Rootkit 

With this type of malware the targeted computer is 

been accessed or controlled remotely without giving the 

user or other security program any chance to detect it. So 

because of their stealthy operation their prevention, 

detection and removal are difficult (Rey, 2015). It has been 

also defined as a malicious code that is designed to hide the 

presence of other malware. They are usually combined with 

other malware such as a backdoor, so that remote access 

could be performed by the attacker so that the detection of it 

becomes very difficult (Satrya et al., 2015). 

 
 
Fig. 2: The structure of a botnet (Lee et al., 2010a) 

 

 
 

Fig. 3: A sample of a typical ransom ware (Elhadi et al., 2012) 
 

Backdoor 

It is referred to the concept of the malware that 
installs itself into a computer enabling the attacker to 
access the computer. They allow an attacker to connect 
to a computer with little or no verification and execute a 
command on the local system (Satrya et al., 2015). It 
could be further defined as a mechanism which bypasses 
a normal security check.  

Scareware 

It is a kind of malicious software that is designed to 
fright the infected user to buy something it has an interface 
that makes it look like an antivirus. This malicious software 
informs the user that they are attacked by a virus and the 
only way to clean it is to buy their software (Satrya et al., 
2015). More specifically it could be also defined as 
malicious computer programs intended to trick a user into 
buying and downloading needless and possibly dangerous 
software, such as fake antivirus protection. 

Some other types of malware are such malicious 
codes that are doing different types of harm and they are 
many in nature and type but just, for example, some of 
them are like the key-loggers which are almost invisible 
application that easily creeps onto computer and perform 
actions such as recording everything from key store to 
clicking model, another malicious software is dialer 
malware which is a piece of software designed to dial a 
telephone number automatically, also browser hijacker 
could be considered as a type of malicious software able 
to, without a user's permission, alter a web browser's 
settings and in order to insert undesirable advertising 
into the user's browser it may replace the existing home 
page, error page, or search page with its own. Generally, 
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its main aims may be related to force hits to a particular 
website so as to increase its advertising revenue. 

According to (Aycock, 2006) some types of malware 

have been pointed out with a clear explanation for each of 

them since some of them have already been mentioned 

above, hence herewith we are touching upon the rest of 

those he has mentioned and not given by us above.  

Logic Bomb 

It is malicious software which consists of two parts; 

payload which an action to perform and a trigger which is 

a Boolean condition that is assessed and controls when the 

payload is executed. Logic bombs can be inserted into the 

existing code or could be standalone (Aycock, 2006).  

Hybrid, Droppers and Blended Threats 

It is a kind of malware which has got different hybrid 

characteristics of different malware and the chance to 

exist will be given by the software itself. An example for 

that is the “Thompson’s compiler trick” shown in Table 

2 below (McGraw and Morrisett, 2000). A dropper is 

another combination of malware which leaves behind or 

dropped other malware. When a virus tempt to propagate 

itself as it exploits a technical vulnerability, this what is 

known as a blended threat in addition to exhibiting 

“traditional” characteristics (Aycock, 2006).  

Zombies 

They are considered as a malware from the nature 

of their link with spreading it i.e., since they are 

defined and known as such computers that have been 

cooperated as the attacker can use them for different 

tasks and their main common tasks here is to send 

spam and participating in coordinated, large-scale 

denial-on-service attacks (Aycock, 2006). We have 

taken some of the statuses of that malware as stated 

by the book writer and designed a table which 

includes some comparison of the same so as to give 

the researcher a clear picture of the nature of the 

activity of such malware the table is shown as below. 

The above Table 1 shows how the status and 

functionality of different types of virus is taking place 

with respect to its ability to self-replicating, population 

growth and the nature of its existence or behaviour. 

 
Table 1: Status and Functionality of some Malware (Aycock, 2006) 

 Status and functionality 
 ------------------------------------------------------------------------------------------------------------------ 
Virus name Self-replicating Population growth Parasitic 

Logic bomb No Zero Possibly 
Trojan horse No Zero Yes 
Back door No Zero Possibly 
Virus Yes Positive Yes 
Adware No Zero No 

 
Table 2: Some concrete examples of malicious code (McGraw and Morrisett, 2000) 

Malicious code Date Category Explanation 

Love Bug  2000  Mobile code virus  The fastest spreading virus of all time used VB script and Microsoft Outlook 
   mail to propagate. Caused an estimated $10 billion in damage 
Trinoo (and other 2000  Remote control The highly-publicized denial of service attacks of February 2000 was carried 
dDoS scripts)  attack script out by remotely-planted agent programs 
Melissa  1999  Mobile code virus  The second fastest spreading virus of all time used email to propagate. 
    Infected over 1.2 million machines in a few hours 
Explore. Zip  1999  Mobile code worm  An e-mail borne worm that exploited problems in Microsoft windows to propagate 
Happy99  1999  Virus  A widespread virus infecting Microsoft PCs 
CIH  1998  Virus  A particularly dangerous virus that attacks BIOS in PCs. Ran rampant in 
   Asia before being contained 
Back orifice  1998  Offensive code  Remote control program installed on Windows machines by crackers. Pervasive 
Attack scripts  1998 Offensive code  Crackers called “script kiddies” download malicious code from the Internet 
   and run it against any number of targets. Some expert must create and release 
   the script, to begin with Widespread Most common attack: Buffer overflow 
ActiveX 1997  Mobile code  Decried by security professionals, Microsoft’s ActiveX system introduces grave 
(scripting)   security risks by relying on user’s discretion and judgment 
Java attack 1996- Mobile code  Attack applets placed on Web sites take advantage of flaws in the Java security 
applets 1999  model to carry out attacks. 17 known attacks 
Morris worm  1988  Worm  Released in 1988 by Robert Morris, Jr, this program affected around 6000 
   computers (around 10% of the Internet at the time) 
Thompson’s 1984  Trojan Horse  Ken Thompson introduced a Trojan Horse in a C compiler that compiled itself 
compiler trick    into future programs [Tho84]  



Gamal Abdel Nassir Mohamed and Norafida Bte Ithnin / American Journal of Applied Sciences 2017, 14 (11): 1049.1069 

DOI: 10.3844/ajassp.2017.1049.1069 

 

1054 

Also referring to the nature of virus, it is very clear that 

only the virus as a malware has the ability to do self-

replication whereas other four types of malware have not. 

Also, it has a positive tendency to achieve a considerable 

amount of population growth where others show zero ratios 

these two has resulted into virus been classified as parasitic 

where other ranges from possibility to be to not to be. Is it 

difficult to detect a malware? It is an interesting question 

that might arise here and as we are addressing it we can 

very much say that detecting malware has become a 

difficult task just because of the transparent and different 

types of known and unknown malicious software is playing 

a main part in this (Christodorescu and Jha, 2004) have 

focused on testing anti-virus software in order to address the 

issue of testing detectors of malicious software (such as 

commercial virus scanners), but it is observed that 

generally their techniques are applicable to other types of 

malware detectors. In order to understand the difficulties 

in testing malware detectors they claim that one has to 

understand the obfuscation-deobfuscation game that 

malware writers and developers of malware detectors play 

against each other. They argue that malware detectors 

deploy better detection algorithms as advance malware 

writers detection techniques use better hiding techniques 

to evade detection (Christodorescu and Jha, 2004).  
They have taken the polymorphic and metamorphic 

viruses as examples to justify their argument which that 
since these two types of viruses are specially designed to 
avoid detection tools. This could be discussed in more 
details so as to give the writer a clear picture about the 
difficulty of detecting the malware. A polymorphic virus 
follows the technique of morphing itself so as to avoid 
detection. By encrypting the malicious payload and then 
decrypt it as the execution time is taken place this is a 
common technique to “morph” viruses. To obfuscate 
the decryption routine, several transformations are 
applied such as register reassignment (permuting the 
register allocation) and nop-insertion, code transposition 
(changing the order of instructions and placing jump 
instructions to maintain the original semantics). In case 
of metamorphic viruses it is observed that they attempt 
to evade heuristic detection techniques by using more 
complex obfuscations. The viruses changes their code 
when these malicious software replicate, they change 
their code in a different ways, such as code transposition, 
substitution of equivalent instruction sequences, change 
of conditional jumps and register reassignment. It is also 
been seen that they can “weave” the virus code into a 
host program, making detection almost impossible by 
traditional heuristics and this because of the fact that 
the virus code is mixed with program code and the 
virus entry point is no longer at the beginning of the 
program (these are designated as entry point 
obscuring viruses) (Christodorescu and Jha, 2004). 
Here two questions could be raised looking into given 
the obfuscation-deobfuscation game and the code 
reuse practiced by virus writers: 

Question 1: With respect to the obfuscations or variants 

of known malware, how resistant is a 

malware detector?  

Question 2: Can a hacker or a blackhat1 determine its 

detection algorithm using limitations of a 

malware detector in handling obfuscations?  

 

The motivation for the first question exists by the 

obfuscation-deobfuscation game. Whereas the second 

question is motivated by the fact that if a blackhat knows 

the detection algorithm used by a malware detector, they 

can better target their evasion techniques. In other words, 

the “stealth” of the detection algorithm is important 

(Christodorescu and Jha, 2004). In the same line of 

argument McGraw and Morrisett provide detailed 

descriptions of various types of malware. They have 

noted that categorizing malicious code has increasingly 

become more complex as newer versions appear to be 

combinations of those that belong to existing categories. 

They have provided a table which includes some 

concrete examples of malicious code is provided and 

they have also given a note that “recent versions of 

malicious code are really amalgamations of different 

categories” (McGraw and Morrisett, 2000). Although the 

statistic has some old historical background but still it 

provides the researchers with good view and helps in 

giving a clear idea about the concept of some categories 

of used malware and this certainly will support the idea 

of how detecting malware was and still a difficult task 

which needs a proper techniques to be used in order to 

design or develop models that can act as a services or 

tools of detection. With this background, the table 

provided below which was given McGraw and Morrisett 

(2000) that shows some explanation for some malicious 

code has been taken on different dates and from various 

categories. In order to discuss the content of the above 

table given McGraw and Morrisett (2000) on their 

research titled “Attacking malicious code,” our first 

attention as researchers go to the year 1984 which is the 

eldest year among the other years provided i.e., on the 

range starting from 1984 to 2000. Looking to this year 

we found that malicious code been taken was categories 

as Trojan Horse this indicates that this malware was very 

strong and active since that time especially if we look 

into the fact that the introducer of it has used it for a C 

compiler which is one of the high-level languages. Also, 

our attention goes to some malicious codes that are 

related to attacking mobile devices during a pretty long 

time from now which is 1996 to 1999. The category has 

also included a malicious code of remote control nature.  

Malware Analysis Methods  

Malware analysis is a very important process that 

will determine the purpose and functionality of a given 

malware sample (such as a virus, worm, or Trojan 
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horse). It is an important prerequisite for the 

development of removal tools that can thoroughly delete 

malware from an infected machine; it is also considered 

being a necessary step to develop effective detection 

techniques for malicious code. Traditionally, it has been 

a tedious manual process which is time-intensive. 

Unfortunately, the number of samples that need to be 

analyzed by security vendors on a daily basis is 

constantly increasing (Bayer et al., 2006). One of the 

most important multi-step processes that provide insight 

into malware structure and functionality is malware 

analysis. In this analysis process, there is an important 

step which is used to observe malware relations with 

respect to the system and is achieved by employing 

dynamic coarse-grained binary-instrumentation on the 

target system; this step is known as behavior monitoring. 

At the same time, when an initial examination is 

performed for the collected malware, this is called as 

profiling. Malware analyses can categories fall into two 

main methods; one is based on analyzing a given sample 

during execution which is called dynamic analysis, while 

another one refers to analyze a sample by extracting 

useful information without executing it and this is known 

as static analysis. A brief introduction to both types with 

the knowledge of their limitations as an approach to 

malware analyses is discussed. It is a fact that from a 

traditional point of view in the case of malware detection 

there are two major approaches which are basically split 

based on how it will analyze the malware, they are hence 

static or dynamic analysis (see review (Egele et al., 

2012). In the case of static analysis, their way of 

analyzing this malware is done as a direct analyze in 

binary form, or additionally unpacked and/or decompiled 

into assembly representation. Whereas in the case of 

dynamic analysis, it is done through hooking or some 

access into the internals of virtualization environment the 

binary files are executed and the actions are recorded. So 

it is valid to mention that in the case of dynamic analysis 

it can provide observation of malware action which is 

less vulnerable to obfuscation (Moser et al., 2007) and 

makes it harder to recycle existing malware. However, in 

practice, automated execution of software is difficult, 

since malware can detect if it is running in a sandbox and 

prevent itself from performing the malicious behavior.  

Hence for machine learning approaches, this makes 

the static analysis more amenable and as data size 

increased this will result and enable a better performance 

(Banko and Brill, 2001). Machine learning has been 

applied to malware detection since that fact is known 

(Kephart et al., 1995), so this has proven the fact that 

numerous approaches exist since that moment onwards 

(see reviews (Egele et al., 2012; Gandotra et al., 2014)). 

Machine learning consists of two parts, the feature 

engineering, where the author transforms the input 

binary into a set of features and a learning algorithm, 

which builds a classifier using these features. 

Static Analysis 

Static analysis refers to as such analysis done on the 

infected file without executing it, here the (CFGs) which 

is an abbreviation for Control Flow Graphs needs to be 

extracted as well as Data Flow Graphs (DFGs) along 

with System call analysis. Such information related to 

CFGs and DFGs can be gathered by disassembling or 

decompiling the infected file using some tools like IDA 

Pro. The file may have auto execution which is against 

the actual concept of static analysis this could be 

overcome by analyzing the infected file in a different 

environment to avoid this auto execution of the malware. 

The advantages of static analysis may be pointed out into 

points such as it results in fast, safe and low false 

positives with the possibility of tracing all paths which 

will certainly help in getting lot of information to 

analyze, on the other hand, static analysis may fail 

analyzing unknown malware that uses code obfuscation 

techniques (Egele et al., 2012). 

Dynamic Analysis 

In the case of this type of analysis the analysis is 

done for the infected file during its execution. This type 

of analysis uses a debugger or virtual machine or even an 

emulator to execute the infected file on simulated 

environment in order to analyze its malicious functions, 

as we have mentioned the infected file needs analysis 

environment which must be invisible to the malware for 

the simple reason that the malware writer have tools like 

anti-virtual machine and anti-emulation used to hide 

their malware functions if their detection been under 

analysis. It has been observed that this type of analysis 

i.e., dynamic one fails to detect activities of interest if the 

target changes its behavior depending on trigger 

conditions such as the existence of a specific file or 

specific day as only a single execution path may be 

examined for each attempt (Egele et al., 2012). 

As shown in the above Table 3 both analysis types 

have their advantages and disadvantages. For the static 

one since it is based on analyzing the infected file 

without executing it, this results in fast and safe and low 

level of false positives with good analyzing multipath 

malware. On the other hand, it is difficult to analyze 

unknown malware when following the static analysis. For 

the dynamic analysis which is based on analyzing the 

infected file after executing it, this shows good at 

detecting unknown malware with slow and unsafe with 

difficulty in analyzing multipath malware as main 

disadvantages, whereas Hybrid analysis combines aspects 

of both static and dynamic analysis (Elhadi, 2014). 
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Table 3: Adv. and disadvantages of static and dynamic analysis (Elhadi, 2014) 

Analysis type Advantage Disadvantage 

Static analysis Fast and safe but low level of false positives Difficulty analyzing unknown malware 
 Good at analyzing multipath malware 
Dynamic analysis Good at detecting unknown malware  Slow and unsafe  
Hybrid analysis Combines aspects of both static and dynamic analysis Difficulty analyzing multipath malware 

 

A Comparison of Static, Dynamic and Hybrid 

Analysis for Malware Detection 

Static analysis of software is performed without 
actually executing the program. Examples of the 
information we can obtain from the static analysis include 
Opcode sequences (extracted by disassembling the binary 
file), control flow graphs and so on. Dynamic analysis 
requires that we execute the program, often in a virtual 
environment. Examples of information that can be obtained 
by dynamic analysis include API calls, system calls, 
instruction traces, registry changes, memory writes and so 
on. Hybrid techniques combine aspects of both static and 
dynamic analysis (Damodaran et al., 2015; Elhadi et al., 
2015). The below Fig. 4 shows the various methods of 
malware detection techniques which is basically divided 
into three categories i.e. static, dynamic and hybrid. 

In the below Table 4, the analysis types with their 
main purpose and the corresponding tools that could be 
used in association with each analysis type are clearly 
shown and explained. For instance, if we look into the 
static one we clearly find that it uses as many antivirus 
detection engines as possible to assist classification 
which corresponds to using the virus total as the main 
tool to implement the same. It also uses strings tool 
when it wants to search the body of the malware for the 
string. The dynamic uses various tools for various 
purposes of malware analysis (Verma et al., 2013). Its 
purposes shown in the Table 4 could be further discussed 
as with respect to file integration it checks to record 
baseline configuration. In the case of File monitoring it 
finds which tools are opening, reading and writing files. 
Whereas Process monitoring determines resources that are 
being used such as DLL’s and registry keys. Network 
monitoring uncovers which ports are open, collect network 
traffic and find vulnerabilities. Last but not least, Registry 
monitoring monitors registry activities as they occur. In the 
case of this dynamic analysis certain tools are been used 
such as: Analysis, Filemon and Process explorer. Analysis 
type based on coding its main purpose is to perform 
disassembly and debugging (Verma et al., 2013). 

Malware Detection Techniques  

It’s obviously well known fact that malware writers or 
cyber offenders, otherwise known as hackers, applying 
some certain sophisticated techniques to evade detection. 
They follow methods that modify or morphing the 
malware by means of using several packing and/or 
program obfuscation techniques. Here comes the concept 
of malware detector as a system attempts to identify 
malware using both signatures and other heuristics 

techniques. The antivirus scanner, for example, is a good 
example of a malware detector (You and Yim, 2010). The 
way of detecting a malware may take different approach 
as in the case of commercial malware detectors such as 
virus scanners for example which uses a simple pattern 
matching approach to detect the malware whereby a 
program is declared as malware if it contains a sequence 
of instructions that matched by a regular expression 
(Idika and Mathur, 2007). This has been discovered by a 
recent study that such malware detectors can be easily 
defeated using simple program obfuscations that are 
already known and been used by hackers. One important 
point that forces the database of commercial virus scanner 
to be updated frequently is related to the fact that the 
pattern-matching algorithm is not very resilient to slight 
variations, these malware detectors have to use different 
patterns for detecting two malware that is slight variations 
of each other (Christodorescu and Jha, 2004). 

Detection is mainly dealt with the art of knowing how 
to recognize and locate the malware in its existence 
location whether been on a system, in a file on that system 
or in software or hardware or even a media that still to be 
installed on the system. It is so useful to detect this 
malicious software at the early stage which will surely 
help in preventing it from harming the information that 
may be reachable it. Once we are able to detect this 
software at the earliest, then this will be a great step 
towards minimizing the number of infected systems which 
will result in less effort paid while doing the recovery 
process and also less level of damage the organization 
sustains. Malware detection techniques can be divided 
into three methods; signature-based, behavior-based and 
specification based each method can be applied using 
static analysis or dynamic analysis or hybrid analysis 
(Idika and Mathur, 2007). The Signature-Based is a 
sequence of instructions unique to a malware used to 
generate a malware signature, (this signature is captured 
by researchers in a laboratory environment), a signature 
should be able to identify any malware exhibiting the 
malicious behavior specified by the signature and most 
antivirus scanners are signature based. Whereas the 
Behavior-Based detection techniques focus on analyzing 
the behavior of known and suspected malicious code. 
Such behaviors include factors such as the source and 
destination a][ddresses of the malware, the attachment 
types in which they are embedded and statistical 
anomalies in malware infected systems. One example of a 
behavior-based detection approach is the histogram-based 
malicious code detection technology patented by 
Symantec. Signature refers to the same instructions, same 
basic blocks and same system calls, whereas behavior 
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refers to the similarity between system call sequences and 
their relations. There is a main limitation been observed in 
the case of specification-based detection which is related 
to its difficulty to completely specify the entire set of 
those behaviors which could be marked as valid, whereas 
in the case of signature-based since it cannot detect zero-
day attack, for which there is no corresponding signature 
stored in the database which has been treated as one of the 
major drawbacks of it (Moser et al., 2007). In the case of 
specification-based techniques, it leverages some 
specification to decide the maliciousness of a program 
been under inspection and that by deciding what is the 
valid behavior is and how it looks like from the behavior 
point of view. Signature based detection uses its 
characterization of what is known to be malicious to 
decide the maliciousness of a program under inspection 
(Ellis et al., 2004; Han et al., 2014; Shabtai et al., 2009). 
The procedure of helping protect the system by detecting 
malicious behavior consider the fact that the malware 
detector may or may not reside on the system it is trying to 
protect, in fact the malware detectors takes two inputs 
which could are related to the signature or behavior of 
malware to be identified and known as well as the 
program that currently under inspection (Riesen et al., 
2010). Each of them can be applied using any of the 
methods either static analysis which is implanting 
signature/behavior/specification-based detection technique 
without executing the suspected file and it was the first try 
to detect malware or dynamic analysis, it is applying all of 
them i.e., signature/behavior/specification-based detection 
technique during suspected file execution or even hybrid 
analysis (Idika and Mathur, 2007).  

Hence to further explain these techniques and their 
nature we can say they have and could be categorized as 
anomaly-based detection, specification-based detection 
and signature-based detection (Bergroth et al., 2000), 
(Skormin et al., 2003; Summerville et al., 2005). 
Anomaly-based detection techniques use the knowledge 
of what constitutes normal behavior to decide the 
maliciousness of a program under inspection. 
Specification-based techniques leverage some 
specification of what is a valid behavior to decide the 
maliciousness of a program under inspection. Signature 
based detection uses its characterization of what is known 
to be malicious to decide the maliciousness of a program 
under inspection (Ellis et al., 2004; Han et al., 2014; 
Shabtai et al., 2009). The fundamental limitation of 
anomaly-based detection is its high false-positive rate and 
the time complexity in the training phase. The main 
limitation of specification-based detection is that it is 
difficult to specify completely and accurately the entire set 
of valid behaviors. One of the major drawbacks of 
signature-based detection is that it cannot detect the zero-
day attack, for which there is no corresponding signature 
stored in the database (Rieck et al., 2011). 

We can then conclude to the fact that those techniques 
used for detecting malware can be categorized broadly into 
three categories: Anomaly-based detection, specification-

based detection and signature-based detection. Anomaly-
based detection techniques use the knowledge of what 
constitutes normal behavior to decide the maliciousness of a 
program under inspection. Specification-based techniques 
leverage some specification of what is a valid behavior to 
decide the maliciousness of a program under inspection. 
Signature-based detection uses its characterization of what 
is known to be malicious to decide the maliciousness of a 
program under inspection.  

The fundamental limitation of anomaly-based 
detection is its high false-positive rate and the time 
complexity in the training phase. The main limitation of 
specification-based detection is that it is difficult to 
specify completely and accurately the entire set of valid 
behaviors. One of the major drawbacks of signature-based 
detection is that it cannot detect the zero-day attack, for 
which there is no corresponding signature stored in the 
database (Zhang and Xia, 2012). 

Research Techniques for Malware Detection System 

The static analysis which is implementing signature 
based detection without executing the suspected file was the 
first attempt to detect malware. Some of the researchers 
who used this approach applied Objective-Oriented 
Association (OOA) mining based classification (Ye et al., 
2008). The proposed model has three major modules, 
namely, Portable Executable (PE) parser, OOA rule 
generator and rule-based classifier. This model was taken to 
a next level by adopting associative classification method 
based on the analysis of Application Programming Interface 
(API) execution calls (Ye et al., 2010).  

Other researchers combined signature-based 

technique and genetic algorithm technique and their 

study focused on three types of malware which are; 

Viruses, Worms and Trojan Horses (Zolkipli and Jantan, 

2010). Signature based detection was also applied during 

suspected file execution (i.e., dynamic analysis) in which 

the researchers traced API calls and then built the 

suspected file signature (Nair et al., 2010).  
These researchers generated a signature for an entire 

malware class instead of individual malware samples. 
This approach has the advantage that all the 
metamorphic viruses that are created from a 
metamorphic generator can be easily detected once a 
base signature for that metamorphic generator is 
obtained. A considerable portion of the existing 
studies relies on using behavior-based detection, 
whereas some researchers apply static analysis others 
apply dynamic analysis. Some of the studies adopt the 
mapping of kernel memory as a way to develop a 
monitor for malware behavior. The monitor utilizes 
time-based view of kernel objects to analyze traces of 
kernel execution (Rhee et al., 2011).  

Other studies trace malware behavior exhibited by 
installer and uninstaller software as a way to avoid false 
positives (Rhee et al., 2010) and suggest a new 
categorization method for malware based on maximal 
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common subgraph detection (Park et al., 2010). We have 
observed that some of the current researchers have gone for 
the idea of combining static and dynamic analysis so as to 
overcome the drawbacks or limitations on each of them. It 
is a fact that some limitations can be found and observed in 
approaches been developed following the concepts of 
signature or behavior-based. It’s then found that the 
signature-based approaches can be overcome by 
obfuscation and require prior knowledge of malware 
samples, whereas in behavior-based not able to detect a 
lot of polymorphic viruses present (Packers), (Elhadi, 
2014). Also it is found that a higher rates of false 
positive are been generated and incur expensive 
runtime overheads (Hu et al., 2009). This is been 
clearly explained as in the Table 5 shown below. 

In their research paper (Damodaran et al., 2015) they 
compare malware detection techniques based on the 
methods of detection i.e., static, dynamic and hybrid 
analysis. They have specifically done a training for the 
Hidden Markov Models (HMMs) on both static and 
dynamic feature sets and then they have done some 
comparison for the resulting detection rates over a 
substantial number of malware families and also they 
have considered hybrid cases in the situation where 
dynamic analysis is used in the training phase with the 
static techniques used in the detection phase and vice 
versa which enables them to include the hybrid analysis 
as well (Damodaran et al., 2015). Referring to their work 

we can conclude a discussion or findings in such a way 
that as the three methods of detection which are based on 
static, dynamic or hybrid one, each has its own 
advantages or contribution over the models that has been 
designed based on them and also their own 
disadvantages or limitations on the same. In the above 
Table 6 we discussed the various types of detection 
techniques and our focus will be on projecting these 
advantages/contributions as well as the common 
disadvantages/limitations of these three types of malware 
detection techniques in a form of analytical comparison 
between three of them which will result in an overall 
scenario that will shape their real existence in malware 
detection process and this will certainly help the 
researcher in looking into the concept of malware 
detection from a deep and different angles. It is clearly 
observed that the model, however, has some advantages but 
it requires a lot of effort as an up to date signature dataset is 
required since the malware will be expected to be present in 
the database so as to get detected otherwise it will not. 
Hence repository of signature of known malware should be 
maintained and this repository should be up to date as well. 
It is also observed that with this technique been used simple 
obfuscation technique can be used to evade it. The behavior 
based passed through phases of analyzing and then 
classification since first both benign and malware are 
analyzed during the training phase. The statistical one is 
mainly considered as a benchmarking process.  

 

 
 

Fig. 4: Organization of malware detection techniques (Elhadi et al., 2015) 
 
Table 4: Summary of some malware analysis tools (Verma et al., 2013) 

Analysis type Purpose Tools 
Static Use as many antivirus detection engines as possible to assist classification Virus Total (Virus Total, 2008) 
 Search the body of the malware for the string Strings (Microsoft, 2008c) 
Dynamic File integrity checks to record baseline configuration Analysis (Winalysis.com, 2008) 
 File monitoring finds which tools are opening, reading and writing files Filemon (Microsoft, 2008c) 
 Process monitoring. Determine resources that are  Process explorer (Microsoft, 2008c) 
 being used such as DLL’s and registry keys 
 Network monitoring. Uncover which ports are open, Fport (Foundstone, 2008), tcpview  
 Collect network traffic and find vulnerabilities (Microsoft, 2008c), nessus 
 Registry monitoring. Monitor registry activities as they occur Regmon (Microsoft, 2008c) 
Code Disassembly, debugging IDA Pro Ollydbg 
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Table 5: Advantages and disadvantages of Signature and behavior techniques (Elhadi, 2014) 

Malware detection types Advantage  Disadvantage 

Signature-based less scanning time Unknown malware can easily evade detection 
 Few false-positives cannot deal with simple obfuscation  
Behaviour-Based Best results in detecting of not able to detect a lot of polymorphic viruses 
 Polymorphic malware present (Packers) 

 
Table 6: Analysis of Malware detection techniques (HMMs) (Damodaran et al., 2015) 

Detection techniques  

mentioned Definition and nature Advantages/contributions Disadvantages/limitations 

Signature based It is the most widely used anti-virus Simple and relatively fast Requires an up-to-date signature 
detection technique A signature is a sequence of  Effective against most database as malware not present in 

 bytes that can be used to identify specific common types malware the database will not be detected. 
 malware. A variety of pattern matching  Relatively simple obfuscation techniques 
 schemes are used to scan for signatures  can be used to evade signature detection 

   Must maintain a repository of  
   signatures of known malware 

   The repository must be updated frequently 
   as new threats are discovered 

Behavior based It focuses on the actions performed Systematical behavior study Both benign and malware are analyzed   
detection by the malware during execution of the suspected malware during the training phase 

   Classification of them will be only  
    during the execution phase 

Statistical based Properties derived from program features Has served a benchmark in Visible only when using HMMs as the  
detection as in the Hidden Markov Models (HMMs),  a variety of other studies basis for the malware detection  
 used in their research paper, are used  schemes considered in their research 

  to classify metamorphic malware   

 

The main techniques that are used In Malware 

Detection Systems (MDS) are related to a technique 

which is based on machine learning or data mining or 

call graph or string representation. Each of them is 

explained and discussed below. 

Malware Detection Based on Machine Learning  

It is observed that there are machine learning 

techniques of different nature have been proposed for the 

sake of malware detection, it is found that the boosted 

decision trees based on n-grams are been observed to 

produce better results than both the Naïve Bayes 

classifier and Support Vector Machines. In order to 

distinguish between malware and clean program files, 

some researchers have used automatic extraction of 

association rules on Windows API execution sequences. 

To figure out whether a given program file is/not a 

variant of a previous program file a model like Hidden 

Markov is used so as to detect that file.  

In this regards and in order to reach the similar goal, 

different researchers in this field have gone for applying 

Hidden Markov Models, which have been previously 

used with great success for sequence analysis in 

bioinformatics. In the case of polymorphic malware, we 

can find that neural networks have been used for the sake 

of detecting the malware. Also to identify patterns of 

behavior for viruses in Windows executable files Self-

organizing maps have been used. (Kolter and Maloof, 

2006) mentioned in their research that, it has been 

observed that classification of malware binaries was first 

been studied by (Schultz et al., 2001) and in a research 

which describes the use of machine learning and data 

mining to detect and classify malicious executable as 

they appear in the wild. Researchers have gathered 1,971 

benign and 1,651 malicious executables and encoded 

each as a training example using n-grams of bytecodes as 

features. Such processing resulted in more than 255 

million distinct n-grams (Kolter and Maloof, 2006). The 

most important point that we can record and observe 

here is that these both approaches have used and applied 

string features of binary executable for training learning 

algorithms and distinguish between malicious and 

benign files. Some other researchers recently have 

devised an extension of the above-mentioned work to 

unpacked malware binaries as they have proposed 

Malware Collection Booster (McBoost), a fast statistical 

malware detection tool that is intended to improve the 

scalability of existing malware collection and analysis 

approaches. Given a large collection of binaries that may 

contain both hitherto unknown malware and benign 

executable, McBoost reduces the overall time of analysis 

by classifying and filtering out the least suspicious 

binaries and passing only the most suspicious ones to a 

detailed binary analysis process for signature extraction. 

The McBoost framework consists of a classifier 

specialized in detecting whether an executable is packed 

or not, a universal unpacker based on dynamic binary 
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analysis and a classifier specialized in distinguishing 

between malicious or benign code (Perdisci et al., 2008). 

On the same line, some others have proposed analyzing 

the content of the file for detection of malware samples 

been embedded within files and that is done basically by 

making use of similar techniques (Li et al., 2007). Hence 

in this regards it is very much relevant to mention that 

for malware behavior the first application of 

classification has been introduced by researchers who 

have to generate evidence and classify the samples with 

several machine-learning algorithms (Devesa et al., 

2010). Then a research of the same field has been 

extended and gone in another line as the focus was on the 

clustering of malware behavior for the sake of discovering 

the novel malware and reduction of manual analysis effort, 

in this regard the first clustering system for observed 

behavior was introduced, this was then later got extended 

by another research for the main reason to make it more 

scalable, where the system devised provides an excellent 

performance in when it comes to run-time while it is in the 

practice stage (Bayer et al., 2010). However, both 

approaches require a single batch of malware samples and 

thus are limited in the overall capacity. 

Malware Detection Based on Data Mining  

Detecting unknown viruses researchers have also pay a 

great attention to the representation of malware detection 

based on data mining. It is observed that a high accuracy 

rate is found when a number of classifiers have been built; 

furthermore it’s been extended to the research level where it 

become so common to apply data mining techniques for 

malware detection as it depends on generating a feature set 

which includes hexadecimal byte sequence which is 

otherwise termed as N-grams. It also includes instruction 

sequences, API/system call sequences etc. (Siddiqui et al., 

2008). Practically speaking, in the case of features 

methodology the number of features been extracted from 

the targeted files is usually very high this has 

directly/indirectly made several techniques from text 

classification have been employed to select the best features 

whereas in other hand features that may include printable 

strings extracted from the files and some operating 

system dependent features such as DLL information. 

When collecting the data the activity monitoring 

methods may be used, but still, data mining remains the 

principal detection method. Here we discuss the concept 

of N-grams which is basically a sequence of bytes of 

fixed or variable length, extracted from the hexadecimal 

dump of an executable program. They are used as a 

general term for both overlapping and non-overlapping 

byte sequences. They have been defined to remain at a 

syntactic level of analysis. The first major work that used 

data mining techniques for malware research was an 

automation of signature extraction for viruses so it is a 

clear fact that the signature extraction is a major step in 

data mining technique and with respect to the N-grams 

technology here comes the concept of Dynamic Misuse 

Detection, Dynamic Hybrid Detection, Static Hybrid 

Detection and Static Misuse Detection (Siddiqui et al., 

2008). Table 7 summarizes malware detection using data 

mining which differs in techniques, models, features and 

data set used. From the below table representation for 

malware detections work which is mainly related to data 

mining as a representation technique been used, we can 

observe that researchers have used different methods which 

have got a direct relation with the nature of the platform or 

the system nature that it has been used in for example 

clustering has been used in Network whereas classification 

has been used when it comes to detecting various types of 

malware. More (Norouzi et al., 2016) gave a detailed 

review from different researches related to some works for 

malware detection in data mining methods. Some 

researchers leverage standard data mining algorithms to 

classify the file content of every block as normal or 

potentially malicious (Tabish et al., 2009). 

Malware Detection Based on API Call Graph  

API which is an abbreviation for an Application 
Programming Interface which is basically a collection or 
set of rules or codes since it related to programming and 
the program can be defined as a set of codes. These 
particular rules and specifications are been used by the 
various software programs in order to communicate with 
each other. As the user interacts with the computer 
through various interfaces, hence API is an interface 
between those various and different software programs, 
that interface will facilitates the interaction of those 
different software programs with each other. API could 
be created for many applications, libraries, operating 
system, etc. this is true just because the way of defining 
their “vocabularies” and resources needs and request 
some conventions, for example, the function-calling 
conventions. Since API is a programming specifications 
it may include such those specification which ranges 
between those been used and needed for data structure, 
object classes, routines and up to the level the 
protocols used to communicate between the consumer 
program and the implementer program of the API 
itself, the API calls list is extracted from a binary 
executable through static analysis of the binary with 
disassembly tools such as IDA Pro (Elhadi et al., 
2015). Also, it may be through dynamic analysis after 
executing the binary in a simulated environment, which is 
the technique adopted by tools such as API monitor 
(Monitor-Spy, 2012). It’s observed that there is low 
malware detection accuracy exists in the case of malware 
detectors that based on API call graph architecture. This is 
basically due to some problems in both the API call 
graph construction and matching algorithms.  
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Table 7: Selected previous work in the malware detection data mining technique (Piyanuntcharatsr et al., 2015) 

Work Data mining/ clustering Dataset Network Malware type Method 

Pratheema, Prabha Data mining (classifier: 100 binary (training  - 15 subfamily Hex code/ngrams of  

- and Kavitha NB, KNN, J48) benign = 90, malware = 10)   different size 
Rafique and Calballero (0000) clustering 16,000 malware binaries Yes Network signature 11 network feature 

Bailey et.al. (0000) Classification 3,698 Yes Groups of Malware System state  

     Changes vector 
Komashinskiy and classification Decision Malware = 5854  - Malware and benign <position, byte>  

Kotenko Table C4.5 Random  benign = 1656 

 Forest Naive Bayes 
Choudhary and Classification: SVM,  200, 500 files - Type 1, Type 2 Instruction sequence 

Saharan (0000) NN  

Kumar and Mishra (2010) Classification IBK 323 (virus+worm) - Virus, worm Sequence alignment 
Tabish et al. (2009) Classification-decision Benign = 1800 and - backdoor, Trojan, virus, Statistical features 

 tree (J48) malware = 10, 311  worm, constructor         and miscellaneous 

 

The fact is that in the case of API call graph construction 

algorithms there is a major issue of building a precise 
call graph from the information collected about malware 
samples. Also in the case of API call graph matching 
algorithms it is found that they have NP-complete problems 
and suffer from being slow because of their computational 
complexity (Anderson et al., 2011; Han et al., 2012; 

Lee et al., 2010b). In malware detection, some 
researchers have paid attention to building their detection 
systems or architectures based on API call graphs 
because they have shown some sufficient expressiveness 
to model complicated structures and their use is gaining 
momentum in representing structural information. We 

will be showing in the following paragraphs some of the 
related work in this area. There are several approaches 
that the researchers have gone for so as to build the 
graph, as most of them present graph nodes as system 
calls. This is very clear as in the case of; Lee et al. 
(2010a) who have created their graph by transforming a 

Portable Executable (PE) file into a call graph with 
nodes and edges which represent system calls and 
system call sequence, respectively. After that, 
minimization is applied to the call graph turning it into a 
code graph to speed up the analysis and comparison 
process (Lee et al., 2010b). Whereas it is observed that 

some researchers use the same approach by using 4-tuple 
nodes to denote a system call, edges, the dependencies 
between two system calls and a label for nodes and 
edges, (Park et al., 2010) it is also observed as in the 
case of Park and Reeves 2011 some other studies use 
graph nodes to denote kernel objects instead of system 

calls. It is also seen that the graph was built from 
subroutines where the nodes and their corresponding call 
references as edges (Kostakis et al., 2011). On the other 
hand, some others researchers have used a dependency 
graph whose vertex represents a line in the semantic 
code and the dependency between two lines is 

represented by a directed edge (Kim and Moon, 2010). 
In some research, we have found that researchers have 
proposed an algorithm to construct a dependence call 
graph, where graph nodes represent system calls and two 
types of dependencies exist between system calls to 
present the edges (Christodorescu et al., 2008). 

Furthermore a researcher has proposed a graphs which 

are related and based on behavior with the proficiency 
that they share similarities with graphs of other 
researchers i.e., Christodorescu in their research paper 
which is focusing on mining specification of malware 
behavior, with the clear difference that the edges of their 
graph have been produced in a way which is totally 

different with the point that there is no constraint with 
respect to API call parameters been used. The idea of that 
usage of both types of research is depends on the fact that 
an edge is connecting node a to node when there is data 
dependency between API call nodes a and b, the data 
dependency represents when the return value of first API 

call has taint label that is used in one of the input parameter 
lists for the second API call (Christodorescu et al., 2008; 
Kolbitsch et al., 2009). This idea is been used later as a 
researcher has enhanced the dependence graphs 
proposed by the above two researchers following the 
methodology of assigning labels to particular files, 

directories, registry keys and devices based on their 
significance to the system (e.g., system startup list, firewall 
settings, system executable) (Christodorescu et al., 2008; 
Kolbitsch et al., 2009; Fredrikson et al., 2010). It is true and 
valid to come out from all the above with the fact that all 
the above studies have used different graph matching 

techniques while doing the graphs comparison process, 
these techniques ranges from formula building using 
intersection and union of graphs, weighted common 
behavioral graph generation based on an approximate 
algorithm and maximal common subgraph (Park et al., 
2010; Lee et al., 2010a; Kim and Moon, 2010). One 

important point that forces the database of commercial virus 
scanner to be updated frequently is related to the fact that 
the pattern-matching algorithm is not very resilient to slight 
variations, these malware detectors have to use different 
patterns for detecting two malware that is slight variations 
of each other (Christodorescu and Jha, 2004).  

In below Table 8 a thorough review of Malware 
Detection System using data mining is been provided 
with the findings been related to date mining methods. 
This review table will provide researchers with a clear 
view of data mining usage and its contribution in 
building logic for malware detection.   
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Table 8: A review of MDS using data maiming (Norouzi et al., 2016) 

Paper title, author, Year of publication Findings with relation to data mining methods 

Schultz et al. (2001). Data mining methods Proposed a data mining method to Recognise the new malicious files in run-time 

for detection of new malicious executable execution. Their method was based on three types of DLL calls such as the list of 
 DLL issued by the binary; the list of DLL function calls and a number of different  

 systems calls used within each DLL. Also, they examine byte orders extracted from 

 the hex-dump (a hexadecimal scheme of computer data) of an executable file using  
 signature methods. The main structure of this method is based on Naive-Bayes (NB) 

 algorithm. They compared the experimental results by traditional signature-based 
 methods 
Kolter and Maloof (2004). Learning to Presented a data mining approach and �-gram analysis to identify malicious executable 

detect malicious executable sin the wild files based on signature approach. They presented a hex-dump utility for translating  
 each executable file to hexadecimal code in an ASCII format. Their main data set 

 consisted of the clean programs and the malicious programs. They analyzed the 

 proposed approach by some popular classification method such as instance-based  
 learner, TFIDF, Naive-Bayes, support vector machines, decision tree, boosted 

  Naive-Bayes and boosted decision tree. In the other research 

Siddiqui et al. (2008). Detecting internet Proposed data mining techniques for recognition some malware programs such as  
worms using data mining techniques Worms. They considered variable length instruction sequence for their approach. 

 Their main data set includes some Windows files and Worms. As experimental results 

 sequence reduction was executed, 97% of the sequences were removed and random  
 forest decision tree model was performed slightly better than the others. Also, some  

 research work presented the data mining methodologies for a different approach 

Yang and Yi-Ping (2015). Data mining in The researchers presented various data mining methods that have been developed for 
lung cancer pathologic staging diagnosis:  cancer diagnosis. Consequently, this research focused on captivating the clinical  

Correlation between clinical and information which can be found without surgery to exchange the pathology report. 

pathology information They used to discover the association between the clinical information and the 
 pathology report in order to maintain lung cancer pathologic staging diagnosis 

 using data mining techniques. 

Gandotra et al. (2014). Malware The authors proposed a data mining approach to analyzing the students’ careers. 
analysis and classification: A survey. Their approach is based on clustering and sequential methods with the aim of  

Campagni et al. (2015). Data mining categorizing strategies for refining the performance of the exams scheduling and students. 

models for student careers They analyzed a real case study using �-mean cluster techniques in WEKA tool 
Bayer et al. (2006). Dynamic analysis Presented a new data mining method for the problem of detecting the phishing 

of malicious code websites using a developed associative classification method called multilabel 

 classifier that generates multiple labels rules. They analyzed the experimental 
 results by various patterns in WEKA software 

Rahman and Hasan (2011). Using and Analyzed the several decision tree models to classify patients of the hospital 

comparing different decision tree surveillance data as a real case study. The experimental results of their analysis 
classification techniques for mining showed that their approach improved identical dissemination of instances in 

ICDDR,B Hospital Surveillance data. each class  

Ghosh et al. (2014). A novel Neuro-fuzzy Used a neuro-fuzzy data mining approach for classification of generalized bell- 
classification technique for data mining shaped membership functions. They applied the proposed technique to ten real 

 standard datasets from the UCI machine learning repository for classification 

 using Kappa statistic. They simulated proposed technique in MATLAB.  
Moskovitch and Shahar (2015). Presented a novel managed discretization technique for analyzing multivariate time 

Classification-driven temporal series which uses frequent temporal patterns as features for classification of time 

discretization of multivariate time series chain for geared near improvement of classification correctness. This paper used 
 temporal abstraction classification approach and time intervals mining for the 

 presented multivariate time series  

Stopel et al. (2006). Application of artificial Presented novel Artificial Neural Networks (ANN) based mechanism for discovering 
neural networks techniques to computer the computer Worms based on the behavioral computer events. According to the 

worm detection estimation of different parameters of the infected computers, the ANN, decision tree 

 and �-nearest neighbors’ classification techniques are compared 
Nissim et al. (2012). Detecting unknown  Where the author's presented computer measurement extracted mechanism for 

computer worm activity via support identifying unknown computer Worm activity in the operating system using support 

vector machines and active learning vector approaches. This paper separates a series of trials to check the new technique 

 by retaining several computer configuration activities  
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Malware Detection Based on String Representation 

This technique as we proposed it, we will address it 

showing how our proposed model works. Our model has 

three phases, the first one will basically represent the 

various known malware in text into string format and 

hence identify the various functions and their related 

parameters, phase two will make use of the redundancy 

there to identify which parameters are repeatedly been 

called by same functions and hence once this occurrence 

exists, it will be checked and if it is greater than the 

threshold then that area will be identified as risky zone 

which represents the actual malware part of the whole 

malware file. Phase three will work with unknown 

malware samples and detecting them only against the 

risky zone or red area identified in phase two so as to 

perform a fast detection system which will give a high 

detection accuracy and be fast so no computational 

complexity will be experienced with it and as a result of 

that less memory space will be used. All of these are in 

fact drawbacks been noted in many of other malware 

representation techniques. The model we propose is a 

hybrid one as it makes use of signature and behavior 

based techniques. Another model is related to Hancock 

is the first string signature generation system that takes 

on this challenge on a large scale, Hancock is able to 

automatically generate string signatures with a false 

positive rate below 0.1%., it also proven to be given a set 

of malware samples, Hancock is designed to create a 

minimal set of N-byte sequences, each of which has a 

sufficiently low false positive rate, that collectively 

cover as large a portion of the malware set as possible 

this has been mentioned in their research. Griffin et al. 

(2009) published by Symantec Research Laboratories 

about automatic generation of string signature for 

malware detection, they have claimed that Hancock 

differs from previous work by focusing on automatically 

generating high-coverage string signatures with 

extremely low false positives (Griffin et al., 2009). 

Kreibich and Crowcroft (2004) developed Honeycomb a 

system that uses honeypots to gather inherently 

suspicious traffic and generates signature by applying 

the Longest Common Substring (LCS) algorithm to 

search for similarities in the packet payloads. As they 

mentioned in their research paper (Lin and Stamp, 

2011) that their system is unique in that it generates 

signatures. In contrast to NIDSs, it cannot read a 

database of signatures upon startup to match them 

against live traffic to spot matches thus, the commonly 

employed pattern-matching algorithms in NIDSs which 

are of no use to the researchers. Instead, the system 

tries to spot patterns in traffic previously seen on the 

honey pot as the researchers have overlay parts of 

flows in the traffic and use a Longest Common 

Substring (LCS) algorithm to spot similarities in packet 

payloads. Like pattern matching, LCS algorithms have 

been thoroughly studied in the past. Their LCS 

implementation is based on suffix trees, which are used 

as building blocks for a variety of string algorithms. 

Using suffix trees, the longest common substring of 

two strings is straightforward to find in linear time 

(Kreibich and Crowcroft, 2004). 

The Importance of Malware Detection 

The topic of malware detection has taken a high 
level of importance in many types of research in 
recent years and in different types of study fields. 
According to the analytical data from Scopus, the 
study of the malware detection has a significantly 
increased in the last six years (St'astna and Tomasek, 
2015) this is shown in the below Fig. 5. 

Dynamic Programming Representation Tools 

Here some dynamic programming-based tools that 
are currently been used in most of the representation 
techniques will be briefly discussed such as Basic Local 
Alignment Search Tool (BLAST), Longest Common 
Sequence (LCS) and Dynamic Time Warping (DTW) as 
in certain representation techniques specially those based 
on comparison between any two or more 
inputs/functions/parameters they could be used to generate 
the desired results based on the final algorithm that will 
ensure better improvement of malware detection accuracy.  

Basic Local Alignment Search Tool (BLAST) 

BLAST is a system which has become very popular in 
recent times (Altschul et al., 1990). While the 394 ISMB-
95 Needleman-Wunsch/Smith-Waterman systems are able 
to deal with biosequences containing gaps and FASTA 
introduces something similar to gaps in the process of 
joining adjacent regions, BLAST deals exclusively with 
uncapped biosequences. However, what is lost by 
disregarding gapped sequences is compensated for by the 
very fast execution times due to the construction of a finite 
state machine to recognize all substrings of some fixed 
size (called w-meters) of the query biosequence that 
scores above a given threshold value. (Given the presence 
of mutations, the authors estimate that each residue in the 
query biosequence will typically contribute 50 w-mers to 
the finite state machine). Hits generated by the scan are 
then extended until the score for the extended match falls 
below better scoring shorter matches. So in bioinformatics 
BLAST for Basic Local Alignment Search Tool is an 
algorithm for comparing primary biological sequence 
information, such as the amino-acid sequences of different 
proteins or the nucleotides of DNA sequences. A BLAST 
search enables a researcher to compare a query sequence 
with a library or database of sequences and identify library 
sequences that resemble the query sequence above a 
certain threshold. BLAST is one of the most widely used 
bioinformatics programs for sequence searching. It 
addresses a fundamental problem in bioinformatics 
research. The heuristic algorithm it uses is much faster 
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than other approaches, such as calculating an optimal 
alignment. This emphasis on speed is vital to making the 
algorithm practical on the huge genome databases 
currently available, although subsequent algorithms can be 
even faster, BLAST is also often used as part of other 
algorithms that require approximate sequence matching. 
BLAST can be used for several purposes. These include 
identifying species, locating domains, establishing 
phylogeny and comparison. With the use of BLAST, you 
can possibly correctly identify a species or find 
homologous species. This can be useful, for example, 
when you are working with a DNA sequence from an 
unknown species. When working with a protein sequence 
you can input it into BLAST, to locate known domains 
within the sequence of interest. Using the results 
received through BLAST you can create a phylogenetic 
tree using the BLAST web page. Phylogenies based on 
BLAST alone are less reliable than other purpose-built 
computational phylogenetic methods, so should only be 
relied upon for "first pass" phylogenetic analyses. In 
the case of comparison when working with genes, 
BLAST can locate common genes in two related 
species and can be used to map annotations from one 
organism to another. Before BLAST, FASTA was 
developed by (Lipman and Pearson, 1985). But BLAST 
is more time-efficient than FASTA by searching only for 
the more significant patterns in the sequences, yet with 
comparative sensitivity (Wise, 1995).  

Longest Common Sequence (LCS) 

The Longest Common Subsequence (LCS) problem is 
the problem of finding the longest subsequence common to 
all sequences in a set of sequences (often just 
two sequences). For example in a typical LCS Problem 
Statement: Given two sequences, find the length of longest 
subsequence present in both of them. A subsequence is a 
sequence that appears in the same relative order, but not 
necessarily contiguous. For example, “abc”, “abg”, “bdf”, 
“aeg”, ‘”acefg”, etc are subsequences of “abcdefg”. More 
explanation is given in the below-shown examples: LCS for 
input Sequences “ABCDGH” and “AEDFHR” is “ADH” 
of length3. LCS for input Sequences “AGGTAB” and 
“GXTXAYB” is “GTAB” of length 4, the naive solution 
for this problem is to generate all subsequences of both 
given sequences and find the longest matching 
subsequence. This solution is exponential in term of time 

complexity. Let us see how this problem possesses both 
important properties of a Dynamic Programming (DP) 
Problem, for the general case of an arbitrary number of 
input sequences, the problem is NP-hard (Maier, 1978) 
when the number of sequences is constant, the problem is 
solvable in polynomial time by dynamic programming for 
the case of two sequences of n and m elements, the running 
time of the dynamic programming approach is O (n×m). 
There exist methods with lower complexity (Bergroth et al., 
2000) which often depend on the length of the LCS, the size 
of the alphabet, or both. Notice that the LCS is not 
necessarily unique; for example, the LCS of "ABC" and 
"ACB" is both "AB" and "AC". Indeed, the LCS problem is 
often defined to be finding all common subsequences of a 
maximum length. This problem inherently has higher 
complexity, as the number of such subsequences is 
exponential in the worst case, (Greenberg, 2003) even for 
only two input strings. 

Dynamic Time Warping (DTW) 

DTW algorithm has earned its popularity by being 
extremely efficient as the time-series similarity measure 
which minimizes the effects of shifting and distortion in 
time by allowing “elastic” transformation of time series 
in order to detect similar shapes with different phases. 
Given two time series X = (x1, x2, ...xN), N ∈ N and Y = 
(y1, y2, ...yM), M ∈ N represented by the sequences of 
values (or curves represented by the sequences of 
vertices) DTW yields optimal solution in the O (MN) 
time which could be improved further through different 
techniques such as multi-scaling (Müller et al., 2006; 
Satrya et al., 2015). The only restriction placed on the 
data sequences is that they should be sampled at 
equidistant points in time (this problem can be resolved 
by re-sampling) (Senin, 2008). The below figure is taken 
from (Tobiyama et al., 2016) explains more in the 
concept of DTW.  

Figure 6 on the left shows the two-time series which 
are similar but out of phase and has produced a large 
Euclidean distance. To align the sequences a warping 
matrix has been constructed and search for the optimal 
warping path (red/solid squares) as shown on the right 
figure with the Sakoe-Chiba Band with width R is used 
to constrain the warping path. This supports the idea that 
Dynamic time warping is an algorithm for measuring the 
similarity of two-time series (Tobiyama et al., 2016). 

 

 
 

Fig. 5: Statistic, published research papers “scopus” (St'astna and Tomasek, 2015) 
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Fig. 6: Aligning using DTW concept (Tobiyama et al., 2016) 

 

Discussion 

Research Issues for MDS-Based On Call Graph 

and Data Mining 

The graph is such a powerful tool for modelling 

structured objects and applications. A graph is a way of 

representing the systems because they offer a method to 

express models by the image. There are many definitions 

for graphs in literature, any definition considered 

applications that depend on it. It proves that the 

definition given below is flexible enough for a wide 

range of tasks (Riesen and Bunke, 2010). A graph G 

consists of a collection of two types of elements, namely 

vertices and edges, vertices are connected together by the 

edges. A vertex is simply drawn as a node. The vertex 

set of G is usually denoted by V (G), or V. |V (G)| is the 

order of a graph and it represents the number of the 

vertices. E (G), or E is the edge set of G, An edge (a set 

of two elements) with two endpoints “a” and “b” is 

represented by ab (without any symbol in between). An 

edge is plotted as a line that connects two vertices, called 

an endpoint. The main issues of using API call graph for 

detecting malware may be listed as: 

 

• Input pre-processing 

• API call graph construction 

• API call graph optimization 

• API call graph matching and similarity 

 

API call graph techniques follow two main steps, 
namely, the transformation of malware samples into an 
API call graph using API call graph construction 
algorithm and matching the constructed graph against 
existing malware call graph samples using graph 
matching algorithm. A major issue facing malware API 
call graph construction algorithms is building a precise 
call graph from information collected about malware 
samples. On the other hand call, graph matching is an 
NP-complete problem and is slow because of 
computational complexity. Although the research was 
done has shown good Experimental results on 514 
malware samples demonstrate that the proposed system 

has 98% accuracy and 0 false positive rates (Barry et al., 
2015) but still it has computational time complexity 
which also results in wastage of large memory space. 
When it comes to applying data mining techniques for 
malware detection, a feature set has to be first generated. 
These features include hexadecimal byte sequences, 
instruction sequences, API/system call sequences etc. 
Usually, the number of features extracted from the files 
is very high. In order to select the best features here 
several techniques from the text, classification has been 
employed. Some other features include printable strings 
extracted from the files and some operating system 
dependent features such as DLL information. Some of 
these methods might use activity monitoring as a data 
collection method but data mining remains the principal 
detection method overall data mining needs all of the 
above scenarios of feature set generation and 
extraction which in almost the cases a difficult task to 
achieve unless very high level of detection 
methods/models been used (Elhadi, 2014). With all 
the above drawbacks been observed when using 
representation technique for malware based on various 
techniques We recommend and propose the Signature 
(String-based) and behavior representation technique 
which will solve all of the above issues and with high 
detection rate using very less memory space with the 
specialty in pinpointing the actual crucial zone of the 
malware sample been detected as malware and hence 
identifying it from the rest of the code which maybe a 
Benin and not actually malware.  

API with Machine Learning Algorithms 

Some researchers have used certain machine learning 

algorithms with API calls for malware detection such as: 
Instance Based Learner (IBk), decision tree (J48), Naıve 

Bayes (NB), inductive rule learner (RIPPER) and 

Support Vector Machine (SMO) machine learning 
classification algorithms (Ahmed et al., 2009). 

Conclusion 

In this study, we briefly surveyed the different types 
of malware and malware detection system as we have 
reviewed certain malware detection techniques such as 
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techniques based on machine learning, data mining, call 
graph and string representation. We have also pointed 
out the various methods that are used in malware 
analysis whether been static, dynamic or hybrid. We 
have discussed the use of some dynamic 
programming-based tools that could be used in the 
representation of the malware sampled gathered. We 
also gave a detailed discussion which reflects our 
findings with respect to the various malware detection 
representation techniques and corresponding methods 
that they have been used in producing effective 
malware detection systems as we have provided a 
proposal for string representation technique which 
will give high detection rate with the specialty of 
pinpointing the crucial or risky zone where the actual 
malware exists within the whole malware file. The 
objective of the survey is to provide a procedure, 
which could be suitable for further studies to develop 
malware detection techniques. 
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