

© 2017 Gamal Abdel Nassir Mohamed and Norafida Bte Ithnin. This open access article is distributed under a Creative

Commons Attribution (CC-BY) 3.0 license.

American Journal of Applied Sciences

Review

Survey on Representation Techniques for Malware Detection

System

1,2
Gamal Abdel Nassir Mohamed and

1
Norafida Bte Ithnin

1Faculty of Computing, University Technology Malaysia, Skudai, Malaysia
2Department of Computing, Muscat College, Muscat, Sultanate of Oman, Oman

Article history

Received: 04-12-2016
Revised: 04-03-2017
Accepted: 08-07-2017

Corresponding Author:
Gamal Abdel Nassir Mohamed
Faculty of Computing,
University Technology
Malaysia, Skudai, Malaysia
Email: gamal.utm@gmail.com

Abstract: Malicious programs are malignant software’s designed by
hackers or cyber offenders with a harmful intent to disrupt computer
operation. In various researches, we found that the balance between
designing an accurate architecture that can detect the malware and track
several advanced techniques that malware creators apply to get variants of
malware are always a difficult line. Hence the study of malware detection
techniques has become more important and challenging within the security
field. This review paper provides a detailed discussion and full reviews for
various types of malware, malware detection techniques, various researches
on them, malware analysis methods and different dynamic programming-
based tools that could be used to represent the malware sampled. We have
provided a comprehensive bibliography in malware detection, its
techniques and analysis methods for malware researchers.

Keywords: Malicious, Malware Representation, Detection Techniques,

Analysis Methods, Dynamic Programming

Introduction

Representation of malware basically deals with how

the collected malware samples are being transformed

from specific format to another by applying certain

techniques to represent them such as a system call

representation technique (Mehdi et al., 2010) and

Opcode sequences as representation of executable data-

mining-based (Santos et al., 2013). In this study, besides

providing the researchers with full and comprehensive

literature on malware definitions, types, various

detection techniques and methods, we aim at giving

researchers an idea about various techniques that are

used for representing the malware samples as we will

conduct a deep survey on some representations that are

based on the major malware detection techniques. We

are proposing the string representation technique as a

solution for some drawbacks/disadvantages caused by

representation techniques been used by researchers in the

recent years our survey will be focused or limited to

analysing some techniques based on machine learning,

data mining, API call graph and String (Signature based

technique). The proposed string representation will be

based on these representation techniques

drawbacks/disadvantages. Our survey will touch upon

some of the tools that are used in implementing some of

these and other malware representation techniques as we

will focus on the dynamic programming tools since they

have been used in API call graph String and some other

malware system designed recently by a considerable

number of researchers. So with respect to various

representation techniques, questions such as: How far

these techniques or models have achieved largest

detection rates? What is the best level of accuracy that

the various detection models have reached? What types

of programming tools available to carry out the detection

system designed with these techniques? Are of various

research challenges on the field of malware detection.

With the increased concern towards the various

vulnerabilities that cause unavailability of the network

resources, malware is considered as one of the serious

threats that violate confidentiality, integrity and

availability of the system. It has tremendous negative

impact on the computer security. The antivirus systems

development is in increasing process as viruses are still

considered to be of great threats and can harm our

application programs and systems as well. With the

complexity of the malicious software and its ability to

harm and infect computer systems research has been

conducted and the process is still going on by

researchers on computer security field to deal with all the

threats caused by this malicious software (Kumar et al.,

2010). The software is set to be malicious as it disrupts

computer operation, gather sensitive information, or

Gamal Abdel Nassir Mohamed and Norafida Bte Ithnin / American Journal of Applied Sciences 2017, 14 (11): 1049.1069

DOI: 10.3844/ajassp.2017.1049.1069

1050

gain unauthorized access to a computer system

(Santos et al., 2013). In the case of the malware

infecting executable codes when this happen the file

or files got infected will be residing in memory the

moment the user executes them and hence they will

infect any other files that the user may execute

afterwards. It has a tremendous negative impact on the

computer security (Mehdi et al., 2010). With the use

of antivirus programs and firewall

many malware could be defeated “to some extent”

especially those been very active through the network,

but at the same time, if we disable the use of antivirus

and firewalls for a single day, this may show strong

proof of the fast spread of this malicious software.

The techniques that are being developed and applied

by the researchers to detect the malware are clearly

explained and known through the malware detectors.

Of no doubt, malware has grown in volume and

complexity and this has proven and experienced the

danger of this malicious software. It is found that 1 in

8 legitimate Websites has a critical vulnerability,

(Patil and Patil, 2015). Following a pull-based model,

as the technique uses two categories of web infection

by means of delivering malware into it as first various

social engineering techniques are used by the

attackers so that they can attract the visitors to

download the malware. The second category involves

the underhanded tactic of targeting various browser

vulnerabilities to automatically download and run i.e.,

unknowingly to the visitor, the binary upon visiting a

website (Mavrommatis and Monrose, 2008) last but

not least, there exist a gap between the various

detection techniques and the representation methods

used. This is very clear as in the case of API call

graph which has a major issue related to its NP-

Complete problem because of its computational

complexity and also during the construction phase of

the graph it is difficult to build a precise call graph

from information collected about malware samples

(Patil and Patil, 2015).

Types of Malware

As stated above malware as a malicious software is

a set of codes that are designed by hackers with an

intent to harm others information or computer

systems. With this background in mind and as it is

shown in the above Fig. 1 we can classify the malware

into different categories or types. In the above Fig. 1,

the researchers have given a category for different types

of malware in terms of their existence and spread and

activation during the period that prior to the year 2011.

From the percentages shown we can easily say that the

Trojan horses followed by Virus have taken the

maximum percentage whereas other malware has taken

some different ranges of percentages.

Fig. 1: Types of malware by categories (Piyanuntcharatsr et

al., 2015)

Viruses

It has been defined by some researchers as pieces of
code that insert itself into other program(s) known as
virus host and get replicated. This host is very important
and necessary for the virus so as to cause harm to the
computer or data. As Idika and Mathhur (2007)
emphasizes, a virus may use some utility software such
as word processing application and attach itself to it,
once the user lunched that utility software the virus will
get activated and it may reach the level of disabling the
malware detectors enabled in that particular computer
system. There are viruses which can evolve into various
types by duplicating itself. These types of viruses are
known as metamorphic viruses. Unlike most of other
malware the virus has disadvantage that it cannot be
active unless it/its host been launched/executed, but
same time the dangerous of it is driven by the fact that in
order to get spread it needs a host so as to attach itself to
and then do its harmful job, this host could be a useful
file created by the user using any of the computer
languages. Once the file is launched the virus will get
activated and it can go up to the level of disabling any
detection utility that has been installed in the computer
system for the sake of detecting any malware. Hence
basically a virus is a malware that does self-replication
into other existing files or programs that could be
executed and this action is repeated by the infected file
for other uninfected files to make the virus spread within
the same computer system or even can shift between
various computers through usage of infected external
media such as USB, CD/DVD, Floppy Disk and so on. It
is also a well-known fact that the virus cannot simply
spread through the network as this is done by another
type of malware, discussed below, called worm. As
mentioned above the two types of virus classification, in
this case, can be classified as polymorphic and
metamorphic malware.

Polymorphic Virus

In this type of virus, the morphing will be done for

the code to decrypt malware after every infection. The

functionality of the code will not be changed while

morphing as only the internal structure of the code

will get changed completely (Rad et al., 2012). In this

case, by implementing signature based detection the

encrypted malware could be recovered or resolved.

Gamal Abdel Nassir Mohamed and Norafida Bte Ithnin / American Journal of Applied Sciences 2017, 14 (11): 1049.1069

DOI: 10.3844/ajassp.2017.1049.1069

1051

Metamorphic Virus

In this type of virus, the internal structure of the
malware gets changed after every execution with its
overall functionality remains the same, which could be
considered an advanced version of the polymorphic virus
(Lin and Stamp, 2011). For morphing the internal
structure of the malware there are different approaches
been followed, they could be discussed as in the case of
‘Subroutines Permutation’ where the subroutine
definitions get arranged by malware writers within the
code, as the time of maintaining the ordering of
subroutine calls this result into generating codes that
have equal functionality but different in their structure.
Another approach is what is called ‘Instruction
Recording’ where instructions are rearranged in a
program to generate the morphed copies (Rad et al.,
2012). Further, when an instruction or sequences of
instructions are replaced by its functionality equivalent
instruction in order to generate new variants of same
code this is called as ‘Instruction Equivalence’
(Walenstein et al., 2007). Last but not least an
approach some junk code or dead codes otherwise
called do-nothing instructions which are basically
inserted into software which will not affect the
execution of the program, these dead codes are added
to facilitate code obfuscation (Al Daoud et al., 2008).
Certain algorithms have been used such as: Feng-
Doolittle algorithm, a clustering algorithm, Prim’s
algorithm and MSA construction algorithm.

Worms

By exploiting operating systems vulnerabilities this
type of malware spreads over computer networks.
Although they are been classified as viruses, but the
main different between them and the viruses is that they
have the ability to self-replicate where viruses need
human activity to spread in the computer system, in this
sense, the propagation of computer worms is often based
on the sending of mass emails with infected attachments
to user’s contacts (Rey, 2015). The worm replicates itself
by executing its own code independent of any other
program. The primary distinction between a virus and a
worm is that a worm does not need a host to cause harm.
Another distinction between viruses and worms is their
propagation model. In general, viruses attempt to spread
through programs/files on a single computer system.
However, worms spread via network connections with the
goal of infecting as many computer systems connected to
the network as possible (Idika and Mathur, 2007).

Trojan Horses

This malicious software will be embedded by the one
who has designed it i.e., hackers for example, in any
kind of application or even a system that is intended and
appears to perform some function or action which
apparently useful like for example give the information
about the local weather but in fact it is performing some

other action for example collecting whatever possible
information about the user who has used the application
or the computer system and not only gazer them but also
send them to a host which is reported to be malicious
one, in this case, such type of Trojan horses could be
classified as spyware as well (Landwehr et al., 1994).

Spyware

The personal information is not only gathered by the
malicious software either by replicating or morphing or
through the network, the term spyware could refer to
such software which monitors and gathers personal
information about the user as when he/she visited the
particular page(s) frequently or accessing of email
address or even the continuous usage of the credit card
number or key pressed by user and so on. Moreover, it
enters the system whenever free trial software is
downloaded (Vinod et al., 2009).

Adware

It is again malicious software but unlike Spyware it

appears whenever an advertisement is played or
implemented by particular software automatically this
could be referred to what we call Adware. By monitoring
the Internet user’s’ activities, for example, many malware
developers can add any Adware to any software that
supports the add-ins, the most common adware programs

according to Vinod are free games, peer-to-peer clients
like kaZaa Bear Share etc (Vinod et al., 2009).

Botnet

As shown in the above Fig. 2, the fact behind this

malicious software is that there will be number of

computers (Botnets) get infected with a malware

known as bots which will send orders through a

Command and Control (C and C) to the botnets through

its unique characteristic (Lee et al., 2010a). The usage

of the botnet was just for the sake of mere vandalism

and then it has been switched to financial revenue goals

by criminals (Satrya et al., 2015). According to a survey

done by Vinod P. and others they have clearly pointed out

that the botnet is a remotely-controlled software-collection

of autonomous software robots. It is also a fact to mention

that botnet is usually a zombie program (Worms, Trojans)

under common control on public and private network

infrastructure, hence with this clear concept and remote

technique of the botnets nature in sending

spam/spyware. The bot looks for the communication

with similar instances of bots awaiting instructions and

doesn’t sit on the infected machine and wait

instruction from a third party. The survey has shown

how the configuration is taking place and also the

nature of it with respect to the bot as simplest bot

configuration is where the bots are connected to the

single central hub. This configuration does not scale

Gamal Abdel Nassir Mohamed and Norafida Bte Ithnin / American Journal of Applied Sciences 2017, 14 (11): 1049.1069

DOI: 10.3844/ajassp.2017.1049.1069

1052

much because maintenance of various connections

over single server is difficult. The next configuration

is a hierarchical structure where bot master connects

to hundreds of bots which in turn is connected to

many bots. Thus this configuration could scale much

larger extent (Vinod et al., 2009).

One of the most powerful ways to pursue any

computationally challenging task is to leverage the

untapped processing power of a very large number of

everyday endpoints. This is the idea behind the modern

botnet: A collection of compromised workstations and

servers distributed over the public Internet, which jointly

serve the agenda of a malicious or criminal entity. Once

infiltrated with malware in a variety of ways, these

compromised systems (“bots”) typically link back to a

Command and Control (C and C) server and wait for

instructions. The botnet can then be used for tasks ranging

from Distributed Denial of Service (DDOS) attacks to

spam-marketing on a mass scale and collecting sensitive

credit card/financial data leading in short order to identity

theft and fraud (Lee et al., 2010b).

Ransomware

According to a research Pathak and Nanded (2016) they

have defined Ransom ware as such kind of malware that

attempts to extract money from a computer user by

contaminating and taking control of the victim’s machine or

the files or documents stored on it as they use the

encryption of all those user’s files so as to prevent the user

from using them unless a ransom is paid. They have

preceded more in their introduction to explained that in

general, the Ransomware will performs some actions to the

user’s computer or data as it either locks the computer to

prevent normal usage or encrypts the documents and files

on it to prevent access to the documents and files. The

ransom demand is displayed, usually either via a text file as

shown in the above Fig. 3 or as a web page in the web

browser. This type of malware exploits the victim's

embarrassment or fear to force them to pay the ransom

demanded. (Pathak and Nanded, 2016).

Rootkit

With this type of malware the targeted computer is

been accessed or controlled remotely without giving the

user or other security program any chance to detect it. So

because of their stealthy operation their prevention,

detection and removal are difficult (Rey, 2015). It has been

also defined as a malicious code that is designed to hide the

presence of other malware. They are usually combined with

other malware such as a backdoor, so that remote access

could be performed by the attacker so that the detection of it

becomes very difficult (Satrya et al., 2015).

Fig. 2: The structure of a botnet (Lee et al., 2010a)

Fig. 3: A sample of a typical ransom ware (Elhadi et al., 2012)

Backdoor

It is referred to the concept of the malware that
installs itself into a computer enabling the attacker to
access the computer. They allow an attacker to connect
to a computer with little or no verification and execute a
command on the local system (Satrya et al., 2015). It
could be further defined as a mechanism which bypasses
a normal security check.

Scareware

It is a kind of malicious software that is designed to
fright the infected user to buy something it has an interface
that makes it look like an antivirus. This malicious software
informs the user that they are attacked by a virus and the
only way to clean it is to buy their software (Satrya et al.,
2015). More specifically it could be also defined as
malicious computer programs intended to trick a user into
buying and downloading needless and possibly dangerous
software, such as fake antivirus protection.

Some other types of malware are such malicious
codes that are doing different types of harm and they are
many in nature and type but just, for example, some of
them are like the key-loggers which are almost invisible
application that easily creeps onto computer and perform
actions such as recording everything from key store to
clicking model, another malicious software is dialer
malware which is a piece of software designed to dial a
telephone number automatically, also browser hijacker
could be considered as a type of malicious software able
to, without a user's permission, alter a web browser's
settings and in order to insert undesirable advertising
into the user's browser it may replace the existing home
page, error page, or search page with its own. Generally,

Gamal Abdel Nassir Mohamed and Norafida Bte Ithnin / American Journal of Applied Sciences 2017, 14 (11): 1049.1069

DOI: 10.3844/ajassp.2017.1049.1069

1053

its main aims may be related to force hits to a particular
website so as to increase its advertising revenue.

According to (Aycock, 2006) some types of malware

have been pointed out with a clear explanation for each of

them since some of them have already been mentioned

above, hence herewith we are touching upon the rest of

those he has mentioned and not given by us above.

Logic Bomb

It is malicious software which consists of two parts;

payload which an action to perform and a trigger which is

a Boolean condition that is assessed and controls when the

payload is executed. Logic bombs can be inserted into the

existing code or could be standalone (Aycock, 2006).

Hybrid, Droppers and Blended Threats

It is a kind of malware which has got different hybrid

characteristics of different malware and the chance to

exist will be given by the software itself. An example for

that is the “Thompson’s compiler trick” shown in Table

2 below (McGraw and Morrisett, 2000). A dropper is

another combination of malware which leaves behind or

dropped other malware. When a virus tempt to propagate

itself as it exploits a technical vulnerability, this what is

known as a blended threat in addition to exhibiting

“traditional” characteristics (Aycock, 2006).

Zombies

They are considered as a malware from the nature

of their link with spreading it i.e., since they are

defined and known as such computers that have been

cooperated as the attacker can use them for different

tasks and their main common tasks here is to send

spam and participating in coordinated, large-scale

denial-on-service attacks (Aycock, 2006). We have

taken some of the statuses of that malware as stated

by the book writer and designed a table which

includes some comparison of the same so as to give

the researcher a clear picture of the nature of the

activity of such malware the table is shown as below.

The above Table 1 shows how the status and

functionality of different types of virus is taking place

with respect to its ability to self-replicating, population

growth and the nature of its existence or behaviour.

Table 1: Status and Functionality of some Malware (Aycock, 2006)

 Status and functionality
 --
Virus name Self-replicating Population growth Parasitic

Logic bomb No Zero Possibly
Trojan horse No Zero Yes
Back door No Zero Possibly
Virus Yes Positive Yes
Adware No Zero No

Table 2: Some concrete examples of malicious code (McGraw and Morrisett, 2000)

Malicious code Date Category Explanation

Love Bug 2000 Mobile code virus The fastest spreading virus of all time used VB script and Microsoft Outlook
 mail to propagate. Caused an estimated $10 billion in damage
Trinoo (and other 2000 Remote control The highly-publicized denial of service attacks of February 2000 was carried
dDoS scripts) attack script out by remotely-planted agent programs
Melissa 1999 Mobile code virus The second fastest spreading virus of all time used email to propagate.
 Infected over 1.2 million machines in a few hours
Explore. Zip 1999 Mobile code worm An e-mail borne worm that exploited problems in Microsoft windows to propagate
Happy99 1999 Virus A widespread virus infecting Microsoft PCs
CIH 1998 Virus A particularly dangerous virus that attacks BIOS in PCs. Ran rampant in
 Asia before being contained
Back orifice 1998 Offensive code Remote control program installed on Windows machines by crackers. Pervasive
Attack scripts 1998 Offensive code Crackers called “script kiddies” download malicious code from the Internet
 and run it against any number of targets. Some expert must create and release
 the script, to begin with Widespread Most common attack: Buffer overflow
ActiveX 1997 Mobile code Decried by security professionals, Microsoft’s ActiveX system introduces grave
(scripting) security risks by relying on user’s discretion and judgment
Java attack 1996- Mobile code Attack applets placed on Web sites take advantage of flaws in the Java security
applets 1999 model to carry out attacks. 17 known attacks
Morris worm 1988 Worm Released in 1988 by Robert Morris, Jr, this program affected around 6000
 computers (around 10% of the Internet at the time)
Thompson’s 1984 Trojan Horse Ken Thompson introduced a Trojan Horse in a C compiler that compiled itself
compiler trick into future programs [Tho84]

Gamal Abdel Nassir Mohamed and Norafida Bte Ithnin / American Journal of Applied Sciences 2017, 14 (11): 1049.1069

DOI: 10.3844/ajassp.2017.1049.1069

1054

Also referring to the nature of virus, it is very clear that

only the virus as a malware has the ability to do self-

replication whereas other four types of malware have not.

Also, it has a positive tendency to achieve a considerable

amount of population growth where others show zero ratios

these two has resulted into virus been classified as parasitic

where other ranges from possibility to be to not to be. Is it

difficult to detect a malware? It is an interesting question

that might arise here and as we are addressing it we can

very much say that detecting malware has become a

difficult task just because of the transparent and different

types of known and unknown malicious software is playing

a main part in this (Christodorescu and Jha, 2004) have

focused on testing anti-virus software in order to address the

issue of testing detectors of malicious software (such as

commercial virus scanners), but it is observed that

generally their techniques are applicable to other types of

malware detectors. In order to understand the difficulties

in testing malware detectors they claim that one has to

understand the obfuscation-deobfuscation game that

malware writers and developers of malware detectors play

against each other. They argue that malware detectors

deploy better detection algorithms as advance malware

writers detection techniques use better hiding techniques

to evade detection (Christodorescu and Jha, 2004).
They have taken the polymorphic and metamorphic

viruses as examples to justify their argument which that
since these two types of viruses are specially designed to
avoid detection tools. This could be discussed in more
details so as to give the writer a clear picture about the
difficulty of detecting the malware. A polymorphic virus
follows the technique of morphing itself so as to avoid
detection. By encrypting the malicious payload and then
decrypt it as the execution time is taken place this is a
common technique to “morph” viruses. To obfuscate
the decryption routine, several transformations are
applied such as register reassignment (permuting the
register allocation) and nop-insertion, code transposition
(changing the order of instructions and placing jump
instructions to maintain the original semantics). In case
of metamorphic viruses it is observed that they attempt
to evade heuristic detection techniques by using more
complex obfuscations. The viruses changes their code
when these malicious software replicate, they change
their code in a different ways, such as code transposition,
substitution of equivalent instruction sequences, change
of conditional jumps and register reassignment. It is also
been seen that they can “weave” the virus code into a
host program, making detection almost impossible by
traditional heuristics and this because of the fact that
the virus code is mixed with program code and the
virus entry point is no longer at the beginning of the
program (these are designated as entry point
obscuring viruses) (Christodorescu and Jha, 2004).
Here two questions could be raised looking into given
the obfuscation-deobfuscation game and the code
reuse practiced by virus writers:

Question 1: With respect to the obfuscations or variants

of known malware, how resistant is a

malware detector?

Question 2: Can a hacker or a blackhat1 determine its

detection algorithm using limitations of a

malware detector in handling obfuscations?

The motivation for the first question exists by the

obfuscation-deobfuscation game. Whereas the second

question is motivated by the fact that if a blackhat knows

the detection algorithm used by a malware detector, they

can better target their evasion techniques. In other words,

the “stealth” of the detection algorithm is important

(Christodorescu and Jha, 2004). In the same line of

argument McGraw and Morrisett provide detailed

descriptions of various types of malware. They have

noted that categorizing malicious code has increasingly

become more complex as newer versions appear to be

combinations of those that belong to existing categories.

They have provided a table which includes some

concrete examples of malicious code is provided and

they have also given a note that “recent versions of

malicious code are really amalgamations of different

categories” (McGraw and Morrisett, 2000). Although the

statistic has some old historical background but still it

provides the researchers with good view and helps in

giving a clear idea about the concept of some categories

of used malware and this certainly will support the idea

of how detecting malware was and still a difficult task

which needs a proper techniques to be used in order to

design or develop models that can act as a services or

tools of detection. With this background, the table

provided below which was given McGraw and Morrisett

(2000) that shows some explanation for some malicious

code has been taken on different dates and from various

categories. In order to discuss the content of the above

table given McGraw and Morrisett (2000) on their

research titled “Attacking malicious code,” our first

attention as researchers go to the year 1984 which is the

eldest year among the other years provided i.e., on the

range starting from 1984 to 2000. Looking to this year

we found that malicious code been taken was categories

as Trojan Horse this indicates that this malware was very

strong and active since that time especially if we look

into the fact that the introducer of it has used it for a C

compiler which is one of the high-level languages. Also,

our attention goes to some malicious codes that are

related to attacking mobile devices during a pretty long

time from now which is 1996 to 1999. The category has

also included a malicious code of remote control nature.

Malware Analysis Methods

Malware analysis is a very important process that

will determine the purpose and functionality of a given

malware sample (such as a virus, worm, or Trojan

Gamal Abdel Nassir Mohamed and Norafida Bte Ithnin / American Journal of Applied Sciences 2017, 14 (11): 1049.1069

DOI: 10.3844/ajassp.2017.1049.1069

1055

horse). It is an important prerequisite for the

development of removal tools that can thoroughly delete

malware from an infected machine; it is also considered

being a necessary step to develop effective detection

techniques for malicious code. Traditionally, it has been

a tedious manual process which is time-intensive.

Unfortunately, the number of samples that need to be

analyzed by security vendors on a daily basis is

constantly increasing (Bayer et al., 2006). One of the

most important multi-step processes that provide insight

into malware structure and functionality is malware

analysis. In this analysis process, there is an important

step which is used to observe malware relations with

respect to the system and is achieved by employing

dynamic coarse-grained binary-instrumentation on the

target system; this step is known as behavior monitoring.

At the same time, when an initial examination is

performed for the collected malware, this is called as

profiling. Malware analyses can categories fall into two

main methods; one is based on analyzing a given sample

during execution which is called dynamic analysis, while

another one refers to analyze a sample by extracting

useful information without executing it and this is known

as static analysis. A brief introduction to both types with

the knowledge of their limitations as an approach to

malware analyses is discussed. It is a fact that from a

traditional point of view in the case of malware detection

there are two major approaches which are basically split

based on how it will analyze the malware, they are hence

static or dynamic analysis (see review (Egele et al.,

2012). In the case of static analysis, their way of

analyzing this malware is done as a direct analyze in

binary form, or additionally unpacked and/or decompiled

into assembly representation. Whereas in the case of

dynamic analysis, it is done through hooking or some

access into the internals of virtualization environment the

binary files are executed and the actions are recorded. So

it is valid to mention that in the case of dynamic analysis

it can provide observation of malware action which is

less vulnerable to obfuscation (Moser et al., 2007) and

makes it harder to recycle existing malware. However, in

practice, automated execution of software is difficult,

since malware can detect if it is running in a sandbox and

prevent itself from performing the malicious behavior.

Hence for machine learning approaches, this makes

the static analysis more amenable and as data size

increased this will result and enable a better performance

(Banko and Brill, 2001). Machine learning has been

applied to malware detection since that fact is known

(Kephart et al., 1995), so this has proven the fact that

numerous approaches exist since that moment onwards

(see reviews (Egele et al., 2012; Gandotra et al., 2014)).

Machine learning consists of two parts, the feature

engineering, where the author transforms the input

binary into a set of features and a learning algorithm,

which builds a classifier using these features.

Static Analysis

Static analysis refers to as such analysis done on the

infected file without executing it, here the (CFGs) which

is an abbreviation for Control Flow Graphs needs to be

extracted as well as Data Flow Graphs (DFGs) along

with System call analysis. Such information related to

CFGs and DFGs can be gathered by disassembling or

decompiling the infected file using some tools like IDA

Pro. The file may have auto execution which is against

the actual concept of static analysis this could be

overcome by analyzing the infected file in a different

environment to avoid this auto execution of the malware.

The advantages of static analysis may be pointed out into

points such as it results in fast, safe and low false

positives with the possibility of tracing all paths which

will certainly help in getting lot of information to

analyze, on the other hand, static analysis may fail

analyzing unknown malware that uses code obfuscation

techniques (Egele et al., 2012).

Dynamic Analysis

In the case of this type of analysis the analysis is

done for the infected file during its execution. This type

of analysis uses a debugger or virtual machine or even an

emulator to execute the infected file on simulated

environment in order to analyze its malicious functions,

as we have mentioned the infected file needs analysis

environment which must be invisible to the malware for

the simple reason that the malware writer have tools like

anti-virtual machine and anti-emulation used to hide

their malware functions if their detection been under

analysis. It has been observed that this type of analysis

i.e., dynamic one fails to detect activities of interest if the

target changes its behavior depending on trigger

conditions such as the existence of a specific file or

specific day as only a single execution path may be

examined for each attempt (Egele et al., 2012).

As shown in the above Table 3 both analysis types

have their advantages and disadvantages. For the static

one since it is based on analyzing the infected file

without executing it, this results in fast and safe and low

level of false positives with good analyzing multipath

malware. On the other hand, it is difficult to analyze

unknown malware when following the static analysis. For

the dynamic analysis which is based on analyzing the

infected file after executing it, this shows good at

detecting unknown malware with slow and unsafe with

difficulty in analyzing multipath malware as main

disadvantages, whereas Hybrid analysis combines aspects

of both static and dynamic analysis (Elhadi, 2014).

Gamal Abdel Nassir Mohamed and Norafida Bte Ithnin / American Journal of Applied Sciences 2017, 14 (11): 1049.1069

DOI: 10.3844/ajassp.2017.1049.1069

1056

Table 3: Adv. and disadvantages of static and dynamic analysis (Elhadi, 2014)

Analysis type Advantage Disadvantage

Static analysis Fast and safe but low level of false positives Difficulty analyzing unknown malware
 Good at analyzing multipath malware
Dynamic analysis Good at detecting unknown malware Slow and unsafe
Hybrid analysis Combines aspects of both static and dynamic analysis Difficulty analyzing multipath malware

A Comparison of Static, Dynamic and Hybrid

Analysis for Malware Detection

Static analysis of software is performed without
actually executing the program. Examples of the
information we can obtain from the static analysis include
Opcode sequences (extracted by disassembling the binary
file), control flow graphs and so on. Dynamic analysis
requires that we execute the program, often in a virtual
environment. Examples of information that can be obtained
by dynamic analysis include API calls, system calls,
instruction traces, registry changes, memory writes and so
on. Hybrid techniques combine aspects of both static and
dynamic analysis (Damodaran et al., 2015; Elhadi et al.,
2015). The below Fig. 4 shows the various methods of
malware detection techniques which is basically divided
into three categories i.e. static, dynamic and hybrid.

In the below Table 4, the analysis types with their
main purpose and the corresponding tools that could be
used in association with each analysis type are clearly
shown and explained. For instance, if we look into the
static one we clearly find that it uses as many antivirus
detection engines as possible to assist classification
which corresponds to using the virus total as the main
tool to implement the same. It also uses strings tool
when it wants to search the body of the malware for the
string. The dynamic uses various tools for various
purposes of malware analysis (Verma et al., 2013). Its
purposes shown in the Table 4 could be further discussed
as with respect to file integration it checks to record
baseline configuration. In the case of File monitoring it
finds which tools are opening, reading and writing files.
Whereas Process monitoring determines resources that are
being used such as DLL’s and registry keys. Network
monitoring uncovers which ports are open, collect network
traffic and find vulnerabilities. Last but not least, Registry
monitoring monitors registry activities as they occur. In the
case of this dynamic analysis certain tools are been used
such as: Analysis, Filemon and Process explorer. Analysis
type based on coding its main purpose is to perform
disassembly and debugging (Verma et al., 2013).

Malware Detection Techniques

It’s obviously well known fact that malware writers or
cyber offenders, otherwise known as hackers, applying
some certain sophisticated techniques to evade detection.
They follow methods that modify or morphing the
malware by means of using several packing and/or
program obfuscation techniques. Here comes the concept
of malware detector as a system attempts to identify
malware using both signatures and other heuristics

techniques. The antivirus scanner, for example, is a good
example of a malware detector (You and Yim, 2010). The
way of detecting a malware may take different approach
as in the case of commercial malware detectors such as
virus scanners for example which uses a simple pattern
matching approach to detect the malware whereby a
program is declared as malware if it contains a sequence
of instructions that matched by a regular expression
(Idika and Mathur, 2007). This has been discovered by a
recent study that such malware detectors can be easily
defeated using simple program obfuscations that are
already known and been used by hackers. One important
point that forces the database of commercial virus scanner
to be updated frequently is related to the fact that the
pattern-matching algorithm is not very resilient to slight
variations, these malware detectors have to use different
patterns for detecting two malware that is slight variations
of each other (Christodorescu and Jha, 2004).

Detection is mainly dealt with the art of knowing how
to recognize and locate the malware in its existence
location whether been on a system, in a file on that system
or in software or hardware or even a media that still to be
installed on the system. It is so useful to detect this
malicious software at the early stage which will surely
help in preventing it from harming the information that
may be reachable it. Once we are able to detect this
software at the earliest, then this will be a great step
towards minimizing the number of infected systems which
will result in less effort paid while doing the recovery
process and also less level of damage the organization
sustains. Malware detection techniques can be divided
into three methods; signature-based, behavior-based and
specification based each method can be applied using
static analysis or dynamic analysis or hybrid analysis
(Idika and Mathur, 2007). The Signature-Based is a
sequence of instructions unique to a malware used to
generate a malware signature, (this signature is captured
by researchers in a laboratory environment), a signature
should be able to identify any malware exhibiting the
malicious behavior specified by the signature and most
antivirus scanners are signature based. Whereas the
Behavior-Based detection techniques focus on analyzing
the behavior of known and suspected malicious code.
Such behaviors include factors such as the source and
destination a][ddresses of the malware, the attachment
types in which they are embedded and statistical
anomalies in malware infected systems. One example of a
behavior-based detection approach is the histogram-based
malicious code detection technology patented by
Symantec. Signature refers to the same instructions, same
basic blocks and same system calls, whereas behavior

Gamal Abdel Nassir Mohamed and Norafida Bte Ithnin / American Journal of Applied Sciences 2017, 14 (11): 1049.1069

DOI: 10.3844/ajassp.2017.1049.1069

1057

refers to the similarity between system call sequences and
their relations. There is a main limitation been observed in
the case of specification-based detection which is related
to its difficulty to completely specify the entire set of
those behaviors which could be marked as valid, whereas
in the case of signature-based since it cannot detect zero-
day attack, for which there is no corresponding signature
stored in the database which has been treated as one of the
major drawbacks of it (Moser et al., 2007). In the case of
specification-based techniques, it leverages some
specification to decide the maliciousness of a program
been under inspection and that by deciding what is the
valid behavior is and how it looks like from the behavior
point of view. Signature based detection uses its
characterization of what is known to be malicious to
decide the maliciousness of a program under inspection
(Ellis et al., 2004; Han et al., 2014; Shabtai et al., 2009).
The procedure of helping protect the system by detecting
malicious behavior consider the fact that the malware
detector may or may not reside on the system it is trying to
protect, in fact the malware detectors takes two inputs
which could are related to the signature or behavior of
malware to be identified and known as well as the
program that currently under inspection (Riesen et al.,
2010). Each of them can be applied using any of the
methods either static analysis which is implanting
signature/behavior/specification-based detection technique
without executing the suspected file and it was the first try
to detect malware or dynamic analysis, it is applying all of
them i.e., signature/behavior/specification-based detection
technique during suspected file execution or even hybrid
analysis (Idika and Mathur, 2007).

Hence to further explain these techniques and their
nature we can say they have and could be categorized as
anomaly-based detection, specification-based detection
and signature-based detection (Bergroth et al., 2000),
(Skormin et al., 2003; Summerville et al., 2005).
Anomaly-based detection techniques use the knowledge
of what constitutes normal behavior to decide the
maliciousness of a program under inspection.
Specification-based techniques leverage some
specification of what is a valid behavior to decide the
maliciousness of a program under inspection. Signature
based detection uses its characterization of what is known
to be malicious to decide the maliciousness of a program
under inspection (Ellis et al., 2004; Han et al., 2014;
Shabtai et al., 2009). The fundamental limitation of
anomaly-based detection is its high false-positive rate and
the time complexity in the training phase. The main
limitation of specification-based detection is that it is
difficult to specify completely and accurately the entire set
of valid behaviors. One of the major drawbacks of
signature-based detection is that it cannot detect the zero-
day attack, for which there is no corresponding signature
stored in the database (Rieck et al., 2011).

We can then conclude to the fact that those techniques
used for detecting malware can be categorized broadly into
three categories: Anomaly-based detection, specification-

based detection and signature-based detection. Anomaly-
based detection techniques use the knowledge of what
constitutes normal behavior to decide the maliciousness of a
program under inspection. Specification-based techniques
leverage some specification of what is a valid behavior to
decide the maliciousness of a program under inspection.
Signature-based detection uses its characterization of what
is known to be malicious to decide the maliciousness of a
program under inspection.

The fundamental limitation of anomaly-based
detection is its high false-positive rate and the time
complexity in the training phase. The main limitation of
specification-based detection is that it is difficult to
specify completely and accurately the entire set of valid
behaviors. One of the major drawbacks of signature-based
detection is that it cannot detect the zero-day attack, for
which there is no corresponding signature stored in the
database (Zhang and Xia, 2012).

Research Techniques for Malware Detection System

The static analysis which is implementing signature
based detection without executing the suspected file was the
first attempt to detect malware. Some of the researchers
who used this approach applied Objective-Oriented
Association (OOA) mining based classification (Ye et al.,
2008). The proposed model has three major modules,
namely, Portable Executable (PE) parser, OOA rule
generator and rule-based classifier. This model was taken to
a next level by adopting associative classification method
based on the analysis of Application Programming Interface
(API) execution calls (Ye et al., 2010).

Other researchers combined signature-based

technique and genetic algorithm technique and their

study focused on three types of malware which are;

Viruses, Worms and Trojan Horses (Zolkipli and Jantan,

2010). Signature based detection was also applied during

suspected file execution (i.e., dynamic analysis) in which

the researchers traced API calls and then built the

suspected file signature (Nair et al., 2010).
These researchers generated a signature for an entire

malware class instead of individual malware samples.
This approach has the advantage that all the
metamorphic viruses that are created from a
metamorphic generator can be easily detected once a
base signature for that metamorphic generator is
obtained. A considerable portion of the existing
studies relies on using behavior-based detection,
whereas some researchers apply static analysis others
apply dynamic analysis. Some of the studies adopt the
mapping of kernel memory as a way to develop a
monitor for malware behavior. The monitor utilizes
time-based view of kernel objects to analyze traces of
kernel execution (Rhee et al., 2011).

Other studies trace malware behavior exhibited by
installer and uninstaller software as a way to avoid false
positives (Rhee et al., 2010) and suggest a new
categorization method for malware based on maximal

Gamal Abdel Nassir Mohamed and Norafida Bte Ithnin / American Journal of Applied Sciences 2017, 14 (11): 1049.1069

DOI: 10.3844/ajassp.2017.1049.1069

1058

common subgraph detection (Park et al., 2010). We have
observed that some of the current researchers have gone for
the idea of combining static and dynamic analysis so as to
overcome the drawbacks or limitations on each of them. It
is a fact that some limitations can be found and observed in
approaches been developed following the concepts of
signature or behavior-based. It’s then found that the
signature-based approaches can be overcome by
obfuscation and require prior knowledge of malware
samples, whereas in behavior-based not able to detect a
lot of polymorphic viruses present (Packers), (Elhadi,
2014). Also it is found that a higher rates of false
positive are been generated and incur expensive
runtime overheads (Hu et al., 2009). This is been
clearly explained as in the Table 5 shown below.

In their research paper (Damodaran et al., 2015) they
compare malware detection techniques based on the
methods of detection i.e., static, dynamic and hybrid
analysis. They have specifically done a training for the
Hidden Markov Models (HMMs) on both static and
dynamic feature sets and then they have done some
comparison for the resulting detection rates over a
substantial number of malware families and also they
have considered hybrid cases in the situation where
dynamic analysis is used in the training phase with the
static techniques used in the detection phase and vice
versa which enables them to include the hybrid analysis
as well (Damodaran et al., 2015). Referring to their work

we can conclude a discussion or findings in such a way
that as the three methods of detection which are based on
static, dynamic or hybrid one, each has its own
advantages or contribution over the models that has been
designed based on them and also their own
disadvantages or limitations on the same. In the above
Table 6 we discussed the various types of detection
techniques and our focus will be on projecting these
advantages/contributions as well as the common
disadvantages/limitations of these three types of malware
detection techniques in a form of analytical comparison
between three of them which will result in an overall
scenario that will shape their real existence in malware
detection process and this will certainly help the
researcher in looking into the concept of malware
detection from a deep and different angles. It is clearly
observed that the model, however, has some advantages but
it requires a lot of effort as an up to date signature dataset is
required since the malware will be expected to be present in
the database so as to get detected otherwise it will not.
Hence repository of signature of known malware should be
maintained and this repository should be up to date as well.
It is also observed that with this technique been used simple
obfuscation technique can be used to evade it. The behavior
based passed through phases of analyzing and then
classification since first both benign and malware are
analyzed during the training phase. The statistical one is
mainly considered as a benchmarking process.

Fig. 4: Organization of malware detection techniques (Elhadi et al., 2015)

Table 4: Summary of some malware analysis tools (Verma et al., 2013)

Analysis type Purpose Tools
Static Use as many antivirus detection engines as possible to assist classification Virus Total (Virus Total, 2008)
 Search the body of the malware for the string Strings (Microsoft, 2008c)
Dynamic File integrity checks to record baseline configuration Analysis (Winalysis.com, 2008)
 File monitoring finds which tools are opening, reading and writing files Filemon (Microsoft, 2008c)
 Process monitoring. Determine resources that are Process explorer (Microsoft, 2008c)
 being used such as DLL’s and registry keys
 Network monitoring. Uncover which ports are open, Fport (Foundstone, 2008), tcpview
 Collect network traffic and find vulnerabilities (Microsoft, 2008c), nessus
 Registry monitoring. Monitor registry activities as they occur Regmon (Microsoft, 2008c)
Code Disassembly, debugging IDA Pro Ollydbg

Gamal Abdel Nassir Mohamed and Norafida Bte Ithnin / American Journal of Applied Sciences 2017, 14 (11): 1049.1069

DOI: 10.3844/ajassp.2017.1049.1069

1059

Table 5: Advantages and disadvantages of Signature and behavior techniques (Elhadi, 2014)

Malware detection types Advantage Disadvantage

Signature-based less scanning time Unknown malware can easily evade detection
 Few false-positives cannot deal with simple obfuscation
Behaviour-Based Best results in detecting of not able to detect a lot of polymorphic viruses
 Polymorphic malware present (Packers)

Table 6: Analysis of Malware detection techniques (HMMs) (Damodaran et al., 2015)

Detection techniques

mentioned Definition and nature Advantages/contributions Disadvantages/limitations

Signature based It is the most widely used anti-virus Simple and relatively fast Requires an up-to-date signature
detection technique A signature is a sequence of Effective against most database as malware not present in

 bytes that can be used to identify specific common types malware the database will not be detected.
 malware. A variety of pattern matching Relatively simple obfuscation techniques
 schemes are used to scan for signatures can be used to evade signature detection

 Must maintain a repository of
 signatures of known malware

 The repository must be updated frequently
 as new threats are discovered

Behavior based It focuses on the actions performed Systematical behavior study Both benign and malware are analyzed
detection by the malware during execution of the suspected malware during the training phase

 Classification of them will be only
 during the execution phase

Statistical based Properties derived from program features Has served a benchmark in Visible only when using HMMs as the
detection as in the Hidden Markov Models (HMMs), a variety of other studies basis for the malware detection
 used in their research paper, are used schemes considered in their research

 to classify metamorphic malware

The main techniques that are used In Malware

Detection Systems (MDS) are related to a technique

which is based on machine learning or data mining or

call graph or string representation. Each of them is

explained and discussed below.

Malware Detection Based on Machine Learning

It is observed that there are machine learning

techniques of different nature have been proposed for the

sake of malware detection, it is found that the boosted

decision trees based on n-grams are been observed to

produce better results than both the Naïve Bayes

classifier and Support Vector Machines. In order to

distinguish between malware and clean program files,

some researchers have used automatic extraction of

association rules on Windows API execution sequences.

To figure out whether a given program file is/not a

variant of a previous program file a model like Hidden

Markov is used so as to detect that file.

In this regards and in order to reach the similar goal,

different researchers in this field have gone for applying

Hidden Markov Models, which have been previously

used with great success for sequence analysis in

bioinformatics. In the case of polymorphic malware, we

can find that neural networks have been used for the sake

of detecting the malware. Also to identify patterns of

behavior for viruses in Windows executable files Self-

organizing maps have been used. (Kolter and Maloof,

2006) mentioned in their research that, it has been

observed that classification of malware binaries was first

been studied by (Schultz et al., 2001) and in a research

which describes the use of machine learning and data

mining to detect and classify malicious executable as

they appear in the wild. Researchers have gathered 1,971

benign and 1,651 malicious executables and encoded

each as a training example using n-grams of bytecodes as

features. Such processing resulted in more than 255

million distinct n-grams (Kolter and Maloof, 2006). The

most important point that we can record and observe

here is that these both approaches have used and applied

string features of binary executable for training learning

algorithms and distinguish between malicious and

benign files. Some other researchers recently have

devised an extension of the above-mentioned work to

unpacked malware binaries as they have proposed

Malware Collection Booster (McBoost), a fast statistical

malware detection tool that is intended to improve the

scalability of existing malware collection and analysis

approaches. Given a large collection of binaries that may

contain both hitherto unknown malware and benign

executable, McBoost reduces the overall time of analysis

by classifying and filtering out the least suspicious

binaries and passing only the most suspicious ones to a

detailed binary analysis process for signature extraction.

The McBoost framework consists of a classifier

specialized in detecting whether an executable is packed

or not, a universal unpacker based on dynamic binary

Gamal Abdel Nassir Mohamed and Norafida Bte Ithnin / American Journal of Applied Sciences 2017, 14 (11): 1049.1069

DOI: 10.3844/ajassp.2017.1049.1069

1060

analysis and a classifier specialized in distinguishing

between malicious or benign code (Perdisci et al., 2008).

On the same line, some others have proposed analyzing

the content of the file for detection of malware samples

been embedded within files and that is done basically by

making use of similar techniques (Li et al., 2007). Hence

in this regards it is very much relevant to mention that

for malware behavior the first application of

classification has been introduced by researchers who

have to generate evidence and classify the samples with

several machine-learning algorithms (Devesa et al.,

2010). Then a research of the same field has been

extended and gone in another line as the focus was on the

clustering of malware behavior for the sake of discovering

the novel malware and reduction of manual analysis effort,

in this regard the first clustering system for observed

behavior was introduced, this was then later got extended

by another research for the main reason to make it more

scalable, where the system devised provides an excellent

performance in when it comes to run-time while it is in the

practice stage (Bayer et al., 2010). However, both

approaches require a single batch of malware samples and

thus are limited in the overall capacity.

Malware Detection Based on Data Mining

Detecting unknown viruses researchers have also pay a

great attention to the representation of malware detection

based on data mining. It is observed that a high accuracy

rate is found when a number of classifiers have been built;

furthermore it’s been extended to the research level where it

become so common to apply data mining techniques for

malware detection as it depends on generating a feature set

which includes hexadecimal byte sequence which is

otherwise termed as N-grams. It also includes instruction

sequences, API/system call sequences etc. (Siddiqui et al.,

2008). Practically speaking, in the case of features

methodology the number of features been extracted from

the targeted files is usually very high this has

directly/indirectly made several techniques from text

classification have been employed to select the best features

whereas in other hand features that may include printable

strings extracted from the files and some operating

system dependent features such as DLL information.

When collecting the data the activity monitoring

methods may be used, but still, data mining remains the

principal detection method. Here we discuss the concept

of N-grams which is basically a sequence of bytes of

fixed or variable length, extracted from the hexadecimal

dump of an executable program. They are used as a

general term for both overlapping and non-overlapping

byte sequences. They have been defined to remain at a

syntactic level of analysis. The first major work that used

data mining techniques for malware research was an

automation of signature extraction for viruses so it is a

clear fact that the signature extraction is a major step in

data mining technique and with respect to the N-grams

technology here comes the concept of Dynamic Misuse

Detection, Dynamic Hybrid Detection, Static Hybrid

Detection and Static Misuse Detection (Siddiqui et al.,

2008). Table 7 summarizes malware detection using data

mining which differs in techniques, models, features and

data set used. From the below table representation for

malware detections work which is mainly related to data

mining as a representation technique been used, we can

observe that researchers have used different methods which

have got a direct relation with the nature of the platform or

the system nature that it has been used in for example

clustering has been used in Network whereas classification

has been used when it comes to detecting various types of

malware. More (Norouzi et al., 2016) gave a detailed

review from different researches related to some works for

malware detection in data mining methods. Some

researchers leverage standard data mining algorithms to

classify the file content of every block as normal or

potentially malicious (Tabish et al., 2009).

Malware Detection Based on API Call Graph

API which is an abbreviation for an Application
Programming Interface which is basically a collection or
set of rules or codes since it related to programming and
the program can be defined as a set of codes. These
particular rules and specifications are been used by the
various software programs in order to communicate with
each other. As the user interacts with the computer
through various interfaces, hence API is an interface
between those various and different software programs,
that interface will facilitates the interaction of those
different software programs with each other. API could
be created for many applications, libraries, operating
system, etc. this is true just because the way of defining
their “vocabularies” and resources needs and request
some conventions, for example, the function-calling
conventions. Since API is a programming specifications
it may include such those specification which ranges
between those been used and needed for data structure,
object classes, routines and up to the level the
protocols used to communicate between the consumer
program and the implementer program of the API
itself, the API calls list is extracted from a binary
executable through static analysis of the binary with
disassembly tools such as IDA Pro (Elhadi et al.,
2015). Also, it may be through dynamic analysis after
executing the binary in a simulated environment, which is
the technique adopted by tools such as API monitor
(Monitor-Spy, 2012). It’s observed that there is low
malware detection accuracy exists in the case of malware
detectors that based on API call graph architecture. This is
basically due to some problems in both the API call
graph construction and matching algorithms.

Gamal Abdel Nassir Mohamed and Norafida Bte Ithnin / American Journal of Applied Sciences 2017, 14 (11): 1049.1069

DOI: 10.3844/ajassp.2017.1049.1069

1061

Table 7: Selected previous work in the malware detection data mining technique (Piyanuntcharatsr et al., 2015)

Work Data mining/ clustering Dataset Network Malware type Method

Pratheema, Prabha Data mining (classifier: 100 binary (training - 15 subfamily Hex code/ngrams of

- and Kavitha NB, KNN, J48) benign = 90, malware = 10) different size
Rafique and Calballero (0000) clustering 16,000 malware binaries Yes Network signature 11 network feature

Bailey et.al. (0000) Classification 3,698 Yes Groups of Malware System state

 Changes vector
Komashinskiy and classification Decision Malware = 5854 - Malware and benign <position, byte>

Kotenko Table C4.5 Random benign = 1656

 Forest Naive Bayes
Choudhary and Classification: SVM, 200, 500 files - Type 1, Type 2 Instruction sequence

Saharan (0000) NN

Kumar and Mishra (2010) Classification IBK 323 (virus+worm) - Virus, worm Sequence alignment
Tabish et al. (2009) Classification-decision Benign = 1800 and - backdoor, Trojan, virus, Statistical features

 tree (J48) malware = 10, 311 worm, constructor and miscellaneous

The fact is that in the case of API call graph construction

algorithms there is a major issue of building a precise
call graph from the information collected about malware
samples. Also in the case of API call graph matching
algorithms it is found that they have NP-complete problems
and suffer from being slow because of their computational
complexity (Anderson et al., 2011; Han et al., 2012;

Lee et al., 2010b). In malware detection, some
researchers have paid attention to building their detection
systems or architectures based on API call graphs
because they have shown some sufficient expressiveness
to model complicated structures and their use is gaining
momentum in representing structural information. We

will be showing in the following paragraphs some of the
related work in this area. There are several approaches
that the researchers have gone for so as to build the
graph, as most of them present graph nodes as system
calls. This is very clear as in the case of; Lee et al.
(2010a) who have created their graph by transforming a

Portable Executable (PE) file into a call graph with
nodes and edges which represent system calls and
system call sequence, respectively. After that,
minimization is applied to the call graph turning it into a
code graph to speed up the analysis and comparison
process (Lee et al., 2010b). Whereas it is observed that

some researchers use the same approach by using 4-tuple
nodes to denote a system call, edges, the dependencies
between two system calls and a label for nodes and
edges, (Park et al., 2010) it is also observed as in the
case of Park and Reeves 2011 some other studies use
graph nodes to denote kernel objects instead of system

calls. It is also seen that the graph was built from
subroutines where the nodes and their corresponding call
references as edges (Kostakis et al., 2011). On the other
hand, some others researchers have used a dependency
graph whose vertex represents a line in the semantic
code and the dependency between two lines is

represented by a directed edge (Kim and Moon, 2010).
In some research, we have found that researchers have
proposed an algorithm to construct a dependence call
graph, where graph nodes represent system calls and two
types of dependencies exist between system calls to
present the edges (Christodorescu et al., 2008).

Furthermore a researcher has proposed a graphs which

are related and based on behavior with the proficiency
that they share similarities with graphs of other
researchers i.e., Christodorescu in their research paper
which is focusing on mining specification of malware
behavior, with the clear difference that the edges of their
graph have been produced in a way which is totally

different with the point that there is no constraint with
respect to API call parameters been used. The idea of that
usage of both types of research is depends on the fact that
an edge is connecting node a to node when there is data
dependency between API call nodes a and b, the data
dependency represents when the return value of first API

call has taint label that is used in one of the input parameter
lists for the second API call (Christodorescu et al., 2008;
Kolbitsch et al., 2009). This idea is been used later as a
researcher has enhanced the dependence graphs
proposed by the above two researchers following the
methodology of assigning labels to particular files,

directories, registry keys and devices based on their
significance to the system (e.g., system startup list, firewall
settings, system executable) (Christodorescu et al., 2008;
Kolbitsch et al., 2009; Fredrikson et al., 2010). It is true and
valid to come out from all the above with the fact that all
the above studies have used different graph matching

techniques while doing the graphs comparison process,
these techniques ranges from formula building using
intersection and union of graphs, weighted common
behavioral graph generation based on an approximate
algorithm and maximal common subgraph (Park et al.,
2010; Lee et al., 2010a; Kim and Moon, 2010). One

important point that forces the database of commercial virus
scanner to be updated frequently is related to the fact that
the pattern-matching algorithm is not very resilient to slight
variations, these malware detectors have to use different
patterns for detecting two malware that is slight variations
of each other (Christodorescu and Jha, 2004).

In below Table 8 a thorough review of Malware
Detection System using data mining is been provided
with the findings been related to date mining methods.
This review table will provide researchers with a clear
view of data mining usage and its contribution in
building logic for malware detection.

Gamal Abdel Nassir Mohamed and Norafida Bte Ithnin / American Journal of Applied Sciences 2017, 14 (11): 1049.1069

DOI: 10.3844/ajassp.2017.1049.1069

1062

Table 8: A review of MDS using data maiming (Norouzi et al., 2016)

Paper title, author, Year of publication Findings with relation to data mining methods

Schultz et al. (2001). Data mining methods Proposed a data mining method to Recognise the new malicious files in run-time

for detection of new malicious executable execution. Their method was based on three types of DLL calls such as the list of
 DLL issued by the binary; the list of DLL function calls and a number of different

 systems calls used within each DLL. Also, they examine byte orders extracted from

 the hex-dump (a hexadecimal scheme of computer data) of an executable file using
 signature methods. The main structure of this method is based on Naive-Bayes (NB)

 algorithm. They compared the experimental results by traditional signature-based
 methods
Kolter and Maloof (2004). Learning to Presented a data mining approach and �-gram analysis to identify malicious executable

detect malicious executable sin the wild files based on signature approach. They presented a hex-dump utility for translating
 each executable file to hexadecimal code in an ASCII format. Their main data set

 consisted of the clean programs and the malicious programs. They analyzed the

 proposed approach by some popular classification method such as instance-based
 learner, TFIDF, Naive-Bayes, support vector machines, decision tree, boosted

 Naive-Bayes and boosted decision tree. In the other research

Siddiqui et al. (2008). Detecting internet Proposed data mining techniques for recognition some malware programs such as
worms using data mining techniques Worms. They considered variable length instruction sequence for their approach.

 Their main data set includes some Windows files and Worms. As experimental results

 sequence reduction was executed, 97% of the sequences were removed and random
 forest decision tree model was performed slightly better than the others. Also, some

 research work presented the data mining methodologies for a different approach

Yang and Yi-Ping (2015). Data mining in The researchers presented various data mining methods that have been developed for
lung cancer pathologic staging diagnosis: cancer diagnosis. Consequently, this research focused on captivating the clinical

Correlation between clinical and information which can be found without surgery to exchange the pathology report.

pathology information They used to discover the association between the clinical information and the
 pathology report in order to maintain lung cancer pathologic staging diagnosis

 using data mining techniques.

Gandotra et al. (2014). Malware The authors proposed a data mining approach to analyzing the students’ careers.
analysis and classification: A survey. Their approach is based on clustering and sequential methods with the aim of

Campagni et al. (2015). Data mining categorizing strategies for refining the performance of the exams scheduling and students.

models for student careers They analyzed a real case study using �-mean cluster techniques in WEKA tool
Bayer et al. (2006). Dynamic analysis Presented a new data mining method for the problem of detecting the phishing

of malicious code websites using a developed associative classification method called multilabel

 classifier that generates multiple labels rules. They analyzed the experimental
 results by various patterns in WEKA software

Rahman and Hasan (2011). Using and Analyzed the several decision tree models to classify patients of the hospital

comparing different decision tree surveillance data as a real case study. The experimental results of their analysis
classification techniques for mining showed that their approach improved identical dissemination of instances in

ICDDR,B Hospital Surveillance data. each class

Ghosh et al. (2014). A novel Neuro-fuzzy Used a neuro-fuzzy data mining approach for classification of generalized bell-
classification technique for data mining shaped membership functions. They applied the proposed technique to ten real

 standard datasets from the UCI machine learning repository for classification

 using Kappa statistic. They simulated proposed technique in MATLAB.
Moskovitch and Shahar (2015). Presented a novel managed discretization technique for analyzing multivariate time

Classification-driven temporal series which uses frequent temporal patterns as features for classification of time

discretization of multivariate time series chain for geared near improvement of classification correctness. This paper used
 temporal abstraction classification approach and time intervals mining for the

 presented multivariate time series

Stopel et al. (2006). Application of artificial Presented novel Artificial Neural Networks (ANN) based mechanism for discovering
neural networks techniques to computer the computer Worms based on the behavioral computer events. According to the

worm detection estimation of different parameters of the infected computers, the ANN, decision tree

 and �-nearest neighbors’ classification techniques are compared
Nissim et al. (2012). Detecting unknown Where the author's presented computer measurement extracted mechanism for

computer worm activity via support identifying unknown computer Worm activity in the operating system using support

vector machines and active learning vector approaches. This paper separates a series of trials to check the new technique

 by retaining several computer configuration activities

Gamal Abdel Nassir Mohamed and Norafida Bte Ithnin / American Journal of Applied Sciences 2017, 14 (11): 1049.1069

DOI: 10.3844/ajassp.2017.1049.1069

1063

Malware Detection Based on String Representation

This technique as we proposed it, we will address it

showing how our proposed model works. Our model has

three phases, the first one will basically represent the

various known malware in text into string format and

hence identify the various functions and their related

parameters, phase two will make use of the redundancy

there to identify which parameters are repeatedly been

called by same functions and hence once this occurrence

exists, it will be checked and if it is greater than the

threshold then that area will be identified as risky zone

which represents the actual malware part of the whole

malware file. Phase three will work with unknown

malware samples and detecting them only against the

risky zone or red area identified in phase two so as to

perform a fast detection system which will give a high

detection accuracy and be fast so no computational

complexity will be experienced with it and as a result of

that less memory space will be used. All of these are in

fact drawbacks been noted in many of other malware

representation techniques. The model we propose is a

hybrid one as it makes use of signature and behavior

based techniques. Another model is related to Hancock

is the first string signature generation system that takes

on this challenge on a large scale, Hancock is able to

automatically generate string signatures with a false

positive rate below 0.1%., it also proven to be given a set

of malware samples, Hancock is designed to create a

minimal set of N-byte sequences, each of which has a

sufficiently low false positive rate, that collectively

cover as large a portion of the malware set as possible

this has been mentioned in their research. Griffin et al.

(2009) published by Symantec Research Laboratories

about automatic generation of string signature for

malware detection, they have claimed that Hancock

differs from previous work by focusing on automatically

generating high-coverage string signatures with

extremely low false positives (Griffin et al., 2009).

Kreibich and Crowcroft (2004) developed Honeycomb a

system that uses honeypots to gather inherently

suspicious traffic and generates signature by applying

the Longest Common Substring (LCS) algorithm to

search for similarities in the packet payloads. As they

mentioned in their research paper (Lin and Stamp,

2011) that their system is unique in that it generates

signatures. In contrast to NIDSs, it cannot read a

database of signatures upon startup to match them

against live traffic to spot matches thus, the commonly

employed pattern-matching algorithms in NIDSs which

are of no use to the researchers. Instead, the system

tries to spot patterns in traffic previously seen on the

honey pot as the researchers have overlay parts of

flows in the traffic and use a Longest Common

Substring (LCS) algorithm to spot similarities in packet

payloads. Like pattern matching, LCS algorithms have

been thoroughly studied in the past. Their LCS

implementation is based on suffix trees, which are used

as building blocks for a variety of string algorithms.

Using suffix trees, the longest common substring of

two strings is straightforward to find in linear time

(Kreibich and Crowcroft, 2004).

The Importance of Malware Detection

The topic of malware detection has taken a high
level of importance in many types of research in
recent years and in different types of study fields.
According to the analytical data from Scopus, the
study of the malware detection has a significantly
increased in the last six years (St'astna and Tomasek,
2015) this is shown in the below Fig. 5.

Dynamic Programming Representation Tools

Here some dynamic programming-based tools that
are currently been used in most of the representation
techniques will be briefly discussed such as Basic Local
Alignment Search Tool (BLAST), Longest Common
Sequence (LCS) and Dynamic Time Warping (DTW) as
in certain representation techniques specially those based
on comparison between any two or more
inputs/functions/parameters they could be used to generate
the desired results based on the final algorithm that will
ensure better improvement of malware detection accuracy.

Basic Local Alignment Search Tool (BLAST)

BLAST is a system which has become very popular in
recent times (Altschul et al., 1990). While the 394 ISMB-
95 Needleman-Wunsch/Smith-Waterman systems are able
to deal with biosequences containing gaps and FASTA
introduces something similar to gaps in the process of
joining adjacent regions, BLAST deals exclusively with
uncapped biosequences. However, what is lost by
disregarding gapped sequences is compensated for by the
very fast execution times due to the construction of a finite
state machine to recognize all substrings of some fixed
size (called w-meters) of the query biosequence that
scores above a given threshold value. (Given the presence
of mutations, the authors estimate that each residue in the
query biosequence will typically contribute 50 w-mers to
the finite state machine). Hits generated by the scan are
then extended until the score for the extended match falls
below better scoring shorter matches. So in bioinformatics
BLAST for Basic Local Alignment Search Tool is an
algorithm for comparing primary biological sequence
information, such as the amino-acid sequences of different
proteins or the nucleotides of DNA sequences. A BLAST
search enables a researcher to compare a query sequence
with a library or database of sequences and identify library
sequences that resemble the query sequence above a
certain threshold. BLAST is one of the most widely used
bioinformatics programs for sequence searching. It
addresses a fundamental problem in bioinformatics
research. The heuristic algorithm it uses is much faster

Gamal Abdel Nassir Mohamed and Norafida Bte Ithnin / American Journal of Applied Sciences 2017, 14 (11): 1049.1069

DOI: 10.3844/ajassp.2017.1049.1069

1064

than other approaches, such as calculating an optimal
alignment. This emphasis on speed is vital to making the
algorithm practical on the huge genome databases
currently available, although subsequent algorithms can be
even faster, BLAST is also often used as part of other
algorithms that require approximate sequence matching.
BLAST can be used for several purposes. These include
identifying species, locating domains, establishing
phylogeny and comparison. With the use of BLAST, you
can possibly correctly identify a species or find
homologous species. This can be useful, for example,
when you are working with a DNA sequence from an
unknown species. When working with a protein sequence
you can input it into BLAST, to locate known domains
within the sequence of interest. Using the results
received through BLAST you can create a phylogenetic
tree using the BLAST web page. Phylogenies based on
BLAST alone are less reliable than other purpose-built
computational phylogenetic methods, so should only be
relied upon for "first pass" phylogenetic analyses. In
the case of comparison when working with genes,
BLAST can locate common genes in two related
species and can be used to map annotations from one
organism to another. Before BLAST, FASTA was
developed by (Lipman and Pearson, 1985). But BLAST
is more time-efficient than FASTA by searching only for
the more significant patterns in the sequences, yet with
comparative sensitivity (Wise, 1995).

Longest Common Sequence (LCS)

The Longest Common Subsequence (LCS) problem is
the problem of finding the longest subsequence common to
all sequences in a set of sequences (often just
two sequences). For example in a typical LCS Problem
Statement: Given two sequences, find the length of longest
subsequence present in both of them. A subsequence is a
sequence that appears in the same relative order, but not
necessarily contiguous. For example, “abc”, “abg”, “bdf”,
“aeg”, ‘”acefg”, etc are subsequences of “abcdefg”. More
explanation is given in the below-shown examples: LCS for
input Sequences “ABCDGH” and “AEDFHR” is “ADH”
of length3. LCS for input Sequences “AGGTAB” and
“GXTXAYB” is “GTAB” of length 4, the naive solution
for this problem is to generate all subsequences of both
given sequences and find the longest matching
subsequence. This solution is exponential in term of time

complexity. Let us see how this problem possesses both
important properties of a Dynamic Programming (DP)
Problem, for the general case of an arbitrary number of
input sequences, the problem is NP-hard (Maier, 1978)
when the number of sequences is constant, the problem is
solvable in polynomial time by dynamic programming for
the case of two sequences of n and m elements, the running
time of the dynamic programming approach is O (n×m).
There exist methods with lower complexity (Bergroth et al.,
2000) which often depend on the length of the LCS, the size
of the alphabet, or both. Notice that the LCS is not
necessarily unique; for example, the LCS of "ABC" and
"ACB" is both "AB" and "AC". Indeed, the LCS problem is
often defined to be finding all common subsequences of a
maximum length. This problem inherently has higher
complexity, as the number of such subsequences is
exponential in the worst case, (Greenberg, 2003) even for
only two input strings.

Dynamic Time Warping (DTW)

DTW algorithm has earned its popularity by being
extremely efficient as the time-series similarity measure
which minimizes the effects of shifting and distortion in
time by allowing “elastic” transformation of time series
in order to detect similar shapes with different phases.
Given two time series X = (x1, x2, ...xN), N ∈ N and Y =
(y1, y2, ...yM), M ∈ N represented by the sequences of
values (or curves represented by the sequences of
vertices) DTW yields optimal solution in the O (MN)
time which could be improved further through different
techniques such as multi-scaling (Müller et al., 2006;
Satrya et al., 2015). The only restriction placed on the
data sequences is that they should be sampled at
equidistant points in time (this problem can be resolved
by re-sampling) (Senin, 2008). The below figure is taken
from (Tobiyama et al., 2016) explains more in the
concept of DTW.

Figure 6 on the left shows the two-time series which
are similar but out of phase and has produced a large
Euclidean distance. To align the sequences a warping
matrix has been constructed and search for the optimal
warping path (red/solid squares) as shown on the right
figure with the Sakoe-Chiba Band with width R is used
to constrain the warping path. This supports the idea that
Dynamic time warping is an algorithm for measuring the
similarity of two-time series (Tobiyama et al., 2016).

Fig. 5: Statistic, published research papers “scopus” (St'astna and Tomasek, 2015)

Gamal Abdel Nassir Mohamed and Norafida Bte Ithnin / American Journal of Applied Sciences 2017, 14 (11): 1049.1069

DOI: 10.3844/ajassp.2017.1049.1069

1065

Fig. 6: Aligning using DTW concept (Tobiyama et al., 2016)

Discussion

Research Issues for MDS-Based On Call Graph

and Data Mining

The graph is such a powerful tool for modelling

structured objects and applications. A graph is a way of

representing the systems because they offer a method to

express models by the image. There are many definitions

for graphs in literature, any definition considered

applications that depend on it. It proves that the

definition given below is flexible enough for a wide

range of tasks (Riesen and Bunke, 2010). A graph G

consists of a collection of two types of elements, namely

vertices and edges, vertices are connected together by the

edges. A vertex is simply drawn as a node. The vertex

set of G is usually denoted by V (G), or V. |V (G)| is the

order of a graph and it represents the number of the

vertices. E (G), or E is the edge set of G, An edge (a set

of two elements) with two endpoints “a” and “b” is

represented by ab (without any symbol in between). An

edge is plotted as a line that connects two vertices, called

an endpoint. The main issues of using API call graph for

detecting malware may be listed as:

• Input pre-processing

• API call graph construction

• API call graph optimization

• API call graph matching and similarity

API call graph techniques follow two main steps,
namely, the transformation of malware samples into an
API call graph using API call graph construction
algorithm and matching the constructed graph against
existing malware call graph samples using graph
matching algorithm. A major issue facing malware API
call graph construction algorithms is building a precise
call graph from information collected about malware
samples. On the other hand call, graph matching is an
NP-complete problem and is slow because of
computational complexity. Although the research was
done has shown good Experimental results on 514
malware samples demonstrate that the proposed system

has 98% accuracy and 0 false positive rates (Barry et al.,
2015) but still it has computational time complexity
which also results in wastage of large memory space.
When it comes to applying data mining techniques for
malware detection, a feature set has to be first generated.
These features include hexadecimal byte sequences,
instruction sequences, API/system call sequences etc.
Usually, the number of features extracted from the files
is very high. In order to select the best features here
several techniques from the text, classification has been
employed. Some other features include printable strings
extracted from the files and some operating system
dependent features such as DLL information. Some of
these methods might use activity monitoring as a data
collection method but data mining remains the principal
detection method overall data mining needs all of the
above scenarios of feature set generation and
extraction which in almost the cases a difficult task to
achieve unless very high level of detection
methods/models been used (Elhadi, 2014). With all
the above drawbacks been observed when using
representation technique for malware based on various
techniques We recommend and propose the Signature
(String-based) and behavior representation technique
which will solve all of the above issues and with high
detection rate using very less memory space with the
specialty in pinpointing the actual crucial zone of the
malware sample been detected as malware and hence
identifying it from the rest of the code which maybe a
Benin and not actually malware.

API with Machine Learning Algorithms

Some researchers have used certain machine learning

algorithms with API calls for malware detection such as:
Instance Based Learner (IBk), decision tree (J48), Naıve

Bayes (NB), inductive rule learner (RIPPER) and

Support Vector Machine (SMO) machine learning
classification algorithms (Ahmed et al., 2009).

Conclusion

In this study, we briefly surveyed the different types
of malware and malware detection system as we have
reviewed certain malware detection techniques such as

Gamal Abdel Nassir Mohamed and Norafida Bte Ithnin / American Journal of Applied Sciences 2017, 14 (11): 1049.1069

DOI: 10.3844/ajassp.2017.1049.1069

1066

techniques based on machine learning, data mining, call
graph and string representation. We have also pointed
out the various methods that are used in malware
analysis whether been static, dynamic or hybrid. We
have discussed the use of some dynamic
programming-based tools that could be used in the
representation of the malware sampled gathered. We
also gave a detailed discussion which reflects our
findings with respect to the various malware detection
representation techniques and corresponding methods
that they have been used in producing effective
malware detection systems as we have provided a
proposal for string representation technique which
will give high detection rate with the specialty of
pinpointing the crucial or risky zone where the actual
malware exists within the whole malware file. The
objective of the survey is to provide a procedure,
which could be suitable for further studies to develop
malware detection techniques.

Author’s Contributions

Gamal Abdel Nassir Mohamed: Has given a
significant contribution in the preparation of this article.
Produced the initial draft of the article, develop and carry
out this manuscript.

Norafida Bte Ithnin: Is the supervisor, who oversaw
the overall research article, Reviewed and finalised the
draft of the article before it is being submitted.

Ethics

This article is original and contains unpublished
material. The corresponding author confirms that all of
the other authors have read and approved the manuscript
and no ethical issues involved.

References

Ahmed, F., H. Hameed, M.Z. Shafiq and M. Farooq,
2009. Using spatio-temporal information in API
calls with machine learning algorithms for
malware detection. Proceedings of the 2nd ACM
Workshop on Security and Artificial Intelligence,
Nov. 09-13, IEEE Xplore Press, Chicago, pp: 55-62.
DOI: 10.1145/1654988.1655003

Al Daoud, E., I.H. Jebril and B. Zaqaibeh, 2008.
Computer virus strategies and detection methods.
Int. J. Open Problems Compt. Math, 1: 12-20.

Altschul, S.F., W. Gish, W. Miller, E.W. Myers and
D.J. Lipman, 1990. Basic local alignment search
tool. J. Molecular Biol., 215: 403-410.

Anderson, B., D. Quist, J. Neil, C. Storlie and T. Lane,
2011. Graph-based malware detection using
dynamic analysis. J. Comput. Virol., 7: 247-258.

Aycock, J., 2006. Computer Viruses and Malware

(Advances in Information Security). 1st Edn.,

Springer-Verlag, New York.

Banko, M. and E. Brill, 2001. Scaling to very very large

corpora for natural language disambiguation.

Proceedings of the 39th Annual Meeting on

Association for Computational Linguistics, Jul.

06-11, IEEE Xplore Press, Toulouse, pp: 26-33.

DOI: 10.3115/1073012.1073017

Barry, B., E. Elhadi, M.A. Maarof and A.A.E. Elhadi,

2015. Enhancing the detection of metamorphic

malware using call graphs.

Bayer, U., E. Kirda and C. Kruegel, 2010. Improving the

efficiency of dynamic malware analysis. Proceedings

of the 2010 ACM Symposium on Applied Computing,

Mar. 22-26, IEEE Xplore Press, Sierre, Switzerland,

pp: 1871-1878. DOI: 10.1145/1774088.1774484

Bayer, U., A. Moser, C. Kruegel and E. Kirda, 2006.

Dynamic analysis of malicious code. J. Comput.

Virol., 2: 67-77.

Bergroth, L., H. Hakonen and T. Raita, 2000. A survey

of longest common subsequence algorithms.

Proceedings of the International Symposium on String

Processing and Information Retrieval, Sept. 29-29,

IEEE Xplore Press, A Curuna, Spain, pp: 39-39.

DOI: 10.1109/SPIRE.2000.878178

Christodorescu, M. and S. Jha, 2004. Testing malware

detectors. Proceedings of the ACM SIGSOFT

International Symposium on Software Testing and

Analysis, Jul. 11-14, IEEE Xplore Press, Boston,

Massachusetts, pp: 34-44.

 DOI: 0.1145/1007512.1007518

Christodorescu, M., S. Jha and C. Kruegel, 2008. Mining

specifications of malicious behavior. Proceedings of

the Joint Meeting of the European Software

Engineering Conference and the ACM SIGSOFT

Symposium on the Foundations of Software

Engineering, Sept. 03-07, IEEE Xplore Press, pp: 5-14.

DOI: 10.1145/1287624.1287628

Campagni, R., M. Donatella, R. Sprugnoli and M.C. Verri,

2015. Data mining models for student careers.

Expert Syst. Applic., 42: 5508-5521.
Damodaran, A., F. Di Troia, C.A. Visaggio, T.H. Austin

and M. Stamp, 2015. A comparison of static,
dynamic and hybrid analysis for malware detection.
J. Comput. Virol. Hack. Techniques, 13: 1-12.
DOI: 10.1007/s11416-015-0261-z

Devesa, J., I. Santos, X. Cantero, Y.K. Penya and

P.G. Bringas, 2010. automatic behaviour-based

analysis and classification system for malware

detection. Proceedings of the 12th International

Conference on Enterprise Information Systems,

Jun. 8-12, Madeira, Portugal.

Egele, M., T. Scholte, E. Kirda and C. Kruegel, 2012. A

survey on automated dynamic malware-analysis

techniques and tools. ACM Comput. Surveys, 44: 6-6.

DOI: 10.1145/2089125.2089126

Gamal Abdel Nassir Mohamed and Norafida Bte Ithnin / American Journal of Applied Sciences 2017, 14 (11): 1049.1069

DOI: 10.3844/ajassp.2017.1049.1069

1067

Elhadi, A.A.E., 2014. Enhanced application

programming interface call graph architecture for

malware detection. PhD Thesis, University of

Technology, Malaysia.
Elhadi, A. A.E., M.A. Maarof and A.H. Osman, 2012.

Malware detection based on hybrid signature
behaviour application programming interface call
graph. Am. J. Applied Sci., 9: 283-283.

Elhadi, E., M.A. Maarof and B. Barry, 2015. Improving
the detection of malware behaviour using simplified
data dependent api call graph.

Ellis, D.R., J.G. Aiken, K.S. Attwood and S.D. Tenaglia,

2004. A behavioral approach to worm detection.

Proceedings of the 2004 ACM Workshop on Rapid

Malcode, Oct. 29-29, IEEE Xplore Press, Washington

DC, pp: 43-53. DOI: 10.1145/1029618.1029625

Fredrikson, M., S. Jha, M. Christodorescu, R. Sailer and

X. Yan, 2010. Synthesizing near-optimal malware

specifications from suspicious behaviors.

Proceedings of the IEEE Symposium on Security

and Privacy, May 16-19, IEEE Xplore Press,

Berkeley/Oakland. DOI: 10.1109/SP.2010.11
Gandotra, E., D. Bansal and S. Sofat, 2014. Malware

analysis and classification: A survey. J.
Inform. Security.

Ghosh, S., S. Biswas, D. Sarkar and P.P Sarkar, 2014. A

novel Neuro-fuzzy classification technique for data

mining. Egypt. Informat. J., 15: 129-147.
Greenberg, R.I., 2003. Bounds on the number of longest

common subsequences.

Griffin, K., S. Schneider, X. Hu and T.C. Chiueh, 2009.

Automatic generation of string signatures for malware

detection. Proceedings of the International Workshop

on Recent Advances in Intrusion Detection, (AID’ 09),

pp: 101-120. DOI: 10.1007/978-3-642-04342-0_6

Han, K.S., I.K. Kim and E.G. Im, 2012. Detection methods

for malware variant using api call related graphs.

Proceedings of the International Conference on IT

Convergence and Security, (ICS’ 12), pp: 607-611.

DOI: 10.1007/978-94-007-2911-7_59

Han, L., M. Qian, X. Xu, C. Fu and H. Kwisaba, 2014.

Malicious code detection model based on behavior

association. Tsinghua Sci. Technol., 19: 508-515.

Hu, X., T.C. Chiueh and K.G. Shin, 2009. Large-scale

malware indexing using function-call graphs.

Proceedings of the 16th ACM Conference on

Computer and Communications Security, Nov. 9-13,

Chicago, Illinois, pp: 611-620.

 DOI: 10.1145/1653662.1653736

Idika, N. and A.P. Mathur, 2007. A survey of malware

detection techniques. Purdue University.

Kephart, J.O., G.B. Sorkin, W.C. Arnold, D.M. Chess

and G.J. Tesauro et al., 1995. Biologically inspired

defenses against computer viruses. IJCAI.

Kim, K. and B.R. Moon, 2010. Malware detection based

on dependency graph using hybrid genetic algorithm.

Proceedings of the 12th Annual Conference on

Genetic and Evolutionary Computation, Jul. 07-11,

IEEE Xplore Press, Portland, pp: 1211-1218.

DOI: 10.1145/1830483.1830703

Kolbitsch, C., P.M. Comparetti, C. Kruegel, E. Kirda

and X.Y. Zhou et al., 2009. Effective and efficient

malware detection at the end host. Proceedings of

the 18th Conference on USENIX Security

Symposium, Aug. 10-14, IEEE Xplore Press,

Montreal, pp: 351-366.

Kolter, J.Z. and M.A. Maloof, 2006. Learning to detect

and classify malicious executables in the wild. J.

Machine Learn. Res., 7: 2721-2744.

Kostakis, O., J. Kinable, H. Mahmoudi and K. Mustonen,

2011. Improved call graph comparison using

simulated annealing. Proceedings of the ACM

Symposium on Applied Computing, Mar. 21-24,

IEEE Xplore Press, TaiChung, Taiwan, pp: 1516-

1523. DOI: 10.1145/1982185.1982509

Kreibich, C. and J. Crowcroft, 2004. Honeycomb:

Creating intrusion detection signatures using

honeypots. ACM SIGCOMM Comput. Commun.

Rev., 34: 51-56.

Kumar, N., H. Shah and R. Shyamasundar, 2010. Can

we certify systems for freedom from malware.

Proceedings of the 32nd ACM/IEEE International

Conference on Software Engineering, May 2-8,

IEEE Xplore Press, Cape Town.

 DOI: 10.1145/1810295.1810323

Landwehr, C.E., A.R. Bull, J.P. McDermott and W.S. Choi,

1994. A taxonomy of computer program security

flaws. ACM Comput. Surveys, 26: 211-254.
Lee, J., K. Jeong and H. Lee, 2010a. Detecting

metamorphic malwares using code graphs.
Proceedings of the ACM Symposium on Applied
Computing, Mar. 22-26, IEEE Xplore Press,
Sierre, Switzerland, pp: 1970-1977.

 DOI: 10.1145/1774088.1774505
Lee, V.E., N. Ruan, R. Jin and C. Aggarwal, 2010b. A

survey of algorithms for dense subgraph discovery.
Manag. Min. Graph Data, 40: 303-336.

Li, W.J., S. Stolfo, A. Stavrou, E. Androulaki and
A.D. Keromytis, 2007. A study of malcode-bearing
documents. Proceedings of the International
Conference on Detection of Intrusions and Malware
and Vulnerability Assessment, (MVA’ 07).

Lin, D. and M. Stamp, 2011. Hunting for undetectable
metamorphic viruses. J. Comput. Virol., 7: 201-214.

Lipman, D.J. and W.R. Pearson, 1985. Rapid and

sensitive protein similarity searches. Science, 227:

1435-1441.

Maier, D., 1978. The complexity of some problems on

subsequences and supersequences. J. ACM, 25:

322-336.

Gamal Abdel Nassir Mohamed and Norafida Bte Ithnin / American Journal of Applied Sciences 2017, 14 (11): 1049.1069

DOI: 10.3844/ajassp.2017.1049.1069

1068

Mavrommatis, N.P.P. and M.A.R.F. Monrose, 2008. All

your iframes point to us. Proceedings of the 17th

Conference on Security Symposium, Jul 28-Aug.

01, San Jose, pp: 1-15

McGraw, G. and G. Morrisett, 2000. Attacking

malicious code: A report to the Infosec Research

Council. IEEE Software, 17: 33-33.

Mehdi, B., F. Ahmed, S.A. Khayyam and M. Farooq

2010. Towards a theory of generalizing system call

representation for in-execution malware detection.

Proceedings of the IEEE International Conference

on Communications, May 23-27, IEEE Xplore

Press. DOI: 10.1109/ICC.2010.5501969

Monitor-Spy, A.P.I., 2012. Display API calls made by

Win32 applications.

Schultz, M.G., E. Eskin, E. Zadok and S. J. Stolfo, 2001.

Data mining methods for detection of new malicious

executables. Proceedings of the IEEE Symposium

on Security and Privacy, (SSP’ 01), Los Alamitos,

CA, pp: 38-49.

Moser, A., C. Kruegel and E. Kirda, 2007. Limits of

static analysis for malware detection. Proceedings of

the Computer Security Applications Conference,

(SAC’ 07).
Moskovitch, R. and Y. Shahar, 2015. Classification-driven

temporal discretization of multivariate time
series. Data Min. Knowl. Discovery, 29: 871-913.

Müller, M., H. Mattes and F. Kurth, 2006. An efficient
multiscale approach to audio synchronization.

Nair, V.P., H. Jain, Y.K. Golecha, M.S. Gaur and
V. Laxmi, 2010. MEDUSA: MEtamorphic malware
dynamic analysis using signature from API.
Proceedings of the 3rd International Conference on
Security of Information and Networks, (SIN’ 10).

Norouzi, M., A. Souri and M.S. Zamini, 2016. A data
mining classification approach for behavioral
malware detection. J. Comput. Netwo. Commun.

Nissim, N., M Robert., L. Rokach and E. Yuval, 2012.
Detecting unknown computer worm activity via
support vector machines and active learning. Patt.
Anal. Applic. 15: 459-475.

Park, Y., D. Reeves, V. Mulukutla and B. Sundaravel,
2010. Fast malware classification by automated
behavioral graph matching. Proceedings of the 6th
Annual Workshop on Cyber Security and
Information Intelligence Research, (IIR’ 10).

Pathak, P. and Y.M. Nanded, 2016. A dangerous trend of
cybercrime: Ransomware growing challenge. Int. J.
Adv. Res. Comput. Eng. Technol., 5: 371-373.

Patil, D.R. and J. Patil, 2015. Survey on malicious web
pages detection techniques. Int. J. e-Service, Sci.
Technol., 8: 195-206.

Perdisci, R., A. Lanzi and W. Lee, 2008. McBoost:
Boosting scalability in malware collection and
analysis using statistical classification of
executables. Proceedings of the Computer Security
Applications Conference, (SAC’ 08).

Piyanuntcharatsr, S.S.W., S. Adulkasem and

C. Chantrapornchai, 2015. On the comparison of

malware detection methods using data mining with

two feature sets. Int. J. Security Applic., 9: 293-318.

Rad, B.B., M. Masrom and S. Ibrahim, 2012. Camouflage

in malware: From encryption to metamorphism. Int. J.

Comput. Sci. Netw. Security, 12: 74-83.

Rahman, R.M. and F.R.M. Hasan, 2001. Using and

comparing different decision tree classification

techniques for mining ICDDR, B Hospital Surveillance

data. Expert Syst. Applic., 38: 11421-11436.

Rey, A.M., 2015. Mathematical modeling of the

propagation of malware: A review. Security

Commun. Netw., 8: 2561-2579.

Rhee, J., R. Riley, D. Xu and X. Jiang, 2010. Kernel

malware analysis with un-tampered and temporal

views of dynamic kernel memory. Proceedings of

the International Workshop on Recent Advances in

Intrusion Detection, (AID’ 10).

Rhee, J., R. Riley, D. Xu and X. Jiang, 2011. LiveDM:

Kernel malware analysis with un-tampered and

temporal views of dynamic kernel memory.

Proceedings of the 12th Annual Information

Security Symposium, (ISS’ 11).

Rieck, K., P. Trinius, C. Willems and T. Holz, 2011.

Automatic analysis of malware behavior using

machine learning. J. Comput. Security, 19: 639-668.

Riesen, K. and H. Bunke, 2010. Graph classification and

clustering based on vector space embedding. World

Scientific Publishing Co., Inc.

Riesen, K., X. Jiang and H. Bunke, 2010. Exact and

inexact graph matching: Methodology and

applications managing and mining graph data.

Santos, I., F. Brezo, X. Ugarte-Pedrero and P.G. Bringas,

2013. Opcode sequences as representation of

executables for data-mining-based unknown

malware detection. Inform. Sci., 231: 64-82.

DOI: 10.1016/j.ins.2011.08.020

Satrya, G.B., N.D. Cahyani and R.F. Andreta, 2015. The

detection of 8 type malware botnet using Hybrid

Malware analysis in executable file windows

operating systems. Proceedings of the 17th

International Conference on Electronic

Commerce, Aug. 03-05, IEEE Xplore Press,

Seoul. DOI: 10.1145/2781562.2781567

Senin, P., 2008. Dynamic time warping algorithm

review. Proceedings of the Information and

Computer Science Department University of Hawaii

at Manoa Honolulu, USA, pp: 1-23.

Shabtai, A., R. Moskovitch, Y. Elovici and C. Glezer,

2009. Detection of malicious code by applying

machine learning classifiers on static features: A

state-of-the-art survey. Informat. Security Tech.

Rep., 14: 16-29.

Gamal Abdel Nassir Mohamed and Norafida Bte Ithnin / American Journal of Applied Sciences 2017, 14 (11): 1049.1069

DOI: 10.3844/ajassp.2017.1049.1069

1069

Siddiqui, M., M.C. Wang and J. Lee, 2008. A survey of

data mining techniques for malware detection

using file features. Proceedings of the 46th

Conference Annual Southeast Regional, Mar. 28-29,

IEEE Xplore Press, Auburn, pp: 509-510.

 DOI: 10.1145/1593105.1593239

Skormin, V.A., D.H. Summerville and J.S. Moronski,

2003. Detecting malicious codes by the presence

of their “gene of self-replication. Proceedings of

the International Workshop on Mathematical

Methods, Models and Architectures for Computer

Network Security, (CNS’ 03), pp: 195-205.

DOI: 10.1007/978-3-540-45215-7_16

St'astna, J. and M. Tomasek, 2015. Exploring malware

behaviour for improvement of malware signatures.

Proceedings of the IEEE 13th International

Scientific Conference on Informatics, Nov. 18-20,

IEEE Xplore Press, Poprad, Slovakia, pp: 275-280.

DOI: 10.1109/Informatics.2015.7377846

Stopel, D., Z. Boger, R. Moskovitch, Y. Shahar and

Y. Elovici, 2006. Application of artificial neural

networks techniques to computer worm

detection. Proceedings of the International Joint

Conference on Neural Networks, Jul. 16-21, IEEE

Xplore Press, Vancouver.

 DOI: 10.1109/IJCNN.2006.247059

Summerville, D., V. Skormin, A. Volynkin and

J. Moronski, 2005. Prevention of information

attacks by run-time detection of self-replication in

computer codes. Proceedings of the International

Workshop on Mathematical Methods, Models and

Architectures for Computer Network Security,

(CNS’ 05), pp: 54-75. DOI: 10.1007/11560326_5.

Tabish, S.M., M.Z. Shafiq and M. Farooq, 2009.

Malware detection using statistical analysis of byte-

level file content. Proceedings of the ACM SIGKDD

Workshop on Cyber Security and Intelligence

Informatics, Jun. 28-28, IEEE Xplore Press, Paris,

France, pp: 23-31. DOI: 10.1145/1599272.1599278

Tobiyama, S., Y. Yamaguchi, H. Shimada, T. Ikuse and
T. Yagi, 2016. Malware detection with deep neural
network using process behavior. Proceedings of the
IEEE 40th Annual Computer Software and
Applications Conference, Jun. 10-14, IEEE Xplore
Press, Atlanta. DOI: 10.1109/COMPSAC.2016.151

Verma, A., M. Rao, A. Gupta, W. Jeberson and V. Singh,
2013. A literature review on malware and its
analysis. Int. J. Current Res. Rev., 5: 71-71.

Vinod, P., R. Jaipur, V. Laxmi and M. Gaur, 2009.
Survey on malware detection methods. Proceedings
of the 3rd Hackers’ Workshop on Computer and
Internet Security, (CIS’ 09).

Walenstein, A., R. Mathur, M.R. Chouchane and
A. Lakhotia, 2007. The design space of metamorphic
malware. Proceedings of the 2nd International
Conference on i-Warfare and Security, (CWS’ 07).

Wise, M.J., 1995. Neweyes: A system for comparing
biological sequences using the running Karp-Rabin
Greedy String-Tiling algorithm. Proc. Int. Conf.
Intell. Syst. Mol. Biol., 3: 393-401.

Yang, H. and P.C. Yi-Ping, 2015. Data mining in lung
cancer pathologic staging diagnosis: Correlation
between clinical and pathology information. Expert
Syst. Applic., 42: 6168-6176.

Ye, Y., T. Li, Q. Jiang and Y. Wang, 2010. CIMDS:
Adapting post processing techniques of associative
classification for malware detection. IEEE Trans.
Syst. Man Cybernet., 40: 298-307.

Ye, Y., D. Wang, T. Li, D. Ye and Q. Jiang, 2008. An
intelligent PE-malware detection system based on
association mining. J. Comput. Virol., 4: 323-334.

You, I. and K. Yim, 2010. Malware obfuscation
techniques: A brief survey.

Zhang, Y. and F. Xia, 2012. A self-relocation based method
for malware detection. Applied Mechanics Mater.

Zolkipli, M.F. and A. Jantan, 2010. A framework for
malware detection using combination technique and
signature generation. Proceedings of the 2nd
International Conference on Computer Research and
Development, May 7-10, IEEE Xplore Press, Kuala
Lumpur. DOI: 10.1109/ICCRD.2010.25

