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Abstract: Review of the recent developments in steerable needles and 

control algorithms of their movements in curvilinear directions in the human 

body for the modern robotic system to perform brachytherapy in prostate 

cancer patients is presented. Advantages of steerable needles over the 

standard ones are described; design aspects of these needles and results of the 

phantom studies are discussed. Scientific novelty consists in structuring the 

research information on the newest approaches in the prostate cancer 

treatment using brachytherapy, about the methods and tools that improve the 

quality of procedures, reducing time of procedure and making it safer. 
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Introduction 

In 2013 in Russia 31,569 new cases of the prostate 
cancer were registered with an average annual growth 
rate of the cancer incidence being 8.09% (largest for all 
cancer types in the male population) (Caprin et al., 
2015). There are several treatment approaches applicable 
in prostate cancer patients, which include brachytherapy, 
hormone therapy, radical prostatectomy and external 
beam radiotherapy. Brachytherapy is considered as the 
least invasive method with the possibility of out-patient 
treatment having a minimum number of treatment 
sessions. In brachytherapy radioactive seeds are being 
implanted into the prostate using hollow needles. 
Depending on the exposure dose there are low-dose and 
high-dose brachytherapy procedures. Low-dose 
brachytherapy is used as an independent radical method 
and today it is one of the leading treatment options for 
prostate cancer because it allows achieving positive 
outcomes in patients at low, medium and high risk 
(Koukourakis et al., 2009; Skowronek, 2013). Generally 
radioactive seeds implantation is performed manually 
which provides several drawbacks: 
 

• Relatively small maneuverability because of the 

fixed pattern 

• The complexity of the needle insertion at an angle if 

required 

• Factors of movement and deformation of the 

prostate and bleeding that occur with needle 

insertion are not considered in dosimetric planning 

• The human-factor impact on the consistency, 

accuracy and efficiency of the procedure 
 

Therefore there is a growing interest in development 

and introduction into clinical practice of robotic systems 

for brachytherapy procedure. Several systems have 

already been developed, however they have standard 

rigid needles that do not allow a doctor to avoid certain 

obstacles during needle introduction and prevent 

reaching the intended target (Abolhassani et al., 2007a). 

Theoretical Background and Literature 
Review 

It is proven that more than 70% of tumor foci are 

located at the periphery of the prostate (McNeal et al., 

1998; Cohen et al., 2008). However, the needle 

introduction into the peripheral area is challenging 

puncturing prostate capsule away from central axis, 

increased needle obliquity angle, inadequacy/non rigidity 

in supporting of the prostate and single point proximal-

end actuation of a long slender needle (Nag et al., 2000). 

Another important factor is the swelling of the prostate 

during brachytherapy (Kehwar et al., 2011; Nath et al., 
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2009). Eapen et al. (2004) discovered that the prostate 

trauma due to the needle insertion makes a significant 

contribution to the development of acute urogenital 

toxicity. The authors proposed to minimize the needle 

manipulation of the periurethral path. Shah and Ennis 

(2006) studied the relationship between side effects from 

the rectum (acute diarrhea) and the number of needles 

inserted during brachytherapy. More acute diarrhea 

developed in case of using larger number of needles 

which apparently was due to the more significant trauma 

in the anterior wall of the rectum from the needles 

implanting seeds in the dorsal surface of the prostate. 

This suggests that reducing the number of needles and 

the minimal amount of manipulation is one of the factors 

for improving brachytherapy outcomes.  
Problems of needle introduction into the peripheral 

zone of the prostate can be eliminated by developing a 
new type of needle that can be easily placed according to 
the shape of the prostate. Podder et al. (2012) created 
steerable needles that could ‘adjust’ under the particular 
geometry of the prostate (Fig. 1). In the proposed 
approach needles are inserted near, but not along the 
central axis of the prostate using curvilinear path 
(curvilinear approach to radioactive seeds implantation). 
The studies have shown that using the curvilinear 
approach improves almost all dosimetric parameters 
(uniform distribution of radiation dose on the prostate, the 
mean rectal dose) compared with the standard linear 
approach. With this approach the insertion area with fewer 
needles introduced is achieved leading to reduced swelling 
of the prostate and less discomfort for the patient. 

In order to provide the desired parameters for the 
needles special alloys are being used. As a result, shape 
memory alloy actuated flexible needles (SMA needles) 
have been developed. In case of SMA needles tracking 
the route of the planned needle trajectory is crucial and 
is hard to achieve during brachytherapy procedures. 
Ruiz et al. (2012) created robotic system with an SMA 
needle actuator for the brachytherapy procedure. To 
track an actual needle position a set point tracking 
control of a flexible needle actuated by SMA using 

electromagnetic sensory feedback is performed. 
Preliminary results revealed that the SMA actuator may 
be adequate for creating required curvature for 
geometrically conforming the prostate gland. 

Wood et al. (2010) used a curvilinear approach in 

clinical practice to introduce steerable needles in 

transcutaneous medical interventions on the kidney. 

Orlando et al. (2015) compared the adequacy of three 

methods to control the introduction of SMA needles 

which were electromagnetic sensors, direct visualization 

(web camera) and ultrasound. The standard deviation of 

the values from the planned trajectory was minimal in 

case of electromagnetic sensors, which made the authors 

to consider this method of feedback as the most accurate. 

The worst results were registered in case of ultrasound 

use: Poor image quality compared to a web camera requires 

more computing for pattern matching path of the needle. 
Considering the possibility of using steerable needles, 

special attention should be paid to their design. In 
planning low-dose brachytherapy delivery and 
positioning of radioactive seeds according to the pre-
operative dosimetric plan is one of the most important 
stages of the procedure. Therefore, the relationship 
between the needle design and the method of its motion 
in the tissue influences the significance of tissue damage, 
the ability to avoid obstacles along a curvilinear path and 
positioning accuracy of the seeds. Ko et al. (2011) 
developed a flexible probe potentially capable of three-
dimensional steering in soft tissue inspired by nature-
ovipositor of a Giant Ichneumon wasp (Fig. 2).  

In experimental studies such needles were moved 
with different levels of bias (Fig. 3). Positioning 
accuracy of the needle tip was 0.68±1.45 mm.  

Swaney et al. (2013) proposed to improve the 
controllability of a needle and to increase the curvature 
of the trajectory by giving a degree of freedom to 
asymmetrical tip of the needle placing nitinol wires 
along the needle (Fig. 4). A degree of freedom of the tip 
allows increasing the angle of deviation, therefore 
increasing maneuverability of the needle and its 
controllability resulting in potentially less tissue damage. 

 

 
 
Fig. 1. Accessing various parts of the prostate-(a) conventional rectilinear approach of prostate brachytherapy needle insertion 

pattern with straight needles requiring 7 needles and (b) proposed curvilinear conformal smart needle insertion requiring 4 
needles (in any convenient needle entry orientation) (Podder et al., 2012) 
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Fig. 2. Diagrammatic representation of oblique view of transversely cut ovipositor (Ko et al., 2011) 
 

 
 

Fig. 3. Captured flexible probe trajectories for different steering offset values (Ko et al., 2011) 
 

 
 
Fig. 4. Flexure-tip needle design. The nitinol wires that comprise the flexure joint bend at the gap between the needle shaft and the 

tip as forces are applied to the bevel tip by tissue (Swaney et al., 2013) 
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Fig. 5. The longitudinal body segment smart needle design (Podder et al., 2010) 
 

Podder et al. (2010) proposed another construction 

of a steerable needle with nitinol wires on its outer 

side in the special clamping sleeve (Fig. 5). This 

construction provides a direct contact of the tissue 

with wires which have the property of shape memory 

with a temperature increase. 
To create a robotic system for brachytherapy it is 

important not only to develop special needles and 

optimal insertion trajectory, but also to establish the 

methods to control the needle behavior in the body 

during brachytherapy. Over the past 20 years, several 

attempts to control the steerable needles have been made. 

Abolhassani et al. (2007b) proposed a model for the 

control of a needle deflection from a target using 

ultrasound guidance as a feedback. Maghsoudi and Jahed 

(2013) presented an option of a needle control by 

estimating the force exerted to the needle at 

subcutaneous interventions. Ko et al. (2011) described 

closed loop control system driven using an 

electromagnetic sensor which tracks the path of the 

needles in the 2D mode. Kallem and Cowan (2009) 

developed an alignment control algorithm for inserting 

needles along the planar trajectory. Using a stereo 

camera to determine the position of the needle tip, the 

authors implemented the concept of ‘observer’ for the 

approximate calculation of parameters such as the 

rotational degree of freedom of the needle, which was 

previously impossible to measure. Deflection of a needle 

with a tapered end of targeted trajectory can be 

monitored using a special algorithm which allows 

varying the curvature of the needle, changing the ratio 

between the period of the needle rotation and the total 

period of insertion (Engh et al., 2006; Minhas et al., 

2007). Glozman and Shoham (2004) used inverse 

kinematics of a controlled needle inserted into the 

viscoelastic model of the tissue. The authors have shown 

that the needle trajectory is not unique, the introduction 

and optimization of insertion process can be 

accomplished by minimizing the lateral pressure of the 

needle on the tissue. Dehghan and Salcudean (2009) 

optimized the angle and depth of needle insertion, using 

a 3D tissue model including several ‘targets’. 

Abayazid et al. (2014) conducted an interesting 

experimental study where they used the 3D algorithms 

for planning and control of the needle trajectory under 

ultrasound guidance, which remains one of the most 

affordable imaging techniques in the clinical practice. 

Needle insertion procedure using proposed robotic 

control system is shown in Fig. 6. The anatomical 

regions of interest in the patient are acquired pre-

operatively using ultrasound images. Based on the 

images, the clinician identifies the target location and 

sensitive structures, such as glands or blood vessels and 

other obstacles, such as bones. The path planning 

algorithm generates a needle trajectory to avoid obstacles 

and reach the target. The planner generates new paths 

intra-operatively based on the updated needle tip 

position (obtained from ultrasound images) and target 

position during insertion. The needle insertion procedure 

is autonomous under supervision of the clinician. 

The experimental setup was studied in soft tissue 

phantom made of gelatin mixture. The silicon powder 

was added to the mixture to create acoustic scattering 

same as occurs in human tissues. SMA needles were 

used made of nickel and titanium alloy. The authors 

considered several experimental scenarios in order to 

assess the behavior and capabilities of the proposed 

algorithms for tracking the insertion route, path planning 

and needle insertion control (Fig. 7). 
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Fig. 6. The workflow presents a clinically viable robotic needle steering system. The needle insertion device controls the direction of 

insertion inside the patient's soft tissue. Needle tip tracking and path planning are performed intra-operatively to provide 
control algorithm and the clinician with data required to control the insertion device (Abayazid et al., 2014) 

 

 
 

Fig. 7. The experimental cases (Abayazid et al., 2014) 

 

For each of the cases under consideration the 

targeting error (eµ) was calculated, which was 

determined as an absolute distance between the actual 

target  needle tip position and its pre-set position 

obtained from the needle tracking algorithm. The main 

advantage of these algorithms is that the needle is rotated 

only when necessary to change the direction of   insertion. 

Accordingly, the reduced number of needle rotations 

potentially reduces trauma to the soft tissues. The 

authors note that the needle visibility in ultrasound 

images is deteriorated due to shadows surrounding the 

solid obstacles during insertion and this affects the 

targeting accuracy. The targeting error increases while 

needle steering in biological tissue due to the tissue in 

homogeneity. The experimental results show that the 

mean targeting error ranges from 0.24±0.09 to 0.38±0.19 

mm. However in clinical studies, more variables are 

expected that may reduce the targeting accuracy such as 

physiological motion, fluid flow and tissue in homogeneity. 

The steering system can be extended to detect the patient 

movements that occur during needle insertion such as 

respiration and fluid flow. In general, it was shown in 

experimental settings that the proposed algorithms for the 

robotic needle insertion system under the ultrasound 

guidance provides sufficient precision needle insertion 

and can reduce the trauma on biological tissues. 

Results 

According to the authors, the steerable needle described 

in (Ko et al., 2011) is moved owing to the steering off set, 

which in turn only depends on the forward motion of each 

segment. The proposed control approach is expected to 

cause less strain to the surrounding tissue and, in case of 

successful prototype miniaturization, less tissue damage. 

Steerable needle, which is described in (Swaney et al., 

2013) was made by using surgical needles with standard 

dimensions. These needles required no miniaturization. 
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Questions remain about the damage of the tissue which 

is associated with the fact that a needle with 

asymmetrical steerable tip was used. According to the 

authors, it is necessary to conduct some additional 

research on the impact of the needle on the tissue when 

implementing curved paths.  

Steerable needle, which is described in (Podder et al., 

2010), has the same principle as in (Swaney et al., 2013). 

The main difference in the location of nitinol wires is 

that they are located on the outside. Overall, this study 

indicated that clinical implementation of the proposed 

steerable needle may potentially improve radiation dose 

distribution and reduce dose to critical organs and 

thereby would potentially improve quality of life and 

survival of the prostate cancer patients. 

Discussion of the Results 

Various data were presented on implementing 

curvilinear approach in brachytherapy procedure using 

steerable needles and motion control. It is important to 

note that in gelatin phantoms physiological processes 

taking place in the real tissue cannot be considered. The 

tissue can swell, increasing in volume and move affected 

by inserted needles. The motion adjustment of the needle 

and prostate in real time by using ultrasound scanners is 

required. We can conclude that future research in this 

field will need additional experiments and clinical trials 

to make sure that technology, tools and control 

algorithms are working well. 

Conclusion and Further Research 

Currently at the stage of theoretical and practical 

advance the scientific and technological groundwork is 

being laid in the field of steerable needles and methods 

of control over their movements as a part of robotic 

brachytherapy systems. The presented approaches have a 

few differences such as principles of action, the design, 

accuracy and extent of tissue damage. 

Particular attention is paid to the development of 

simulating and control systems of the needle movement 

on a curved path by using ultrasound scanners and MRI. 

The optimization of control algorithms, increasing 

positioning accuracy and reducing errors remain the 

major issues at this stage. 
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