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Abstract: This article offers a regularization method for training stacked 

sparse denoising autoencoders aimed at designing model description of 

objects used for image denoising and inpainting. The offered 

regularization method allows increasing the generalizing ability of model 

description, which results in greater stability of denoising methods using it 

with regard to variation of the noise type. This makes the offered method 

vital for the tasks where noise or image distortion types cannot be known 

beforehand. Response speed of the offered algorithm enables to use it for 

dataflow processing. Absence of the need to formalize the physical nature 

of noises allows applying the approach to processing images received 

from various sensors, including sensors beyond the visible spectrum, 

multispectral and other sensors. The article shows the results of applying 

the offered regularization method in the denoising and inpainting task as 

exemplified by FERET face image base. 
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Introduction 

The problem of distorting an initial signal received 

from the sensors by some types of noises is one of the 

problems arising during the design of computer vision 

systems. To solve this problem image denoising and 

inpainting methods are applied; their task is to restore 

the original image from its distorted version. The 

image denoising problem occurs in case if the image 

is distorted by adding any type of noise to it (for 

example, white Gaussian noise, which is common for 

many kinds of sensors), whereas the inpainting 

problem arises in case if it is necessary to restore 

separate missing image pixels or remove some 

complex pattern overlay (for example, a text 

superimposed on the image). 

Related Data 

The denoising task may be formulated (Xie et al., 

2012) as follows: Let n

x R∈  be a noisy image 

and n

y R∈ - an original image matching it. In this case 

the noise contamination process may be represented is 

the form: :
n n

R Rς →  Equation 1: 

( )x yς=  (1) 

 

In this case the denoising task aim is formulated as 

Equation 2: 

 
2

2
argmin || ( ) ||

y
f

f E f x y= −  (2) 

 

This formula shows that the task is to find function f, 

representing the best approximation of 1
ς

− . 

There are two different approaches to denoising-in 

one case the distorted image is converted into another 

representation space (for example, using transformation 

to wavelet domain, as in (Xu et al., 2009)), where the 

original image can be more easily separated from the 

overlaid noise (Xu et al., 2009; Portilla et al., 2003). 

Another approach lies in analyzing the image statistics 

directly in the initial representation space. KSVD 

method exemplifies the implementation of this approach 

(Elad and Aharon, 2006). 
The existing inpainting methods may be divided into 

two categories-blind inpainting and non-blind inpainting. 

Non-blind inpainting techniques are used when a priori 

information about the missing domains of the image to 
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be inpainted is provided to the algorithm input; blind 

inpainting methods are applied in case if such 

information is unavailable and the method must 

automatically identify the distorted image domain. 

The existing non-blind inpainting methods 

demonstrate high performance in removing the 

superimposed text, simple overlaid images, etc. 

(Criminisi et al., 2004; Bertalmio et al., 2000). On the 

other side, blind inpainting is much more complicated 

problem and until recently the efficient methods to solve 

it existed only for the case of simple impulse noise 

(Dong et al., 2011; Wang et al., 2013). Usage of deep 

neural networks, in particular of Stacked Sparse 

Denoising Autoencoders (SSDA) became a 

breakthrough in solving the blind inpainting problem 

(Xie et al., 2012). SSDA architecture (Xie et al., 2012) 

demonstrates the advantage as compared to the standard 

KSVD denoising method (Elad and Aharon, 2006) based 

on application of visual dictionaries. Xie et al. (2012) 

indicate the connection of such possibilities with the 

deep and consequently, more non-linear image 

processing scheme that had proved the advantages in a 

number of other tasks as compared to the 2D ‘flat’ 

architectures. The ability of the SSDA method to train 

on the subset of visual examples sharing common 

features and to use this for improvement of denoising 

characteristics is especially important for solving 

denoising tasks. Autoencoders are applied in the 

denoising and inpainting methods by two different 

ways. In one of them the autoencoder is trained to 

obtain the descriptive noise model and thus, the 

denoising method based on its usage appears to be 

stable to the variation of image class it is applied to. In 

the other one the autoencoder is learned on the images 

of a definite class, which makes it resistant to the 

variation of the type of noise. 

The SSDA method is limited by the fact that the 

result of its operation strongly relies on the quality of 

training the applied autoencoders, in particular to 

achieve the required degree of generalization in its 

process. In addition, the SSDA method is not resistant to 

those types of noise, samples of which had not been 

presented to the autoencoder in the course of its training. 

To overcome these limitations a number of methods 

were developed, which improve the performance quality 

of this algorithm. In particular, Shcherbakov and 

Batishcheva (2014) offered to use two algorithms to 

improve the blind inpainting performance by means of 

SSDA-multiple iterative image feeding to the 

autoencoder input (at first the initial image is supplied 

to the autoencoder, then they obtained autoencoder 

output is again supplied to the input and so on), as well 

as the metaheuristic search in the obtained images to 

find optimal representation of the missing domain of 

the initial image. Agostinelli et al. (2013) suggested an 

algorithm that increases denoising resistance to various 

types of noise using linear combination of 

autoencoders, each of which is initially trained for its 

own type of noise contamination. 

Training and use of SSDA is rather computationally 

intensive task. Therefore, priority lines of improving 

noise reduction techniques based on the SSDA use are to 

improve the performance of each of the autoencoders 

used as opposed to the methods based on the increase in 

the total number and/or complication of the denoising 

algorithm structure. One of the possibilities used for this 

is to apply regularization methods in the learning 

process. In particular, the authors of the SSDA method 

show the efficiency of sparsity regularization method 

based on Kullback-Leibler metric (KL-regularization) 

(Ng, 2011) in their article (Wang et al., 2013). 

This paper offers a new regularization method used 

for SSDA training when solving denoising and 

inpainting tasks. 

Methods  

General Structure of the Algorithm  

The denoising and inpainting algorithm investigated 

in this article consists of two steps: 

 

• The training image set of objects of a certain class is 

formed and SSDA is trained using it 

• The trained SSDA is used for denoising and/or 

inpainting. For this purpose the noise contaminated 

image is passed through the trained SSDA 

 

SSDA Structure  

The simplest option of the Denoising Autoencoder 

(DAE) (Ng, 2011) is a three-layered feedforward 

neural network containing input and output neural 

layers, dimensions of these layers being equal and 

also one hidden layer of neurons usually of lesser 

dimensions (Fig. 1a). 

Let , 1,...,
i
y i N= be original images, xi- noise 

contaminated images matching them. 

The output signal of the hidden layer of the denoising 

autoencoder is given by the expression Equation 3: 

 

( )*
a E E

z F W x B= +  (3) 

 

Where: 

X = An autoencoder input signal 

Fa = A diagonal nonlinear operator of activation 

functions (usually of sigmoid ones) 

WE = A synaptic weight matrix of the neural network 

part called encoder of the autoencoder 

BE = An encoder shift vector 
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Fig. 1. (a) Structure of the simplest denoising autoencoder (b) Illustration of stacked autoencoder formation mechanism 
 
Then the denoising autoencoder output is given by 

the following expression Equation 4: 
 
ˆ ( )

a D D
y F W z B= +  (4) 

 
To solve a denoising or inpainting task the 

autoencoder is trained using various optimization 

methods, minimizing the reconstruction error: 
 

1

ˆargmin || ( ) ||
N

i i

i

E y y x
θ

=

= −∑  (5) 

 
Improvement of the denoising autoencoder is a 

stacked denoising autoencoder-a neural network 

obtained by combining autoencoders, each of which is 

trained on the output of the previous one (Fig. 1b).  

Applied SSDA Training Algorithm and the 

Suggested Regularization Method  

Let SSDA training is carried out using the following 

error function: 

 

2

2

,

1 1

( ) ( ) ( )

1
|| ( ) || || ||

2

r wd

K

i i k

i k

E w E w E w

y x w x wλ

= =

= +

= − +∑ ∑
 (6) 

 

where, 
,

( )
i

y x w  -the network output signal vector with 
i
x  

input signal vector fed to it, wk-k-th weight coefficient of 

the neural network. 

This function consists of two members, the first of 

which Er(w) is a reconstruction error, with the Euclidean 

distance between the input and output signal vectors 

used as this error and the second Ewd(w) is a 

regularization term implementing the Weight Decay 

regularization method (Moody et al., 1995). 

The idea of the regularization method suggested in 

this article is in the following: Weight correction values 

corresponding to the first (reconstruction error) and the 

second (Weight decay regularization term) terms of the 

expression (9) are computed independently, with the 

RPROP algorithm (Riedmiller and Braun, 1993; 

Riedmiller, 1994) being used for the first term and usual 

gradient descent for the second. 

Let us denote ∆k-weight correction value with number k. 

Weight correction value update rules (7) and the weights 

themselves (8), (9) in our case look as follows: 

 
( 1) ( )

( 1)

( 1) ( )
( ) ( 1)

( 1)

0

,

{ , 0

,

t t

r r

k kt

k t t

t t r r

k k

t k k

k

E E

w w
if

E E
if

w w
otherwise

η

η

−

+ −

−

− −

−

∂ ∂
• >

∂ ∂
∆

∂ ∂
∆ = ∆ • <

∂ ∂
∆

 (7) 

 

where, 0 1η η
− +

< < < : 

 
( )

( )

( )
( ) ( )

0

,

{ , 0

0 ,

t

r

kt

k t

t t r

k k

k

E

w
if

E
w if

w
otherwise

∂
>

∂
−∆

∂
∆ = +∆ <

∂
 (8)  

 

( 1) ( ) ( ) ( ) ( ) ( )
2

t t t t t twd

k k k k k k

k

E
w w w w w w

w
λ

+
∂

= + ∆ − = + ∆ −
∂

 (9) 

 
There is an exception to the rule (8): If a partial 

differential changes the sign, i.e., the previous step was 

too big and local minimum was missing, the previous 

weight update with the reverse sign shall be used: 
 

 ( ) ( 1)
,

t t

k k
w w if−

∆ = −∆

( 1) ( )

0

t t

r r

k k

E E

w w

−

∂ ∂
• <

∂ ∂
 (10) 

 
The peculiarity of the proposed method of training is 

as follows. In case the weight coefficient value wk gets in 

a sufficiently small neighborhood of a local minimum of 

error function Er, the value of 
( )t

k
w∆  as follows from the 

expressions (7) and (8) starts decreasing due to the Er 

error sign fluctuation. Accordingly, in the expression (9) 

for this weight coefficient variation value the 

contribution of regularization term -2λwk increases, since 
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its value depends only on the weight value wk and is not 

limited by the RPROP step. 
This results in additional decrease of the weight 

coefficient values which get “stuck” in the local 
minimums of error function Er and exert no significant 
impact on the final solution of the optimization problem. 
As shown by the experimental research, such approach 
allows achieving greater degree of the representation 
model sparsity, which is apparent from the weight 
coefficients of the hidden layer of the autoencoder 
(Table 1) and in leads to the increased generalization 
level of the descriptive model obtained as a result of the 
descriptive model training. This increases the resistance 
of the descriptive model to various distortions of the 
input signal and enables to use it efficiently for solving 
denoising and inpainting tasks. 

Results 

To assess the performance of the proposed method 
numerical denoising experiments were carried out using 
FERET face database (Phillips et al., 2000). 
The numerical experiments were designed as follows: 

 
• For the experiments training and test sets of face 

images were formed from the FERET database, 
which included 1,085 and 275 faces, respectively 

• The test set images were made noise contaminated 
with the white Gaussian noise having various 
parameter values 

• Autoencoder was learned by the training set using 

the above method of training  

• The denoising results were assessed according to the 

metrics of peak signal to noise ratio 
2 2

10
10log (255 / )

e
PSNR δ= , where 2

e
δ - root mean 

square error. PSNR is one of the standard metrics 

used to evaluate denoising results (Xie et al., 2012) 
 

In the course of preliminary experiments an optimal 

configuration of the autoencoder was selected, it 

included one hidden layer containing 512 neurons and 

optimal value of coefficient λ that determines the extent 

of Weight Decay regularization impact on the error 

function λ = 0.05. 

Visual examples of the algorithm operation are given 

in Table 2. 

PSNR curves versus Gaussian noise level σ before 

and after denoising are shown in Fig. 2a. 

Inpainting experiments were performed 

additionally. In these experiments the superimposed 

text was removed from the image. In this case the pre-

trained SSDA of the denoising experiment was used. 

Visual examples of inpainting are given in Table 3. 

To assess the inpainting performance the PNSR 

measure was used. Scatter diagram of the averaged 

PSNR of images after inpainting versus the same value 

before inpainting is shown in Fig. 2b. 

 
Table 1. Examples of the hidden layer autoencoder traits obtained by using ordinary method of RPROP training using Weight 

Decay” regularization and by the proposed regularization method 

Ordinary method of RPROP Training using The proposed 

“Weight Decay” regularization regularization method 
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Table 2. Visual examples of the denoising results for the white Gaussian noise versus the noise parameters 

25, 20.35PSNRσ = =    

50, 14.97PSNRσ = =    

75, 12.17PSNRσ = =    

100, 10.48PSNRσ = =    

 
Table 3. Inpainting example. The upper-most image is an original, it is followed by top-to-bottom intermittent examples of the 

distorted images and the corresponding images obtained by means of inpainting 

Original     
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Fig. 2. (a) PSNR curves versus Gaussian noise level σ before and after denoising. (b) Scatter diagram of the averaged PSNR value 

for images after inpainting versus its value before it. Green zones denotes the area where the PSNR value after inpainting 

happens to be higher than before it, i.e., the area where inpainting gives positive results 

 

 
 (a) (b) 

 
Fig. 3. (a) An example of denoising the image obtained in the nearest IR range using SSDA trained by the proposed regularization 

method; (b) PNSR curve versus Gaussian noise level σ before and after the experiment with noise contamination of image 

passed through the autoencoder 

 
In addition, the experiments were carried out to 

verify the efficiency of the proposed regularization 

method in the denoising task for the in-stream video 

obtained in the nearest IR range. The example of the 

experimental results is shown in Fig. 3a. 

Discussion 

Quality of the proposed method performance 

assessed by PSNR metrics appears to be lower as 

compared to that proposed in (Xie et al., 2012) (for 

example, for the initial images with PSNR≈8denoising 

method according to Xie et al. (2012) gives increase 

of this value to PSNR≈24, whereas the method studied 

herein gives PSNR≈15). At the same time it should be 

noted that the quality of denoising by the proposed 

method is limited by the reconstruction quality 

obtained by means of the autoencoder (PSNR metrics 

of the distortions introduced by the autoencoder itself 

for the noise-free images (≈18.67) is approximately 

equal to the metrics corresponding to the denoising 

quality achieved in the experiments (Fig. 2a)). The 

main distortion introduced by the autoencoder into the 

output images is a removal of high-frequency 

component, which is not significant during 

elaboration of recognition algorithms (for example, 

face recognition algorithms). To evaluate distortions 

relating to the autoencoder training quality, two 

experiments were carried out. In the first of them 

noise was superimposed on the images preliminarily 
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passed through the pre-trained autoencoder. The 

denoising quality considerably increased in this 

experiment (Fig. 4). Thus, performance of the proposed 

method may be increased by improving image 

reconstruction quality obtained with the autoencoder. To 

assess the potential of such improvement another 

experiment was performed aimed at finding the 

dependence of PSNR of autoencoder distortions on the 

volume of the set used to train it. In this case PSNR was 

assessed by the test set containing 282 images. The 

experimental result is shown in Fig. 4. As it is seen, 

autoencoder distortions may be considerably decreased 

by using the training set of greater volume. 

In addition, preliminary experiments demonstrated 

that in order to decrease the impact of distortions 

introduced by the autoencoder it is possible to apply 

approach with training certain models for different zones 

of the object-this approach will be described in more 

detail in the further works. 

PSNR curves versus Gaussian noise level σ before 

and after denoising (Fig. 2a) enables to conclude 

about the scope of application of the studied denoising 

method. It is efficient (i.e., results in PSNR value 

increase) in case of fairly severe noise contamination 

of images. This is also connected with the fact that 

signal reconstruction by means of SSDA introduces 

distortion in the signal by itself. 

According to the curve (Fig. 2b) a similar conclusion 

may be drawn with regard to the application of the 

investigated method to the inpainting task, as well. 

Furthermore, visual assessment of the inpainting 

quality shows that besides drawbacks relating to the 

distortion by the high-frequency component of 

images, the proposed method is advantageous as 

compared to (Xie et al., 2012). Particularly, in the 

inpainting example of Fig. 5 the proposed method 

completely removes text from the images, whereas the 

method described in (Xie et al., 2012) leaves distortions. 

Denoising and inpainting approach proposed 

herein has an important advantage as compared to the 

method described in (Xie et al., 2012)- it does not 

require preliminary recognition of the type of noise. 

This is connected with the fact that in the course of 

the autoencoder training a descriptive model of 

objects of a certain class is created, which is resistant 

to the input signal distortions rather than the 

descriptive noise model, as it is done in (Xie et al., 

2012). Thus, the studied approach is relevant for the 

tasks where a definite noise or image distortion model 

cannot be known beforehand (for example, removal of 

watermarks when recognizing scanned photos from 

the documents, elimination of abrasion marks and 

other film defects when scanning old photos, etc.). 

Furthermore, since the investigated method is not 

apparently locked to the definite noise models of 

specific sensors, it can be applied to a wide class of 

applications, including for denoising and inpainting of 

images obtained by means of sensors operating 

beyond the visible range, multispectral images, etc. 

 

 
 

Fig. 4.  PSNR of distortions introduced by the autoencoder on its training set volume 
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 (a) (b) 

 
Fig. 5. Visual comparison of the inpainting quality obtained in (Xie et al., 2012) (a) and by the proposed approach (b) 

 

Conclusion 

A new regularization method is proposed to be 

applied for training stacked sparse denoising 

autoencoders aimed at designing object description 

model used for image denoising and inpainting. The 

proposed regularization method allows increasing 

generalizing ability of the description model, which 

results in greater invariance of the denoising methods 

using it with regard to the noise type variation. The 

proposed method is relevant for the tasks where a 

noise model or types of possible image distortions 

cannot be known in advance. 

We see a further improvement of our method in 

training separate models for different distinguishable 

zones of an object in order to decrease the impact of 

distortions introduced by the autoencoder. 
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