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Abstract: The main contribution of this paper is the development of direct 

explicit methods of Runge-Kutta (RK) type for solving special fifth-Order 

Ordinary Differential Equations (ODEs). For this purpose, we have 

generalized RKD and RKT methods of special third and fourth-order 

ODEs. Using Taylor expansion, we have derived the algebraic equations of 

algebraic equations of order conditions for the proposed RKM integrators 

up to the eighth order. Based on these conditions, two RKM methods of 

orders five and six with three and four-stage are derived. Numerical 

implementation shows that the new methods agree well with existing RK 

methods, but requires less function evaluations. This is so due to the fact 

that RKM methods are direct; hence, they save considerable amount of 

computational time. 
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Introduction 

The mathematical modeling of many real-life 

problems in physics, engineering and economics can be 

written as higher-order differential equations, ordinary or 

partial, (DEs) model. Typical examples can be found in 

different fields such as quantum physics, solid state 

physics and fluid physics plasma physics Wazwaz 

(2006). For example, the nonlinear Korteweg-deVries 

(KdV), the nonlinear Schrodinger and the Kadomtsev-

Petviashvili equations are important mathematical 

models in quantum mechanics and nonlinear optics. 

Fifth-order KdV equation has found applications in some 

branches of physics, such as capillary-gravity water 

waves, chains of coupled oscillators and magneto-

acoustic waves in plasma Isaza et al. (2015; Lee, 2014; 

Wazwaz, 2006). Another application of fifth-order DEs 

is the nonlinear dispersive equations, which include 

several models arising in the study of different physical 

phenomena Isaza et al. (2015). A mathematical model 

describing weakly nonlinear long internal waves at the 

interface between two thin layers of different density, called 

the Gardner-Kawahara equation, which is a generalization 

of the famous KdV equation, contains a cubic term together 

a fifth-order dispersion term Lee (2014). 
In this study, a derivation for nonlinear equations 

(order conditions) of direct explicit RKM methods for 

solving a special fifth-order ODEs is presented, along with 

two numerical methods for ODEs with orders five and six. 

Special Fifth-Order Ordinary Differential Equations 

In this study, we concerned with fifth-order ordinary 

differential equation with no appearance for the first, 

second, third and fourth derivatives w
(i)
(x), for i = 

1,2,3,4. It can be written in the following form: 

 

( ) ( )( )(5)

0, ,w x g x w x x x= ≥  (1) 

 

Subject to initial condition: 

 

( )( )

0

i i

w x γ=  

 

for i = 0,1,...,4. 

where: 

 

:
N N

g × →ℝ ℝ ℝ  

 

and: 

 

( ) ( ) ( ) ( )1 2
, ,...,

N
w x w x w x w x =    

 

for i = 0,1,...,4. 
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Knowing that, N is the components number of the 

vector of independent variables of the system of ordinary 

differential Equation 1. To convert the function g(x, 

w(x)) which depends on two variables, to a function 

which depends only on one variable w(x), using high 

dimension we can work in N +1 dimension using the 

assumption wN+1(x) = x, then (1) can be simplified to 

following Equation 2: 

 
( ) ( ) ( )( )5

v x h v x=   (2) 

 

Using the following consideration: 

 

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

1 1 2 1
1

2 1 2 12

3 3 1 2 1

1 2 1

, ,..., ,

, ,..., ,

, ,..., ,

,

, ,..., ,

0

N N

N N

N N

N
N N N

g v v v vw x

g v v v vw x

w x g v v v v

v x h v

w x g v v v v

x

+

+

+

+

     
  
  
  
  
  = =   
  
  
  
  
       

⋯
⋯

⋯
⋯

⋯
⋯

 

 

Subject to the initial condition: 
 

( ) ( )0
i i

w x γ=  

 

for i = 0,1,...,4. 

where: 

 

1 2 0
, ,..., ,

i i i i

N
xγ γ γ γ =    

 
for i = 0,1,...,4. 

These class of ODEs are found in many engineering 

and physical problems. Some of scientists and 

engineers can solve the Equation 1 or 2 using one of 

multistep methods. Almost, they used to solve higher-

order ODE by converting it to equivalent system of 

first-order ODEs and can solve using a classical RK 

method Faires and Burden (2003). However, it would 

be more efficient if ODEs of order five can be solved 

using the proposed direct RKM method. The proposed 

method solve Equation 1 or 2 directly be more efficient 

since it has less function evaluations and computational 

time in implementation. 

For review of RK type methods, the second-order 

ODEs, Sommeijer (1993 Van der Houwen and 

Sommeijer, 1989) have derived direct numerical 

integrators with constant step size while Cong (2001) has 

derived direct numerical methods with variable step-size 

for solving second-order ODEs while for third-order, 

Mechee et al. (2013b; You and Chen, 2013) have 

derived direct integrators of RK type for solving ODEs 

of third-order while Senu et al. (2014) have derived 

variable step-size direct integrators of RK type of orders 

6(5), 5(4) and 4(3) for solving third-order ODEs. 

Hussain et al. (2016) have derived direct numerical 

integrators with variable and constant step-size for 

solving fourth-order ODEs, moreover different orders of 

direct explicit RKD methods for solving special third-

order ODEs with constant step-size have been derived 

(Mechee et al., 2014a; 2014b; 2014c). However, the 

regions of stability for RKD methods have been derived 

by Mechee et al. (2016). 

In this study, we are concerned with the one-step 

RKM integrators for directly solving fifth-order ODEs. 

To obtain the order conditions we used the Taylor series 

expansion approach. Consequently, we have derived two 

of direct RKM integrators based on the algebraic 

equations of order conditions of RKM integrators. 

Proposed RKM Methods 

The proposed formula of explicit RKM integrator 

with s-stage for solving fifth-order ODEs (1) can be 

written as follow: 
 

2 3 4

5

1

12! 3! 4!

s

n n n n n n i i

i

h h h
w w w w w w h b k

+

=

′ ′′ ′′′ ′′′′= + + + + + ∑   (3) 

 
2 3

4

1

12! 3!

s

n n n n n i i

i

h h
w w hw w w h b k

+

=

′ ′ ′′ ′′′ ′′′′ ′= + + + + ∑   (4) 

 
2

3

1

12!

s

n n n n i i

i

h
w w hw w h b k

+

=

′′ ′′ ′′′ ′′′′ ′′= + + + ∑   (5) 

 

2

1

1

s

n n n i i

i

w w hw h b k
+

=

′′′ ′′′ ′′′′ ′′′= + + ∑   (6) 

 

1

1

s

n n i i

i

w w h b k
+

=

′′′′ ′′′′ ′′′′= + ∑   (7) 

 
where: 
 

( )1
,

n n
k g x w=   (8) 

 
2

2

3 4 1

3 5

0

1

,
2!

3! 4!

n i n i n i n

i i

i n i n ij j

i

h
x c h w hc w c w

k g
h h

c w c w h a k
−

=

 
′ ′′+ + + 

 =
 

′′′ ′′′′+ + + 
 

∑

  (9) 

 
for i = 2,3,...,s. and h is the step-size. The parameters of 

RKM integrator are , , , , , and
ij i i i i i i
a c b b b b b′′′′ ′′′ ′′ ′ for i = 

1,2,...,s and j = 1,2,..., s are real. It is an explicit 

integrator if aij = 0 for i ≤ j and otherwise its implicit 

integrator. We have expressed the coefficients RKM 

method in Butcher Table as follows: 
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′

′′

′′′

′′′′

 

 
The order conditions of RKD integrators for solving 

third-order ODEs have been derived by Mechee et al. 

(2013a; You and Chen, 2013) while the order conditions 

of RKFD integrators for solving fourth-order ODEs have 

been derived by Hussain et al. (2015). In this study, 

using the same technique, we have derived the algebraic 

equations of order conditions of RKM methods for 

solving special fifth-order ODEs. 

The Order Conditions Derivation of RKM 

Methods 

This approach has a special characteristic history, it 
deals with non-scalar problems in the hope that this 
generalizes correctly to high dimensions. It is similar to 

those which were used by Runge, Heun, Kutta, Nystrom, 
Huta and others to obtain methods up to order six for 
solving the first-order problem y′ = f (x, y) Butcher and 
Wanner (1996; Butcher, 2008). The algebraic equations 
of order conditions of RKM integrators can be obtain 
from the direct expansion of the local truncation error. 

This idea is based on the derivation of algebraic 
equations of order conditions for RK methods introduced 
in (Dormand, 1996). The RKM formulae in (3-7) can be 
expressed as follow: 
 

( )

( )

( )

( )

( )

1

1

1

1

1

, ,

, ,

, ,

, ,

,

n n n n

n n n n

n n n n

n n n n

n n n n

w w h x w

w w h x w

w w h x w

w w h x w

w w h x w

+

+

+

+

+

= + Φ

′ ′ ′= + Φ

′′ ′′ ′′= + Φ

′′′ ′′′ ′′′= + Φ

′′′′ ′′′′ ′′′′= + Φ

 

 
where, the increment functions are defined as the following: 
 

( )

( )

( )

( )

( )

2 3

4

1

2

3

1

2

1

1

1

, ,
2! 3! 4!

, ,
2! 3!

, ,
2!

, ,

,

s

n n n n n n i i

i

s

n n n n n i i

i

s

n n n n i i

i

s

n n n i i

i

s

n n i i

i

h h h
x w w w w w h b k

h h
x w w w w h b k

h
x w w w h b k

x w w h b k

x w b k

=

=

=

=

=

′ ′′ ′′′ ′′′′Φ = + + + +

′ ′′ ′′′ ′′′′ ′Φ = + + +

′′ ′′′ ′′′′ ′′Φ + +

′′′ ′′′′ ′′′Φ +

′′′′ ′′′′Φ =

∑

∑

∑

∑

∑

 

where, ki is defined in the formula (8) and (9). If D 

represents Taylor series increment function and the local 

truncation errors of the derivatives of the solution of 

order zero up to the fourth-order cab be obtained by 

substituting the exact solution w(x) of ODE (1) into the 

RKM increment function. This gives: 

 
( ) ( ) ( )( )1

i i i

n
t h

+
= Φ − ∆  

 

for i = 0,1,...,4. 

These expressions have given in elementary 

differentials terms also Taylor series increment can be 

expressed as follows: 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( )

2 3

0 3 4 4

2

1 3 4 3

2 3 4 2

3 4

4

,
2! 3! 4!

,
2! 3!

,
2!

,

1

h h h
w w w w O h

h h
w w w O h

h
w w O h

w O h

O

′ ′′∆ = + + + +

′′∆ = + + +

∆ = + +

∆ = +

∆ =

 

 

Hence, for the scalar case function, the few first 

differentials of the function g are given as follow: 

 
( )

( )

( ) ( )
( ) ( )

( ) ( ) ( )

( ) ( )

( ( )

5

1

6

1

27

1

8 3 2

1

39

1

2

,

,

2 ,

2

3 3 3 ,

3 2 1 ,

2 3

x w

xx xw w ww

xxx www xww

ww xw xwx w

xxxx xxxw wwww wwwx

www xww

xwwx xwww ww

G g

G g g w

G g g w g w g w

G g w g g w w

w w g w g w g w g

G g w g w w g g

w w g w g w w

g y g w w w w g

=

′= +

′ ′′ ′= + + +

′ ′ ′= + + +

′ ′′ ′′ ′ ′′′+ + + +

′ ′ ′= + + +

′ ′′ ′′ ′ ′+ + + +

′ ′ ′ ′′ ′+ + + ( )

( )( )

( ) ( ) )

( )

3 3

3 3 3

w wwx

ww xw

xwx xww xwx xwxx xwxw

w wx ww

g

g w w w w w g

w g w g w g w g w g

w g w g w g

+

′ ′′ ′′ ′ ′′′+ + + +

′′ ′ ′′ ′ ′+ + + + +

′′′′ ′′′ ′+ + +

 

 

The increment functions Φ
(0)
, Φ

(1)
,
 
Φ

(2)
, Φ

(3)
 and Φ

(4)
 

for the RKM integrators can be written as follow using 

the above terms: 

 

( )

( )( ) ( )

1 1 1

22 2 3

1

1
2

2

s s s

i i i i i x y

i i i

s

i i xx xy y yy

i

b k b g b c g g y h

b c g g y g y g y h O h

= = =

=

′= + + +

′ ′′ ′+ + + +

∑ ∑ ∑

∑

  (10) 
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( )

( )( ) ( )

1 1 1

22 2 3

1

1
2

2

s s s

i i i i i x y

i i i

s

i i xx xy y yy

i

b k b g b c g g y h

b c g g y g y g y h O h

= = =

=

′ ′ ′ ′= + + +

′ ′ ′′ ′+ + + +

∑ ∑ ∑

∑

  (11) 

 

( )

( )( ) ( )

1 1 1

22 2 3

1

1
2

2

s s s

i i i i i x y

i i i

s

i i xx xy y yy

i

b k b g b c g g y h

b c g g y g y g y h O h

= = =

=

′′ ′′ ′′ ′= + + +

′′ ′ ′′ ′+ + + +

∑ ∑ ∑

∑

  (12) 

 

( )

( )( ) ( )

1 1 1

22 2 3

1

1
2

2

s s s

i i i i i x y

i i i

s

i i xx xy y yy

i

b k b g b c g g y h

b c g g y g y g y h O h

= = =

=

′′′ ′′′ ′′′ ′= + + +

′′′ ′ ′′ ′+ + + +

∑ ∑ ∑

∑

  (13) 

 

( )

( )( ) ( )

1 1 1

22 2 3

1

1
2

2

s s s

i i i i i x y

i i i

s

i i xx xy y yy

i

b k b g b c g g y h

b c g g y g y g y h O h

= = =

=

′′′′ ′′′′ ′′′′ ′= + + +

′′′′ ′ ′′ ′+ + + +

∑ ∑ ∑

∑

  (14) 

 
The expressions for the local truncation errors in the 

derivatives of the solution up to the fourth-order, y
(i)
(x) 

for i = 0,1,2,3,4 are written as follow: 
 

( )

( ) ( )

( ) ( )

5 6

1 1

0 5

1

7 81

1 1

1 1

120 720

1 1

5040 40320

s

n i i

i

G G

t h b k

G G

+

=

  
+  

  = −
  

+ + +    

∑
…

  (15) 

 

( )

( ) ( )

( ) ( )

5 6

1 1

1 4

1

7 81

1 1

1 1

24 120

1 1

720 5040

s

n i i

i

G G

t h b k

G G

+

=

  
+  

 ′  = −
  

+ + +    

∑
…

  (16) 

 

( )

( ) ( )

( ) ( )

5 6

1 1

2 3

1

7 81

1 1

1 1

6 24
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120 720

s

n i i

i

G G

t h b k

G G

+

=

  
+  

 ′′  = −
  

+ + +    

∑
…

  (17) 

( )

( ) ( )

( ) ( )

5 6

1 1

3 2

1

7 81

1 1

1 1

2 6

1 1

24 120

s

n i i

i

G G

t h b k

G G

+

=

  
+  

 ′′′  = −
  

+ + +    

∑
…

  (18) 

 

( )

( ) ( ) ( )

( ) ( )

5 6 7

1 1 1

4

1

8 91

1 1

1 1

2 6

1 1

24 120

s

n i i

i

G G G

t h b k

G G

+

=

  
+ +  

 ′′′′  = −
  

+ + +    

∑
…

  (19) 

 
Substitute the Equations (10-14) into the Equations 

(15-19) respectively and expanding as a Taylor 

expansion. Using computer algebra which has written by 

MAPLE programming (Gander and Gruntz, 1999) then, 

the error equations or the algebraic equations of order 

conditions up to order-seven can be expressed in rooted 

trees form (Table 1-5) which have all indices are from 1 

to s for w
(i)
 for i = 0,1,...,4. 

Derivation of RKM Methods 

To derive RKM methods of orders fifth and sixth, we 
have used the algebraic conditions up to order of the 
method for w

(i)
 for i = 0,1,...,4 in Table 1-5, respectively, 

with the following assumption: 
 

( )
( )

( ) ( )

2

3 4

1
1 , ,

2!

1 1
,

3! 4!

i

i i i i i

i i

i i i i

c
b c b b b

c c
b b b b

−
′′′ ′′′′ ′′ ′′′′= − =

− −
′ ′′′′ ′′′′= =

 

 
for i = 1,...,s, which imposed to reduce the number of 

algabraic order equations to be solve. The parameters of 

RKM method are , , , , , ,

i ij i i i i i
c a b b b b b′ ′′ ′′′ ′′′′ for i = 1,2,...,s 

and j = 1,2,...,s. The parameters of the new methods have 

been evaluated by solving the system of algebraic 

equations of order conditions in (1-5). 
Three-stage fifth-order and four-stage sixth-order 

direct RKM integrators have been derived and the 
Butcher tableaus of these integrators are shown in the 
Table 6 and 7, respectively. 

 
Table 1. Rooted trees of order conditions for w 

|t| t S(t) φ(t) γ(t) 

5   
1

s

i

i

b

=

∑  120 

6   
1

s

i i

i

b c

=

∑  720 

7   2

1

s

i i

i

b c

=

∑  2520 

7   3

1

s

i i

i

b c

=

∑  840 
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Table 2. Rooted trees of order conditions for w′ 

|t| t S(t) φ(t) γ(t) 

4   
'

1

s

i

i

b

=

∑  24 

5   '

1

s

i i

i

b c

=

∑  120 

6   ' 2

1

s

i i

i

b c

=

∑  630 

7   ' 3

1

s

i i

i

b c

=

∑  840 

8   
ij

s

i

i
ab∑

=1

'

 5040 

8   

4

1

'

i

s

i

i
cb∑

=  210 
 
Table 3. Rooted trees of order conditions for w′′ 

|t| t S(t) φ(t) γ(t) 

3   
∑
=

s

i

i
b

1

''

 6 

4   
i

s

i

i
cb∑

=1

''

 24 

5   

2

1

''

i

s

i

i
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3

1

''

i

s

i

i
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7   
ij

s

i

i
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=1

''

 720 

7   

4

1

''

i

s

i

i
cb∑

=  210 

8   
jij

s

i

i
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=1

''

 5040 
 
Table 4. Rooted trees of order conditions for w′′′ 

|t| t S(t) φ(t) γ(t) 
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∑
=

s

i

i
b

1
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 2 
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i

s

i

i
cb∑
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1
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s

i

i
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3

1
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i

s

i

i
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4

1
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i

s

i

i
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s

i

i
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=1

''
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5

1
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i

s

i

i
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=  42 
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Table 5. Rooted trees of order conditions for w′′′′ 

|t| t S(t) φ(t) γ(t) 
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∑
=

s

i

i
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1

''''

 1 

2   
i

s
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i
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i
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1
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s

i

i
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i

i
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s

i

i
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i

i
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''''

i

s
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i
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Table 6. The butcher tableau RKM5 Method 

 

Table 7. The butcher tableau RKM6 Method 

 
 

Numerical Implementation 

In this section, a set of fifth-order ODEs is solved by 
using the fifth and sixth –order RKM methods. Then, 
these problems of fifth-order ODEs are reduced to a 
first-order ODEs systems and solved by using existing 
RK integrators of the same order, five and six 
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respectively. The numerical results are compared in 
Figure 2-4 to indicate the log of maximum absolute 
errors against the log of total time. The notations that 
were used are as follows: 

 
• Step: Stepsize used 
• IC: Initial condition 
• Ex: Exact solution 
• RKM5: The direct RKM method of fifth-order 

• RKM6: The direct RKM method of sixth-order 
• RK5: Existing RK method of fifth-order 
• RK6: Existing RK method of sixth-order as given by 

Dormand (1996) 
• Total Time/Time: The total time in seconds to solve 

the problems 
• Max Error: Maximum |y(xn)-yn| is maximum of 

absolute errors of the true solutions and the 
computed solutions 

 

     
 (a) (b) 
 
Fig. 1. (a) Minimum stage number versus method order for RK, RKN and the recently proposed RKM method, (b) Number of 

function calls for RK and RKM methods with orders 5,6 
 

 
 (a) (b) 
 

Fig. 2. Errors versus computational time for RKM5, RKM6, RK5 and RK6 methods in problems (a) 1 and (b) 2 
 

 
 (a) (b) 
 

Fig. 3. Errors versus computational time for RKM5, RKM6, RK5 and RK6 methods in problems (a) 3 and (b) 4 
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 (a) (b) 

 
Fig. 4. Errors versus computational time for RKM5, RKM6, RK5 and RK6 methods in problems (a) 5 and (b) 6 

 

Problems Tested of ODEs 

Problem 1 (Linear ODE) 
 

( ) ( ) ( )5

cos ; 0y t t t π= < ≤  

 

• IC: y
(2i+1)

(0) = (-1)
i
, y

(2i)
(0) = 0, for i = 0,1 and 

y
(4)
(0) = 0 

• Ex: y(t) = sin(t) 
 

Problem 2 (Non Constant Coefficients ODE) 
 

( ) ( ) ( ) ( )5 5 4 3 2
32 16 8 4 2 , 0 1y t t t t t t y t t= − + − + − < ≤  

 

• IC: y(0) = 1, y
(i)
(0) = 0, for i = 1,2,3,4 

• Ex: y(t) = e
-t2
 

 

Problem 3 (Non Linear ODE) 
 

( ) ( ) ( )5 6
120 , 0 1y t y t t= − < ≤  

 

• IC: y
(i)
(0) = (-1)

i
i! for i = 0,1,...,4 

• Ex: y(t) = 
1

1 t+

 

 

Problem 4 (Linear ODE) 
 

( ) ( ) ( )5

, 0 1y t y t t= − < ≤  

 

• IC: y
(i)
(0) = (-1)

i
 for i = 0,1,...,4 

• Ex: y(t) = e
-t
 

 

Problem 5 (Linear ODE with Relatively Long 

Interval) 
 

( ) ( ) ( )5

0.00001 , 0 10y t y t t= < ≤  

• IC: y
(i)
(0) = (-0.1)

i
 for i = 0,1,...,4 

• Ex: ( )
1

10y t e
−

=  

 

Problem 6 (Linear System of ODEs) 
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

5

1 1 2 3

5

2 1 2 3

5

3 1 2 3

212 180 211 ,

212 179 211 ,

242 242 243

y t y t y t y t

y t y t y t y t

y t y t y t y t

= − − −

= − − −

= − − −

 

 

IC: 
 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

4

1 1 1 1 1

4

2 2 2 2 2

4

3 3 3 3 3

0 1, 0 2, 0 6, 0 20, 0 66

0 0, 0 1, 0 5, 0 19, 0 65

0 0, 0 2, 0 8, 0 26, 0 80

y y y y y

y y y y y

y y y y y

′ ′′ ′′′= = − = = − =

′ ′′ ′′′= = = − = =

′ ′′ ′′′= = − = = − =

 

 
The system is integrated over the interval [0,2]. 

Ex: 

 

( )

( )

( )

2 3

1

2 3

2

3

3

,

,

t t t

t t

t t

y t e e e

y t e e

y t e e

− − −

− −

− −

= − +

= −

= −

 

 

Discussion and Conclusion 

In this study, we have derived the algebraic equations 

of order conditions for direct integrators of RKM for 

special fifth-order ordinary differential equations. Our 

approach is based on Taylor series expansion. We have 

derived two RKM methods of three-stage fifth-order, 

four-stage sixth-order respectively. Numerical results of 

the implementation show that the new integrators are as 

accurate as well-known existing methods; however, they 

are more efficient in implementation as they require less 

function evaluations. As such, we conclude that these 
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integrators are costly effective, in terms of computation 

time and number of evaluation than existing methods. 
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