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Abstract: In this study, a comparison among three semi-analytical 

numerical integration algorithms for solving stiff ODE systems is 

presented. The algorithms are based on Differential Transform Method 

(DTM) which are Multiple-Step DTM (MsDTM), Enhanced MsDTM (E-

MsDTM) and MsDTM with Padé approximants (MsDTM-P). These 

methods can be classified as explicit one step semi-analytical numerical 

integration methods. The error and stability analysis of each method is 

presented. New important relationships among the methods are introduced. 

To demonstrate our results, a comparison of the accuracy, stability and 

computational efficiency of the methods is presented through solving some 

linear and nonlinear problems arising in applied science and engineering. 
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Introduction 

Many mathematical problems arising from the real 

world cannot be solved completely by analytical means. 

One of the most important mathematical problems 

arising in applied science and engineering is stiff ODE 

systems. Stiff ODE systems, which have significantly 

different timescales of change, occur in many fields of 

engineering particularly in the studies of electrical 

circuits, chemical and biochemical reactions, optimal 

control, vibrations and fluid mechanics; see for example 

(Schiesser, 1993; El-Zahar, 2015). The problem of 

stiffness has been known for some time and has attracted 

the attention of many numerical analysts leading to surveys 

of methods for stiff problems. It is well known that explicit 

numerical methods are intrinsically faster than commonly 

used implicit methods while implicit methods are 

commonly used for solving stiff problems because of their 

stability (Lambert, 1991; Hairer and Wanner, 

1996; Butcher, 2008). In fact, the explicit numerical 

methods which recently are presented in (Wu, 1998; 

Wu and Xia, 2001; 2007; Novati, 2003; Ahmad et al., 

2004; Ahmad and Yaacob, 2005; Ebady et al., 2012; 

Egbako and Adeboye, 2012; El-Zahar, 2013a;           

El-Zahar et al., 2014a) can also satisfy the stiff problems. 

Recently, semi-analytical numerical methods such as 

Homotopy Perturbation Method (HPM), Variational 

Iteration Method (VIM), Differential Transform 

Method (DTM) and Adomian Decomposition Method 

(ADM), are applied for finding approximate analytical 

solutions for a wide classes of nonlinear problems. 

Solving stiff problems is one of the most recent 

applications of these methods; see for example 

(Mahmood et al., 2005; Guzel and Bayram, 2005; 

Darvishi et al., 2007; Hassan, 2008; Zhao and Xiao, 

2010; Aminikhah and Hemmatnezhad, 2011; Aminikhah, 

2012; Zou et al., 2012; Atay and Kilic, 2013; Zhao et al., 

2014; El-Zahar et al., 2014b). However, for some 

important classes of problems such as stiff ODE 

problems, singularly perturbed problems, chaotic and 

non-chaotic problems and nonlinear oscillators and for 

the sake of large convergence region, accuracy and 

efficiency, it is necessary to treat each of the above 

mentioned semi-analytical numerical methods as an 

algorithm in a sequence of time intervals. Therefore, 

different multiple-step HPM, DTM, ADM and VIM 

are presented for solving many important classes of 

problems; see for example (Adomian et al., 1988; 

Mahmood et al., 2005; Ghosh et al., 2007; Goh et al., 2008; 

Chowdhury et al., 2009; 2012; 2014; Gonzalez-Parra et al., 

2009; Alomari et al., 2010; Wang et al., 2010; Odibat et al., 

2010; Molli et al., 2013; Keimanesh et al., 2011; 

Gokdogan et al., 2012a; 2012b; Yildirim et al., 2012; 

Erturk et al., 2012; El-Zahar 2012a; 2012b; Do and 
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Jang, 2012; Alquran and Al-Khaled, 2012; Lee et al., 

2013; Patra and Ray, 2013; Smarda et al., 2013; 

Heydari et al., 2014; Momani et al., 2014; Olvera et al., 

2014; El-Zahar, 2015). 

Although the treatment of HPM, ADM and VIM as 

multiple-step methods speeds up the convergence rate 

and improves the accuracy, these methods have some 

limitations which hamper their applications. 

An analytical integration is required for each step, each 

solution series term in HPM and ADM and each iteration in 

VIM and so some difficulties may arise as follows: 

 

• The nonlinear and non-homogeneous parts of the 

ODE may be ill-conditioned such that the 

integration became very complicated 

• By increasing the number of iterations or the 

number of solution series terms, the number of 

terms of approximate solution may increase, so 

rapidly that the integration becomes both 

complicated and time consuming 

• “In VIM for some differential equations, we may 

have more than one Lagrange multiplier. Let L1 

and L2 be different Lagrange multipliers for an 

ODE. We assume that L1 is more accurate than L2 

and then by using L1 the more fast the 

approximation to the exact solution can be 

obtained, but the computation will be 

complicated. The mentioned notation for L2 is 

totally opposite” (Heydari et al., 2013; 2014) 

• In ADM, for nonlinear problems, we need to 

evaluate the Adomian polynomials that mostly 

require tedious algebraic calculations 

• In HPM, we should suitably choose an initial guess, 

or infinite iterations are required 

 

Due to the above mentioned difficulties, the 

Multiple-step DTM (MsDTM), which does not require 

analytical integration, evaluation of the Lagrangian 

multiplier, or rather difficult computation for finding the 

Adomian polynomials, is one of the most effective 

multiple-step semi-analytical numerical methods. 
EL-Zahar, (2015) presented an adaptive step size 

MsDTM for solving singularly perturbed ODE systems, 

also known as stiff ODE systems. The results showed 

that the proposed method is an accurate and efficient 

method compared to classical MsDTM and RK4 method. 

However, for large values of the admissible local error or 

when a fixed step size is used, the problem of stability 

arises. A studying of this obstacle and how to overcome 

it is introduced in this study through presenting a 

comparison of the stability and accuracy of three semi-

analytical numerical differential transform based 

methods. These methods are MsDTM, Enhanced 

MsDTM (E-MsDTM) and MsDTM with Padé 

approximants (MsDTM-P). These methods can be 

classified as explicit one step semi-analytical numerical 

methods. The stability and error analysis of each method 

is presented. New important relationships among these 

methods are introduced. To demonstrate our results, a 

comparison of the accuracy, stability and computational 

efficiency of the methods is presented through solving 

some linear and nonlinear problems of practical 

importance in applied science and engineering. 

Multiple-Step DTM 

The basic definition and the fundamental theorems of 

the MsDTM are given in (Odibat et al., 2010; 

Keimanesh et al., 2011; Gokdogan et al., 2012b; 

Yildirim et al., 2012; Erturk et al., 2012; El-Zahar, 

2012b; Khader and Megahed, 2014). For convenience of 

the reader, we present a review of the method as follows. 

Consider the following non-linear initial-value problem: 
 

0 0( , ( )), ( )
dy

f t y t y t C
dt

= =  (1) 

 

Let [t0, T] be the interval over which we want to find 

the solution of the initial value problem (1). In actual 

applications of the DTM, the Nth-order approximate 

solution of the initial value problem (1) can be expressed 

by the finite series (Zhou, 1986; Nik and Soleymani, 

2013; Rashidi et al., 2013; 2014; Al-Amr, 2014; 

Benhammouda et al., 2014): 

 

0 0

0

( ) ( )( ) ( ), [ , ]
N

k

k

y t Y k t t S t t t T
=

≈ − = ∈∑  (2) 

 

where: 

 

0

1 ( )
( )

!

k

k

t t

d y t
Y k

k dt
=

 
 =   

 (3) 

 
Equation (2) and (3) imply that the concept of 

differential transformation is derived from the Taylor 
series expansion. The following theorems can be 
deduced from (2) and (3) 

Theorem 1 

If ( )( ) ( ) ( )y t u t v t= β ± , then ( ) ( ) ( )Y k U k V k= β ±β  

Theorem 2 

 If ( ) ( ) ( )y t u t v t= , then 
0

( ) ( ) ( )
k

Y k U V k
=

= −∑
ℓ

ℓ ℓ . 

Theorem 3 

If 
( )

( )
m

m

d u t
y t

dt
= , then 

( )!
( ) ( )

!

k m
Y k U k m

k

+
= + . 
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Theorem 4 

If ( ) ( )
m

y t t= β+ , then ,

0

!
( ) ( )

! ( ) !

m k m k
H m

Y k t
k m k

−= β+
−

,  

where ,

1, 0

0, 0
m k

if m k
H

if m k

 − ≥= − <
 .

 Theorem 5 

If ( )
t

y t e
λ= , then 0( )

!

k
t

Y k e
k

λλ
= . 

Theorem 6 

If ( ) sin( )y t t= ω +β , then 
0

( ) sin
! 2

k k
Y k t

k

 ω π= ω +β+   
. 

Theorem 7 

If ( ) cos( )y t t= ω +β , then 
0

( ) cos
! 2

k k
Y k t

k

 ω π= ω +β+   
. 

Using some fundamental operations of DTM, we 

have the following recurrence relation: 
 

0( 1) ( , ( )), (0)Y k F k Y k Y C+ = =  (4) 

 

where, F(k, Y(k)) is the differential transform of the 

function f(t, y(t)). The differential transform Y(k) of the 

unknown function y(k) can be obtained by solving the 

iterating algebraic system (4). In order to speed up the 

convergence rate and to improve the accuracy of 

resulting solutions, the entire domain [t0, T] is usually 

split into sub-intervals and the algorithm of MsDTM is 

applied as follows: 

Assume that the interval [t0, T] is divided into M 

subintervals [tm, tm+1], m = 0,1,…….M−1 of equal step 

size h = (T-t0)/M. The main ideas of the MsDTM are 

as follows. First, we apply the DTM to Equation (1) 

over the interval [t0, t1] to obtain the following 

approximate solution: 
 

0 0 0 0 0 1

0

( ) ( )( ) ( ), [ , ]
N

k

k

y t Y k t t S t t t t
=

≈ − = ∈∑  (5) 

 

Using the initial conditions y0 (t0) = C0. For m≥1 and 

at each subinterval [tm, tm+1] we will use the initial 

conditions ym (tm) = Sm-1 (tm) and apply the DTM to 

Equation (1) over the interval [tm, tm+1], where t0 in 

Equation (5) is replaced by tm. The process is repeated 

and generates a sequence of approximate solutions ym(t), 

m = 0,1,…….M−1, for the solution y(t): 
 

0

( ) ( )( ) ( ).
N

k

m m m m

k

y t Y k t t S t
=

≈ − =∑  (6) 

 

Finally, the MsDTM assumes the following solution: 

0 0 0 1

1 1 1 2

1 1 1

( ) ( ), [ , ],

( ) ( ), [ , ],
( )

( ) ( ), [ , ]
M M M M

y t S t t t t

y t S t t t t
y t

y t S t t t t− − −

 ≈ ∈ ≈ ∈= ≈ ∈

⋮
 (7) 

 

Error Analysis of MsDTM 

The local truncation error of the approximate solution 

Sm(t) is estimated by the inequality (Do and Jang, 2012; 

Bervillier, 2012; El-Zahar, 2013b): 

 

1

1
( 1)

[ , ]

1

( )
( ) ( ) , max ( ) ,

( 1)!

, 0,1,......, 1

m m

N
Nm

m m m
t t

m m

t t
y t S t C C y

N

t t t m M

+

+
+

ξ∈

+

−
− ≤ = ξ

+

≤ ≤ = −

 (8) 

 

It is well known that stiff ODE systems 

are associated with the existence of eigenvalues with 

very large magnitudes which consequentially results in 

solutions usually having exponential behavior. 

Therefore, if we let 1NC K += , in Equation (8), where 

1

(1)

[ , ]
max ( )

m m

m
t t

K y
+ξ∈

= ξ , then Equation (8) results in: 

 

[ ]
{ }

1

,

1

( )
( ) ( ) , max ( , ) ,

( 1)!

, 0,1,......, 1

N

m

m m
t y R

m m

K t t
y t S t K f t y

N

t t t m M

+

∈

+

−
− ≤ =

+
≤ ≤ = −

 (9) 

 

From the local truncation error (8), it is clear that, for a 

fixed order N, as the step size h = (t-tm) tends to zero the 

approximate solution Sm(t) tends to the exact solution ym(t) 

and thus the method is consistent, while numerically, from 

(9), for a fixed step size, the convergence of the MsDTM 

only begins when N is of order O(Kh). 

Stability Analysis of MsDTM 

In order to examine the MsDTM for the stability, let 

us consider the differential equation: 

 

( ) ( )y t y t′ = λ  (10)  

 

where, λ is a complex constant and ( ) 0Re λ < . For this 

equation, the MsDTM solution, Equation (6), yields: 

 

1

0

( ) ( )
N

k

m m m

k

S t Y k h+
=

=∑  where 
1m mh t t+= −  (11) 

 

Form Equation (10) we have k! Ym (k) = λ
k 
Ym(0) and 

Ym(0) = Sm(tm), then we get: 

 

( )
1

0

( ) ( )
!

k
N

m m m m

k

h
S t S t

k
+

=

 λ =  
  
∑  (12) 
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Setting z = λh in Equation (12) results in 

the amplification factor: 
 

0

( )
!

kN

N

k

z
R z

k=

=∑  (13) 

 
Which is the N

th
 order Taylor expansion of e

z
 and 

thus the MsDTM is not A-stable method. 

Enhanced MsDTM 

Since the approximate solution obtained by MsDTM 
may yield an increasing error due to the nonlinearity 
(Do and Jang, 2012), a modification of MsDTM, which 
is called Enhanced MsDTM (Do and Jang, 2012) is 
presented as a multi-stage integration method as follows: 

Suppose that we have solved the problem (1) up to 
a point tm-1, m = 1,2,..,M-1 and have obtained a value 
Sm-1(tm) as an approximation of ym-1(tm). Assuming the 
localization hypothesis (Lambert, 1991), ym(tm) = Sm-

1(tm), we are interested in obtaining an approximate 
value for the true one ym(tm+1). For that purpose, the 
following method is developed. 

The solution ym(t) verifies the following IVP: 
 

1( , ( )), ( ) ( )m
m m m m m

dy
f t y t y t S t

dt
−= =  (14) 

 
Equation (14) can be written as: 

 

1( ) ( ) ( , ( ))

m

t

m m m m

t

y t S t f y d−= + τ τ τ∫  (15) 

 

We can replace ym (τ) in Equation (15) by the 

approximate solution Sm(τ) from Equation (6) to obtain 

an improved approximation 1 ( )
m

S t to ym(t):  

 

1 0

1( ) ( ) ( , ( ))

m

t

m m m m

t

S t S t f S d−= + τ τ τ∫  (16) 

 

where, 0 ( ) ( )
m m

S Sτ = τ  and thus we can update the value 

Sm(tm+1) by: 
 

1

1 0

1 1
( ) ( ) ( , ( ))

m

m

t

m m m m m

t

S t S t f S d

+

+ −= + τ τ τ∫  (17) 

 

Then, 1

1 1
(0) ( )

m m m
Y S t+ += from Equation (17) instead of 

Ym+1 (0) = Sm(tm+1) from Equation (6). For each 

subinterval, repeat this process, Equation (17), to update the 

initial condition of the followed subinterval, Ym+1(0) and 

consequently to obtain enhanced approximation to ym+1 (t). 

The above process, Equation (17), is called Enhanced 

MsDTM with one iteration (E1MsDTM). To apply 

Enhanced MsDTM with two iterations, we solve the 

integral equation, Equation (16) and replace 0 ( )
m

S τ by 

1 ( )
m

S τ  to get 2 ( )
m

S t . Repeating this successive 

approximations I -times by replacing 1( )I

m
S − τ by ( )I

m
S τ , I = 

1,2,3.. results in enhanced MsDTM with I iteration 

(EIMsDTM) as follows: 

 

1

1( ) ( ) ( , ( )) ,

1,2,3,......, 0,1,......, 1

m

t

I I

m m m m

t

S t S t f S d

I m M

−
−= + τ τ τ

= = −

∫  (18) 

 

and hence we get an enhanced initial condition 

1 1
(0) ( )I

m m m
Y S t+ += . 

In fact the above process, Equation (18), is a 

multiple-step successive approximations method and 

it is equivalent to multiple-step Picard iteration 

method (Djang, 1948; Lal and Moffatt, 1982; 

Wazwaz, 2011) with DTM solution as the zeroth 

approximation of ym(t). 

Error Analysis of E-MsDTM 

It is well known that (Innocentini, 1999; Youssef 

and El-Arabawy, 2007) when the function ( , ( ))f t y t  

satisfies Lipschitz condition with respect to y(t) in a 

rectangle 

R, { }1, ( ) ( )m m mR t t a y t S t b−= − ≤ − ≤ ,

( , ( )) ( , ( )) ( ) ( )f t y t f t y t y t y t− ≤ −L , L = constant, then, 

irrespective of the choice of the initial approximation, 

the successive approximations ( )I

m
S t  converge on the 

interval , min ,m m

b
t t a

H

   ±     
, 

{ },
max ( , )
t y R

H f t y
∈

=  to the 

solution of the problem (1). Also, the error of the 

approximate solution ( )I

m
S t can estimated as follows: 

 

[ ]

1

1 1

1

1 1 1

2 2

2 2 2 1

0

2 1

1 1

1

1

( ) ( ) ( ) ( )

( ) ( )

...... ( ) ( ) .....

( ) ( )
,

( 1)! ( 1)!

( )
,

( 1)!

m

m m

I

m m m

t

I I

m m m m

t

t

I

m m

t t

t

I

m I m I I

t t t

N I N I
I Im m

N I

m

N

y t S t y S d

y S d d

y S d d d

t t t t
C C

N I N I

t tC
C

N I

−

−

µ
−

µ µ

+ + + +

+ +

+

− ≤ µ − µ µ

≤ µ − µ µ µ

≤ µ − µ µ µ µ

− −
≤ ≤

+ + + +

−
≤ =

+ +

∫

∫ ∫

∫ ∫ ∫

L

L

L

L L

L

L 1

( 1)

[ , ]

1

max ( ) ,

, 0,1,......, 1

m m

N

m
t t

m m

y

t t t m M

+

+

ξ∈

+

ξ

≤ ≤ = −

 (19) 

 

It is clear that the choice of the initial 

approximation, 0

1
( ) ( )

m m m
S t S t−= , i.e., N = 0, results in the 

following bounded error: 
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[ ]

{ }

1

1

(1)

[ , ]

1

1
,

( )
( ) ( ) , max ( ) ,

( 1)!

( )
,

( 1)!

max ( , ) , , 0,1,......, 1

m m

I

mI

m m m
t t

I

m

m m
t y R

L t tC
y t S t C y

L I

L t tH

L I

H f t y t t t m M

+

+

ξ∈

+

+∈

−
− ≤ = ξ

+

−
≤

+

= ≤ ≤ = −

 (20) 

 
which is the classical Picard iteration method error 
(Youssef and El-Arabawy, 2007). 

From the local truncation error (19), it is clear that, 

for a fixed number of iterations I, as the step size h = (t-

tm) tends to zero the approximate solution ( ) ( )I

m m
S t y t→  

and thus the method is consistent, while numerically, for 

a fixed step size, the convergence of EI-MsDTM only 

begins when I is of order O(Lh). 

Stability Analysis of E-MsDTM 

In order to examine the stability of E-MsDTM with N
th 

order and I iterations, we consider again Equation (10). 
Using E1-MsDTM, the approximate solution of 

Equation (10) is given by: 
 

1 0 0( ) ( ) ( )

m

t

m m m m

t

S t S t S d= + λ τ τ∫  (21) 

 

where, 0 ( )
m

S t is the zeroth approximation of ( )my t and 

given by: 
 

0

0

( ) ( )( )
N

k

m m m

k

S t Y k t t
=

= −∑  (22) 

 
From Equation (21) and (22) we have: 

 
1

1 0

0

( )
( ) ( ) ( )

1

kN
m

m m m m

k

t t
S t S t Y k

k

+

=

−
= + λ

+∑  (23) 

 

Since (1 ) ( 1) ( )m mk Y k Y k+ + =λ for Equation (10), then 

Equation (23) becomes: 
 

1 0 1

0

( ) ( ) ( 1)( )
N

k

m m m m m

k

S t S t Y k t t +

=

= + + −∑  (24) 

 
and can be written as: 
 

1
1

0

( ) ( )( )
N

k

m m m

k

S t Y k t t
+

=

= −∑  (25) 

 
which is the (N+1)

th
 order approximate solution of (10) 

obtained by DTM. Replacing the solution in Equation 
(22) by that obtained in Equation (25) and repeating the 
above algorithm I times results in: 
 

0

( )( )
N I

I k

m m m

k

S Y k t t
+

=

= −∑  (26) 

which is the (N+I)
th
 order approximate solution of Equation 

(10) obtained by DTM and thus the amplification factor of 

EI-MsDTM with N
th 

order and I iterations is given by: 
 

,

0

( )
!

kN I

N I

k

z
R z

k

+

=

=∑  (27) 

 
which is the (N+I)

th
 order Taylor expansion of e

z
 and 

thus the EI-MsDTM is not A-stable method. 
From the stability analysis of MsDTM and E-

MsDTM, we get the following theorem. 

Theorem 8 

Enhanced-MsDTM with order N and iterations I 
and the MsDTM with order (N+I) have the same 
stability region. 

Also, we observe that applying the above procedure 
from Equation (21) to (26) on Equation (10) in a vector 
form results in the following theorem. 

Theorem 9 

Enhanced-MsDTM with order N and iterations I is 
equivalent to the MsDTM with order (N+I) for the 
homogenous autonomous ODE system: 
 

0 0

d
= A (t) , (t ) =

dt

y
y y y  

 
where, A is an (n x n) constant matrix and y is an (n×1) 
solution vector. 

The stability regions of MsDTM and EI-MsDTM at 

different orders (N) and number of iterations (I), 

respectively, are shown in Fig. 1. 

MsDTM-Padé Approximants 

The goal of Padé approximants is to make the 

maximum error of MsDTM, Equation (8), as small as 

possible by maintaining the accuracy far outside the 

radius of convergence of the series solution (Ehle, 1973; 

Rashidi and Mohimanian Pour, 2010a; 2010b; Lu, 2012; 

Kanth and Aruna, 2013; Domairry and Hatami, 2014) 

and to improve the stability property of the solution. Let 

the Padé approximation of the MsDTM series solution Sm(t) 

on [tm, tm+1] is the quotient of two polynomials pm(t) and 

qm(t) of order p and q respectively and p+q = N (Ehle, 

1973). We use the notation Sm,pa (t) to denote the quotient: 
 

, 1

( )
( ) , [ , ], 0,1,......, 1

( )

m
m Pa m m

m

p t
S t for t t t m M

q t
+= ∈ = −  (28) 

 
Let the polynomials used in (28) are: 

 

0

0

( ) ( )( ) ,

( ) ( )( ) , (0) 1

p
k

m m

k

q
k

m m

k

p t P k t t

q t Q k t t with Q

=

=

= −

= − =

∑

∑
 (29) 
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Fig. 1. Stability regions of MsDTM and EI-MsDTM at different orders (N) and number of iterations (I), respectively 

 

The polynomials in (28) are constructed so that Sm(t) 

and Sm,pa(t) agree at t = tm and their derivatives up to N. 

Since Sm(t) has a Taylor expansion defined in Equation 

(6), the formal power series: 

 

( )1

,

( )
( ) ( ) ( ) ( )

( )

Nm
m m Pa m m

m

p t
S t S t S t O t t

q t

+− = − = −  (30) 

 

Determines the coefficients of pm(t) and qm(t). 

Multiplying (30) by qm(t) gives: 

 

0 0

0 1

( )( ) ( )( )

( )( ) ( )( )

qN
k k

m m

k k

q Np
k k

m m

k k N

Y k t t Q k t t

P k t t C k t t

= =

= = +

    − −     
  − − = −   

∑ ∑

∑ ∑
 (31) 

 

When the left side of (31) multiplied out and the 

coefficients of the powers of (t-tm)
k 

are set equal to zero 

for k = 0,1,….,N, the result is a system of N+1 linear 

equations in the N+1 unknown coefficients of pm(t) and 

qm(t). Solving this linear system we get Sm,pa(t) rational 

approximation of Sm(t). From the local truncation error 

(30), it is clear that, for a fixed order N, as (t-tm)→0, 

Sm,pa(t)→Sm(t) and thus the method is consistent.  

Stability Analysis of MsDTM-P 

For the stability of MsDTM with Padé 

approximants, it is well known that the Padé 

approximants of order (p, q) are A-stable if and only 

if 2 ≥ p-q ≥ 0 (Ehle, 1973; Hairer and Wanner, 1996, 

Theorem 4.12), that is, the main diagonal and two sub 

diagonals in Padé approximants are A-stable. The 

absolute stability of MsDTM with diagonal and two 

sub diagonals Padé approximants is shown in Fig. 2. 

Numerical Experiments 

To demonstrate our results, a comparison of the 

accuracy, stability regions and computational efficiency 

of the MsDTM, E-MsDTM and MsDTM-P is presented 

through solving some linear and nonlinear practical 

problems with known exact solutions arising in electrical 

and chemical engineering. All calculations are carried 

out by MAPLE 14 software in a PC with a Pentium 2 

GHz and 512 MB of RAM. 

Example 1 

Figure 3 is a schematic diagram of a separately 

excited D.C motor where R the armature resistance; L 

the armature inductance; I the armature current; ν the 

terminal voltage of the motor; e the back 

electromotive force; T the load torque; J the torque of 

inertia and θ = ωɺ  is the motor speed. Taking 

/rω = ω Ω , /r bI iR K= Ω , / bu v K= Ω , 
2/

b
B bR K= , 2/

L b
T TR K= Ω , /e mT Tε =  as dimensionless 

variables, where Kb is the constant of the torque, Ω is a 

nominal operating point, /eT L R=  is the armature circuit 

time constant, 2/
m b

T JR K=  the mechanical time constant 

and / mt Tτ = as the time variable, then the transient 

behavior of the D.C motor shown in Fig. 3 can be described 

by following stiff ODE system. 
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Fig. 2. Absolute stability of MsDTM with main and two sub diagonals Padé approximants 
 

 
 
Fig. 3. A schematic diagram of a separately excited D.C motor 
 

r
r r L

r
r r

d
B I T

d

dI
I u

d

ω =− ω + − τ ε =−ω − + τ 

 (32) 

 
System (32) with parameters listed in Table 1 has 

been integrated using fourth order MsDTM 
(4MsDTM),enhanced fourth order MsDTM with one 
iteration (E1-4MsDTM) and fourth order MsDTM 
with Padé approximant (4MsDTM-P) on the interval 
[0, 4] and the results are presented in figures and 

tables for different values of the step size h. 
The errors have been defined as the maximum of 

the absolute pointwise errors for each component of 
the solution as: 

{ }
( ) ( ) ,

( ) ( ) , max ,

r

r r r

r j r j

I r j r j I I

E

E I I E E E

ω

ω ω

= ω τ − ω

= τ − =
 

 

For system (32), at = 0.001ε , the eigenvalues 

are 9.998 003, 1.2446 00e eλ =− + − + , the stiffness ratio 

is 802.625 and the drawback of MsDTM and E-

MsDTM are more severe, where for (32), the 

4MsDTM is stable only if 
4sh h≤ ,(

4 = 2.7881e-003sh ) 

and the E1-4MsDTM is stable only if 
5sh h≤ , 

(
5 =3.2202e-003sh ). 

Figure 4-6 show the stable and unstable solutions 

of (32) obtained by using 4MsDTM, E1-4MsDTM and 

4MsDTM-P at different values of time-step size h. In 

each figure, we choose the time step and the plotting 

range so that the differences between the obtained 

solutions are clear. 

Figure 4 shows that the 4MsDTM solutions 

obtained at h = 0.0025, 0.0027 (h<hs4), converge to 

the true solutions, while the solution obtained at h = 

0.0028 (h>hs4), is unstable and diverges far from 

the true solution. To overcome the stability restriction 

on using 4MsDTM with h = 0.0028 for (32), we 

should use smaller time-step size or higher order 

MsDTM, where the 5MsDTM has a larger stability 

region (hs5 = 3.2202e-003) than 4MsDTM. 
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Fig. 4. 4MsDTM solutions for system (32) at different values of time-step size h 

 

 
 

Fig. 5. E1-4MsDTM solutions for system (32) at different values of time-step size h 
 

As shown in Fig. 5, although the E1-4MsDTM 
solutions, at h 0.0025, 0.003 (h<hs5), exhibiting spurious 
oscillations at the layer region (Hairer and Wanner, 1996; 
Shyy et al., 1992; Yost and Rao, 2000), they remain 
bounded and decrease with time and thus the solutions are 
stable. At h = 0.0035 (h>hs5), the E1-4MsDTM solutions 
oscillate wildly and quickly exit the range of the graph and 
therefore, there is a need to increase the order of the 
method or the number of iterations I, where E1-
5MsDTM or E2-4MsDTM has a larger stability region 
(hs6 = 3.557e-003) than E1-4MsDTM. 

Figure 6 shows that the 4MsDTM-P solutions are 

stables and converge to the true solutions even for 

larger time-step size. 

Results in Table 2, show us that the 4MsDTM and 

E1-4MsDTM solutions at 0.003h≥ and 

0.004h≥ respectively, do not approximate the true 

solutions of (32) correctly. We insert dashes (-) to 

indicate this phenomenon. Obviously, these step sizes 

are not enough to meet the stability restrictions where 

4MsDTM and E1-4MsDTM are not A-stable methods. 
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Fig. 6. 4MsDTM-P solutions for system (32) at different values of time-step size h 

 

 
 

Fig. 7. A circular reaction 
 
and therefore, there is a need to decrease the time-step to 
obtain accurate solutions, while the A-stable 4MsDTM-P 
performs better even for large time step. 

Results in Table 2 also show us that the E1-4MsDTM 
solutions are accurate better than the 4MsDTM 
solutions, while the 4MsDTM-P solutions are more 
accurate than E1-4MsDTM solutions 

Table 3 and 4 present a comparison of the maximum 

absolute error 
IEω and the CPU used time, respectively, 

for solving (32) using the NMsDTM, EI-4MsDTM and 

NMsDTM-P at different orders, N, number of iterations, 

I and time-step size, h. 

As shown from Table 3, the results of (I+4) MsDTM 

and EI-4MsDTM have the same accuracy and stability 

results, which confirms theoretical results in (Theorems 8, 

9), while the results of (I+4) MsDTM-P are more 

accurate. In addition, for a fixed order in NMsDTM or 

a fixed number of iterations in EI-4MsDTM, as the 

step size decreases the numerical solution converges 

to the exact one. While, for a fixed step size h, the 

convergence of (NMsDTM, EI-4MsDTM) only begins 

when (N, I) are (O(Kh), O(Lh)), respectively, where for 

(32), K = L = O(ε
−1

) ([Vulanovic, 1989, Theorem 1]; 

(El-Zahar and EL-Kabeir, 2013, Lemma 3.2); Zhao and 

Xiao, 2010; Zhao et al., 2014). 

Results in Table 4, show us that, for the same step 

size h, the (I+4) MsDTM has the lowest CPU usage and 

the EI-4MsDTM has the highest CPU usage in solving 

(32). Moreover, increasing the order N of NMsDTM is 

computationally cheaper than increasing the order of 

NMsDTM-P, while increasing the number of iterations I 

in EI-4MsDTM is computationally more expensive, 

where for I>1 successive analytical integrations are 

required (I-1)-times and therefore the MsDTM is the 

lowest computational cost while the E-MsDTM is the 

highest computational cost. 

Example 2 

Figure 7 describes a circular reaction with 3 

substances A, B and C, with initial values A(0) = 1, B (0) 

= 2 and C(0) = 3. The system of ODEs describing the 

circular reaction in Fig. 7 is as follows: 

 

( ) 1001 10 1 ( )

( ) 1000 15 10 ( )

( ) 1 5 11 ( )

A t A t
d

B t B t
dt

C t C t

     −
     
     = −     
     −     

 
(33) 

 

For system (33), the eigenvalues are 

1.0110 03, 1.5964 01, 0.00e eλ=− − and therefore the 

stiffness ratio is 63.33 and we have 

(
4 = 2.7550e-003sh ,

5 =3.1820e-003sh ). The system has 

been integrated on the interval [0, 1] and the 

numerical results are presented in Fig. 8-10 and Table 

5 and 6 using MsDTM, E-MsDTM and MsDTM-P at 

different orders, N, number of iterations, I and time-

step size h. The present numerical results for system 

(33) provide support for the earlier analysis of the 

results presented for system (32), which confirm our 

theoretical results. 
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Fig. 8. 4MsDTM solutions for the system (33) at different values of time-step size h 

 

 
 

Fig. 9. E1-4MsDTM solutions for the system (33) at different values of time-step size h 
 

Example 3 

Consider the nonlinear system of ODEs (Wu and 
Xia, 2001): 
 

Y BY UW′ =− +  (34) 
 
where: 
 

1

2

3

4

1 1 1 1 1

1 1 1 1 11
(0) , , ,

1 1 1 1 12

1 1 1 1 1

d

d
Y U B U U

d

d

    − −              − −        = = =       − −                  − −     
 

2

1 1 1

2

2 2 2

2

3 3 3

2

4 4 4

1000

800
, ,

10

0.001

z z d

z z d
W Z UY D

z z d

z z d

                                            = = = = =           −                                   

 

 

The exact solution of (34) is: 

 

Y U Z=  

 

where: 
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Fig. 10. 4MsDTM-P stable solutions for the system (33) at different values of time-step size h 
 
Table 1. Parameters of the separately excited D.C motor 

J = 8×10−3 kg.m2 Kb = 0.043 V/rad/s 

R = 1.5Ω Ω = 279.07 rad/s 

b = 3×10−4 N.m/rad/s Va = 12V 

L = 9.735mH TL = 0 

 

Table 2. Maximum absolute errors of 4MsDTM, E1-4MsDTM and 4MsDTM-P at different time-step size h for system (32) 

  
r

E
ω

   
Ir

E  

h  4MsDTM  E1-4MsDTM  4MsDTM-P  4MsDTM  E1-4MsDTM  4MsDTM-P  

0.0200  -  -  2.7050e-2  -  -  5.3853e-1  

0.0100  -  -  4.0418e-3  -  -  2.9919e-1  

0.0050  -  -  4.6199e-4  -  -  9.7038e-2  

0.0040  -  -  2.2318e-4  -  -  5.8205e-2  

0.0030  -  6.9808e-4  8.6548e-5  -  6.9721e-1  2.6954e-2  

0.0027  8.1048e-4  3.3816e-4  6.0986e-5  8.0947e-1  3.8269e-1  1.9728e-2  

0.0025  5.6554e-4  2.4684e-4  4.7189e-5  5.6483e-1  2.4653e-1  1.5554e-2  

0.0020  1.9770e-4  6.8496e-5  2.2180e-5  1.9746e-1  6.8410e-2  7.4707e-3  

0.0010  1.1661e-6  1.2096e-6  1.9070e-6  1.1647e-3  1.2081e-3  5.3772e-4  

 
Table 3. Maximum absolute errors EωI of different methods at different orders and time-step size for system (32) 

h  0.004  0.003  0.0025  0.002  0.001  

5MsDTM  -  6.9721E-1  2.4653E-1  6.8410E-2  1.2081E-3  

6MsDTM  -  3.1124E-1  9.1200E-2  2.0123E-2  1.7536E-4  

7MsDTM  -  1.2052E-1  2.9297E-2  5.1465E-3  2.2167E-5  

8MsDTM  5.0842e-1  4.1227E-2  8.3206E-3  1.1647E-3  2.4860E-6  

5MsDTM-P [2/3]  5.7084E-2  2.6326E-2  1.5139E-2  7.2327E-3  5.0646E-4  

6MsDTM-P [3/3]  5.3599E-3  1.5185E-3  6.3195E-3  2.0093E-4  3.8045E-6  

7MsDTM-P [3/4]  2.6364E-4  4.2917E-5  1.2348E-5  4.0629E-6  5.4844E-8  

8MsDTM-P [4/4]  2.9289E-4  4.9229E-5  1.4552E-5  3.0193E-6  1.4690E-8  

E1-4MsDTM  -  6.9721E-1  2.4653E-1  6.8410E-2  1.2081E-3  

E2-4MsDTM  -  3.1124E-1  9.1200E-2  2.0123E-2  1.7536E-4  

E3-4MsDTM  -  1.2052E-1  2.9297E-2  5.1465E-3  2.2167E-5  

E4-4MsDTM  5.0842e-1  4.1227E-2  8.3206E-3  1.1648E-3  2.4860E-6  
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Table 4. CPU time(s) in Sec used in solving system (32) 

 h  0.004  0.003  0.0025  0.002  0.001  

5MsDTM  -  00.641  00.750  00.953  01.922  

6MsDTM  -  00.703  00.813  01.000  01.953  

7MsDTM  -  00.813  00.891  01.047  02.141  

8MsDTM  00.766  00.906  01.031  01.140  02.281  

5MsDTM-P [2/3]  02.625  03.344  04.016  05.015  10.125  

6MsDTM-P [3/3]  02.750  03.703  04.500  05.593  11.078  

7MsDTM-P [3/4]  03.437  04.641  05.500  06.875  14.000  

8MsDTM-P [4/4]  03.860  06.313  06.094  07.687  15.375  

E1-4MsDTM  -  03.469  04.188  05.188  10.375  

E2-4MsDTM  -  06.968  08.407  10.531  20.938  

E3-4MsDTM  -  10.125  12.109  16.047  33.875  

E4-4MsDTM  10.512  12.365  15.674  20.021  41.108  

 
Table 5. Maximum absolute errors of different methods at different orders and time-step size for system (33) 

h  0.004  0.003  0.0025  0.002  0.001  

5MsDTM  -  7.2348e-1  2.5594e-1  7.1061e-2  1.2565e-3  

6MsDTM  -  3.2698e-1  9.5856e-2  2.1161e-2  1.8450e-4  

7MsDTM  -  1.2818e-1  3.1173e-2  5.4785e-3  2.3621e-5  

8MsDTM  5.4701e-1  4.4388e-2  8.9620e-3  1.2550e-3  2.6813e-6  

5MsDTM-P [2/3]  1.3698e-1  3.7719e-2  1.6635e-2  6.0714e-3  2.3814e-4  

6MsDTM-P [3/3]  5.3980e-3  1.5400e-3  6.4337e-4  2.0542e-4  3.9269e-6  

7MsDTM-P [3/4]  2.2854e-3  5.5555e-4  2.0054e-4  5.4601e-5  8.0908e-7  

8MsDTM-P [4/4]  3.4722e-4  5.8611e-5  1.7378e-5  3.6186e-6  3.2323e-7  

E1-4MsDTM  -  7.2348e-1  2.5594e-1  7.1061e-2  1.2565e-3  

E2-4MsDTM  -  3.2698e-1  9.5856e-2  2.1161e-2  1.8450e-4  

E3-4MsDTM  -  1.2818e-1  3.1173e-2  5.4785e-3  2.3621e-5  

E4-4MsDTM  5.4701e-1  4.4388e-2  8.9620e-3  1.2551e-3  2.6813e-6  

 
Table 6. CPU time(s) in Sec used in solving system (33) 

h  0.004  0.003  0.0025  0.002  0.001  

5MsDTM  -  00.312  00.360  00.422  00.906  

6MsDTM  -  00.359  00.359  00.500  01.031  

7MsDTM  -  00.401  00.417  00.513  01.094  

8MsDTM  00.312  00.406  00.469  00.578  01.156  

5MsDTM-P [2/3]  01.015  01.266  01.500  01.922  03.879  

6MsDTM-P [3/3]  01.094  01.407  01.656  02.156  04.188  

7MsDTM-P [3/4]  01.469  01.766  02.156  02.672  05.234  

8MsDTM-P [4/4]  01.484  02.031  02.250  02.859  05.781  

E1-4MsDTM  -  01.375  01.594  01.938  03.875  

E2-4MsDTM  -  02.625  03.047  03.828  07.734  

E3-4MsDTM  -  12.031  09.906  12.282  18.140  

E4-4MsDTM  19.325  24.841  29.898  35.128  48.125  

 
Table 7. Maximum absolute errors of 4MsDTM, E1-4MsDTM and 4MsDTM-P for system (34)  

h  4MsDTM  E1-4MsDTM  4MsDTM-P  

0.0050  -  -  7.5894e-2  

0.0040  -  -  4.7552e-2  

0.0030  -  4.5933e-1  1.9585e-2  

0.0027  5.6182e-1  2.5191e-1  1.4148e-2  

0.0025  3.9178e-1  1.6220e-1  1.1054e-2  

0.0020  1.3673e-1  4.4960e-2  5.1837e-3  

0.0010  4.8999e-3  7.9266e-4  3.5344e-4  
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Table 8. Maximum absolute errors of different methods at different orders for system (34) 

h  0.004  0.003  0.002  0.001  

5MsDTM  -  4.7058e-1  4.6153e-2  8.1526e-4  

6MsDTM  -  2.1115e-1  1.3697e-2  1.1990e-4  

7MsDTM  8.9639e-1  8.6648e-2  3.7323e-3  1.6268e-5  

8MsDTM  4.1510e-1  3.4088e-2  9.7866e-4  2.1338e-6  

5MsDTM-P [2/3]  4.2018e-2  1.2326e-2  1.9659e-3  9.1152e-5  

6MsDTM-P [3/3]  3.4206e-3  1.0154e-3  1.4181e-4  5.5071e-5  

7MsDTM-P [3/4]  3.7350e-3  6.7155e-4  5.1114e-5  6.9606e-7  

8MsDTM-P[4/4]  2.2286e-4  3.8427e-5  2.4243e-6  5.6783e-8  

E1-4MsDTM  -  4.5933e-1  4.4960e-2  7.9266e-4  

E2-4MsDTM  -  1.9605e-1  1.2665e-2  1.1029e-4  

E3-4MsDTM  6.7896e-1  7.3224e-2  3.1266e-3  1.3482e-5  

E4-4MsDTM  2.9982e-1  2.4318e-2  6.8748e-4  1.4706e-6  

 
Table 9. CPU time(s) in Sec used in solving system (34) 

h  0.004  0.003  0.002  0.001  

5MsDTM  -  08.181  12.219  24.547  

6MsDTM  -  09.859  14.703  29.579  

7MsDTM  08.750  11.656  17.422  34.813  

8MsDTM  10.125  13.516  20.156  40.406  

5MsDTM-P [2/3]  07.109  09.532  14.235  28.594  

6MsDTM-P [3/3]  08.516  11.359  16.984  34.047  

7MsDTM-P [3/4]  10.140  13.547  20.344  40.719  

8MsDTM-P[4/4]  11.641  15.672  23.359  46.875  

E1-4MsDTM  -  10.141  15.156  30.219  

E2-4MsDTM  -  14.215  21.894  48.716  

E3-4MsDTM  12.014  35.097  43.810  65.125  

E4-4MsDTM  28.451  44.384  55.127  78.124  

 

1 1

2 2

3 3

4 4

( ) ( )

( ) ( )
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1 (1 d )( ) ( )

( ) ( )

i

E
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i d t
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E

y t z t

y t z t d
Y Z z t i
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                = = = =     − +             
  

The problem has been integrated on the interval [0, 1] 
and the numerical results are presented in Table 7-9 
using MsDTM, E-MsDTM and MsDTM-P at different 
orders, N, number of iterations, I and time-step size h. 

Results in Table 7 show that, the E1-4MsDTM 
solutions are accurate better than the 4MsDTM 
solutions, while the 4MsDTM-P solutions are more 
accurate and have a good stability property. 

Results in Table 8 show that, the EI-4MsDTM results 
are little better than the (I+4) MsDTM results, while the 
(I+4) MsDTM-P results are more accurate than the (I+4) 
MsDTM and EI-4MsDTM results. 

Results in Table 4, 6, 9 show us that, the CPU usage in 
solving (34) is extremely higher than CPU usage in (32) 
and (33) and thus is due to the nonlinearity of (34). But we 
still have MsDTM with the lowest computational cost and 
E-MsDTM with the highest computational cost. 

Conclusion 

In this study, we have presented an effective 

comparison among three explicit one step semi-

analytical numerical methods for solving stiff ODE 

systems. The methods are the MsDTM, E-MsDTM and 

MsDTM-P. The error and stability analysis of each 

method is presented. The error analysis shows that the 

methods are consistent and so they closely match the 

given IVP (1) when the step size h is sufficiently small. 

The stability analysis shows that the EI-NMsDTM have 

stability regions larger than those with NMsDTM and 

both of them are conditionally stable methods, while 

NMsDTM-P is A-stable method and larger time steps 

can be used hence suitable for the stiff ODE systems. In 

addition, the (N+I) MsDTM and EI-NMsDTM have the 

same stability regions (Theorem 8) and are equivalent 

for linear homogenous autonomous initial-value ODE 

system (Theorem 9). Also, the present analysis of the 

EI-NMsDTM shows that it is equivalent to the multiple-

step Picard iteration method with NDTM solution as 

the zeroth approximation of ym(t). We have applied the 

methods on three linear and nonlinear practical 

problems with known exact solutions and the numerical 

results are presented in figures and tables for 

comparison. The numerical results confirm our 

theoretical ones and additionally show that: 

 

• As the step size decreases or the order increases or 

the number of iterations for E-MsDTM increases, 

the accuracy of the methods increases 

• For the same order and step size, the E-MsDTM 

solutions are accurate better than the MsDTM 
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solutions, while the MsDTM-P solutions are more 

accurate than E-MsDTM solutions 

• For the same step size, the EI-NMsDTM and 

(N+I)MsDTM have the same results for linear 

homogenous autonomous ODE systems, while for 

nonlinear ODE systems the EI-NMsDTM 

solutions are accurate little better than the 

(N+I)MsDTM solutions 

• Numerically, the convergence of EI-MsDTM begins 

when I is of order O(Lh), while begins for MsDTM 

when N is of order O(Kh)  

 

From the view of computations, increasing the order 

of the MsDTM or MsDTM-P is computationally cheaper 

than increasing the number of iterations in E-MsDTM. 
We conclude that the MsDTM-P is more suitable 

than classical MsDTM and E-MsDTM for solving 
stiff ODE systems because of its stability, higher 
accuracy and a relatively low computational cost. 
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